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Abstract: Recent developments in Internet mapping and metrification have suggested that the topology of the 
Internet follows a series of power laws.  In this paper we propose a simple algorithm for generating such 
topologies which uses growth and existing connectivity as necessary elements to generate power law 
networks.  We also discuss the impact that the underlying transport networks and their topologies may play 
on the construction of IP networks. 

 

1 Introduction 

When studying aspects of networks and the effect of various ideas such as routing strategies, network 
dimensioning and the like, one very large variable is the topology of the network.  For simplicity regular 
topologies are often used such as uniform grids of nodes or rings or more random graphs like a uniformly 
randomly connected network.  Real IP network topologies aren’t usually like this and this can have a large 
impact on results [15][16].  Recent studies [1] have shown that the Internet topology isn’t one of these regular 
patterns or even a totally randomly connected set of nodes but rather a network which follows an emergent 
topology which exhibits a number of power-laws.  The source of these power laws has been speculated [1] and 
has been attributed often to the fact that these networks grow in size. Current topology generators however 
consider the IP network as an independent layer and don’t consider the underlying transport networks (some 
have considered distance cost functions [6]).  The growth of networks together with the cost functions applied by 
the transport networks may result in more realistic topologies and offer an explanation as to the source of the 
power laws. 
The need for more realistic topologies was demonstrated by Albert et al. who showed that scale-free topologies 
are resistant to random failure but very sensitive to deliberate attack [5][8] but uniformly randomly connected 
networks are sensitive to both attack and failure.  To evaluate the realism of topology generators some mettrics 
will also be required. 

2 Internet Topology Metrics 
In any topology consisting of nodes and uni-directional links there are two immediate metrics: the number of 
nodes and the number of links, and hence the average connectivity of the nodes.  Recent laws discovered in 
Internet topologies can also give us a number of metrics. 

2.1.1 Power Laws in Internet Topologies 

Faloutsos et al. discovered four power laws [1] in three instances of inter-domain topologies and one instance of 
a node-level topology.  The following four laws were found to hold at both the node-level and the BGP domain-
level: 
Power-Law 1 (rank exponent):   The outdegree (connections to a node) was found to be proportional to the rank 
of a node, to the power of a constant.  The rank (position in table) being the position of the node in a table sorted 
(numerically decreasing) by the outdegree of the node. 
Power-Law 2 (outdegree exponent):  The frequency of an outdegree is proportional to the outdegree to the 
power of a constant. 
Power-Law 3 (hop-plot exponent):  The total number of pairs of nodes within h hops of each other, is 
proportional to the number of hops to the power of a constant.  This is more of an approximation since it only 
holds for value of h which are much less than the network diameter. 
Power-Law 4 (eigenvalue exponent):  The sorted eigenvalues (decreasing order) of the adjacency matrix (an N 
node by N node matrix which is 1 when the two nodes are connected and 0 otherwise) are proportional to the 
index into the list, to the power of a constant.  The power law was shown to hold for only the top 20 or so 
eigenvalues [1]. 
 
The exponents of these power laws are some reflection of the topologies and therefore we will be considering 
them as metrics of the topologies.  The eigenvalues for example are a metric for a number of characteristics 
including network diameter, connectivity and cliques (minimal sub-graphs) among others.  Faloutsos et al. 



showed that there were big differences in the values for these between node-level and domain-level topologies 
(Table 1-Table 4). 

2.2 Topology Generators 

Many topology generators have already been proposed in literature [6][10][11][12][13][14], some consider the 
known structure of the network being modelled such as the two tier architecture of the Internet, clustering and 
sub-nets while some consider random graphs and create more generic topologies. 

2.2.1 Random Graph Models 
Topologies of uniformly randomly connected nodes, first examined by Erdös and Rényi [13] are commonly used 
to generate test networks.  They have a few shortcomings, such as the lack of internal structure, and this leads to 
characteristics like an average network diameter that is independent of the number of nodes and that all nodes 
have the same average outdegree.  Other random models like the small-world model described by Watts and 
Strogatz [14] consists of a lattice of nodes, each one connected to nws nearest neighbours.  Then with some 
probability pws, one of the endpoints of a random link is reconnected to a random node. It has some interesting 
properties such as a distinct phase transition in the average diameter of the network once pws passes a certain 
threshold. 
None of these graph models however cater for power laws in the topologies.  There are a number of ways of 
generating such graphs but they generally rely on preferential attachment of nodes according to existing 
connectivity.  Nodes connect to other nodes, preferring to connect to the already more connected nodes [5]: such 
that the probability of connecting to a node i, of j nodes in the network, with k i links already is P(k i)~ki/Skj.  Such 
a network model creates networks which follow all four powers laws described by Faloutsos et al. albeit with 
different exponents. 

2.3 Current Topology Generators 
A number of topology generators exist, each concentrating on various aspects of the Internet.  Waxman [6] first 
proposed a topology generator in his examination of multicast routing trees.  The generator used the euclidean 
distance between nodes to govern their connectivity: P(u,v) = βe-d(u,v)/Lα , where P(u,v) is the probability of 
linking nodes u and v, d(u,v) is the euclidean distance between u and v, L is the euclidean diameter of the 
network and a and ß are parameters.  The use of euclidean distance now makes the geographic distribution of 
nodes a factor in the topology.  The geographic distribution is in reality closely governed by the distribution of 
equipment in the transport networks. 
Other topology generators include Transit-Stub [11] and Tiers [10] which attempt to emulate different aspects of 
Internet structure such as transit network or hierarchical topologies.  More recently the BRITE [12] topology 
generator was created to investigate the source of power laws in Internet topologies. 

2.3.1 Proposed topology generation algorithm 
The algorithm to create topologies should be simple, fast, scaleable and configurable.  It should also allow 
incremental growth and allow dynamic changes in connectivity. 
 The algorithm exhibits growth in network size, preferential connectivity and growth in connectivity.  It 
was designed to emulate real network growth.  A node is added, initially with a single link to a random node, 
favouring more connected nodes, and then as the load on the network increases links are added between 
randomly chosen node pairs, again favouring the more connected nodes. 
 
The algorithm is as follows: 
1. Nl = Gl; 
2. Add a node.  Connect it to only one other node, where the probability of connecting to a node is P(k)~k i/Sk j. 
3. while(Nl>1) { Choose two different unconnected nodes in the network with probability P(k)~k i/Sk j and 

connect them. Nl=Nl-1; } 
4. Nl = N l + Gl. 
5. Jump to step 2 until the network is the required size (number of nodes). 
 
Here Gl is the growth in number of links per time epoch (per node added) (Gl is any real number > 0) and Nl is 
the number of links which are to be added to the network in that time epoch.  So therefore, at every time epoch a 
node is added and preferentially connected to an existing node with a single link.  Then with a ratio of Gl (link 
additions per node addition) add a link between any two nodes that aren’t already connected, favouring the more 
connected nodes.  More algorithms which rely on preferential connectivity can be seen in [7]. 
The result is a network that has a link to node ratio of Gl +1.  The parameters are therefore average outdegree 
(link to node ratio) and the network size (number of nodes). 
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Figure 1 The outdegree frequency power law (power-law 2 [1]) 
exponent versus the average outdegree 

 
Topology 
Instance 

Num. 
of 

nodes 

<k> Measured 
rank 

exponent 

Predicted 
(500 

nodes)  

Predicted 
(given # 

of nodes) 
Int-11-97 3015 3.42 0.81139 1.18 1.12 
Int-04-98 3530 3.65 0.82127 1.21 1.15 
Int-12-98 4389 3.76 0.74496 1.22 1.15 
Rout-95 3888 2.57 0.48759 1.05 0.99 

Table 1 Power Law Exponent predictions and actual values for the 
outdegree rank exponent 

 

Topology 
Instance 

Num. 
of 

nodes 

<k> Measured 
outdegree 
exponent 

Predicted 
(500 

nodes)  

Predicted 
(given # 

of nodes) 
Int-11-97 3015 3.42 2.15632 0.85 0.16 
Int-04-98 3530 3.65 2.16356 0.83 0.08 
Int-12-98 4389 3.76 2.20288 0.82 -0.01 
Rout-95 3888 2.57 2.48626 0.97 0.05 

Table 2 Power Law Exponent predictions and actual values for the 
outdegree frequency exponent 

 
Topology  
Instance 

Num. 
of 

nodes 

<k> Measured 
hop-plot 
exponent 

Predicted 
(500 

nodes)  

Predicted 
(given # 

of nodes) 
Int-11-97 3015 3.42 -4.62706 -2.78 -3.95 
Int-04-98 3530 3.65 -4.71768 -2.74 -4.02 
Int-12-98 4389 3.76 -4.86588 -2.72 -4.15 
Rout-95 3888 2.57 -2.83987 -2.95 -4.28 

Table 3 Power Law Exponent predictions and actual values for the 
hop-plot exponent 

 
Topology  
Instance 

Num. 
of 

node 

<k> Measured 
eigenvalue 
exponent 

Predicted 
(500 

nodes)  

Predicted 
(given # of 

nodes)  
Int-11-97 3015 3.42 0.471327 0.55 0.45 
Int-04-98 3530 3.65 0.502062 0.56 0.46 
Int-12-98 4389 3.76 0.486946 0.57 0.45 
Rout-95 3888 2.57 0.17742 0.50 0.39 

Table 4 Power Law Exponent predictions and actual values for the 
eigenvalue exponent 

3 Examination of Generated Topologies 

The topology generator was run for a range of network sizes (N nodes) of 100, 200, 300 and 500 nodes with 
average outdegree values <k> of 1.0, 1.2, 1.5, 2.0, 2.5, 3.0 (Gl = 0.0, 0.2, 0.5, 1.0, 1.5, 2.0, 3.0 respectively).  
The power law correlation of the resulting topologies for all four laws was good (R2 > 0.9 for all power laws).  
The exponents and coefficients of the power law fits are however dependent on network size and average 
outdegree.  To investigate this further we plotted the exponents plotted over different <k> and N values, the 
oudegree exponent can be seen in Figure 1. 

3.1 A Quantitative Examination of the Power Laws  
Let us now consider the suitability of the algorithm to Internet topology generation and the choice of parameters.  
The network sizes were unfortunately limited to 500 nodes due to the need for shortest path routing in the hop-
plot exponent calculation.   Over a range of <k> values the exponents fit trends of their own (Figure 1).  The range 
of average outdegree values <k> was chosen so that it covers the values measured by Faloutsos et al.  We can 
see that as the network size gets larger the lines of the graph converge. In Table 1 to Table 4 we have the network 
parameters as per Faloutsos’ data and two predictions as to the exponents of the resulting networks.  There are 
three data sets describing AS topologies (Int-11-97, Int04-98, Int-12-98) and one describing node level topology 
(Rout-95).  The first prediction we make ignores the real network size and interpolates along the 500 node trend.  
The second case attempts to extrapolate the coefficients of the trends to the given network size and makes an 
estimate to what the exponent would be if the Internet were in fact like our topology generator. 
We can see that even though the topologies do follow power laws they don’t match the exponent value from the 
Internet study.  In a few cases the predictions were at least within 10-20% of the measured values, for example 
the AS data eigenvalue exponent or the AS data hop-plot exponents.  The other power laws, especially the node-
level exponents were however very different. 

4 Conclusions and Discussion  
The lack of similar exponents leads us to believe that while there certainly is a level of preferential connectivity 
when nodes are added at the node-level of the Internet this certainly isn’t the only factor.  We know for a fact 
that nodes are actually clustered within AS domains and that the connectivity of these also follows the power 
laws.  This suggests a requirement for more structured elements in topology as well as the need to incorporate 
some form of geographical information and cost function, similar to Waxman’s work [6] and similar to elements 



of the BRITE topology generator [12], especially the use of heavy-tailed node placement.  Geographic 
restrictions would prevent the creation of links which traverse the entire network, which is unrealistic in real 
networks but possible in the generator. 
The source of these restrictions and rules to the topological design is from two sources:  The ability of the 
transport network, and the demands of the IP flows (and the effect of network operator policies on them).  The IP 
flows are in turn influenced by web page connectivity, and the transport network is affected by the physical 
network.  Certain levels of service may be required for certain links, the deliverable level of service is dependent 
on the transport network.  The result is a feedback system because the users (or network designers) who create 
(or plan) demands will respond to perceived quality of service, and just the same way the physical layer will 
deliver levels of service according to what load it is already experiencing.  This is similar to the Faloutsos et al. 
[1] postulate that the power laws are created by co-operative and antagonistic forces, and that the network must 
reconfigure itself to cope with demand.  We could further hypothesise that since our feedback elements are in 
fact heterogeneous, that the source of our power laws is Self-Organising Criticality [17], where heterogeneity is 
actually a requirement [18]. 
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