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• Introduction to adaptive systems

• Adaptive Gain Flattening

• Adaptive Dispersion Compensation
– Adjustable dispersion compensation technologies
– Control schemes for adaptive compensation

• Adaptive PMD Compensation

• Conclusions

–Acknowledgements to Simon Parry (DGFFs) and 
Dan Watley (PMD Compensation)
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Adaptive optical transport
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Why Dynamic Gain Flattening ?

• Fixed flattening filters cannot remove:

• 1. Static errors.
– Component tolerances
– Manufacturing tolerances
– Erbium fibre doping variations
– Raman transmission fibre

• 2. Dynamic errors
– Gain tilt
– Non-linear effects
– Thermal variations
– Dynamic add/drop
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DGFF Lattice Filter
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DGFF adaptive control
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• Spectral Feedback
– Optical Spectrum Analysers – Optical SNR
– Optical Channel Monitors – Optical power

• Control Algorithm
– Response time limited by spectral feedback
– Accuracy limited by spectral feedback

Optical Scanning

Electrical Scanning
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Why adjustable dispersion?

• Increased margin
– Operate in ‘sweet spot’ of dispersion curve

• Track changes in dispersion
– Temperature shift of λ0, fibre re-patching, 

• Optical protection switching
– Transmission path, thus dispersion changes

• All-optical routing
– Different channels have different dispersion

• Balance nonlinearity
– Tailor dispersion to match channel power

• Static provisioning of system
– Residual slope mismatch between DCF and 

transmission fibre

Dispersion

P
en

al
ty

Static Window 
~100ps/nm
(+/-3km NDSF)

Dynamic Window

0

2

4

6

8

10

12

0 200 400 600 800
Higher Order Dispersion, ps/nm2

P
en

al
ty

, d
B

Q



J. Fells - 8© 2001 Nortel Networks

MEMS etalon

Madsen, C. K., IEEE Photonic Technology Letters, Vol. 12, No. 6, June 2000, pp. 651-653

• Asymmetric Fabry-Perot

• ¼ wave stack on bottom

• MEMS variable reflector on top
– Actually micro-cavity F-P etalon

• Vary top reflectivity to change finesse
– This alters dispersion
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Ring resonator
• 4 stage ring-resonator in silica waveguide

– 3940 ps/nm tuning range, 13.8 GHz bandwidth, periodic response, compact
– 4.4 dB fiber-fiber loss (0.8 dB per facet, 0.7 dB per ring)
– 0.5 dB penalty at 10Gbit/s, 4 channels measured

• Disadvantages
– Polarisation dependence – 6 dB loss variation over passband
– 8 control elements – FSR limited (index contrast/bend radius)
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Madsen, OFC’01 PD9 (Lucent)
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Cascaded Mach-Zehnder

• Integrated structure incorporating a 
series of tunable couplers, 
asymmetric and symmetric MZ 
interferometers

• Dispersion is induced by the 
different frequency components 
travelling through the variable 
length paths

• Net outcome is a variable 
dispersion equaliser with a periodic 
structure in the wavelength domain.

Takiguchi, K., IEEE J. Selected Topics in Quantum Electronics, Vol. 2, No. 2, June 1996, pp. 270-276

• Tuning range 1500 ps/nm

• Compromises between pass bandwidth and tuning range

• Quite a complex device to control
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Virtually imaged phased array 
(VIPA)

• Wavelength determines point at 
which the i/p light passes through 
glass plate

• Distance travelled by a spectral 
component determined by no of 
reflections within plate

• Induced chromatic dispersion 
varied by changing the angle of 
the plate

• Periodic response

Shiraski, M., IEEE Photonics Technology Letters, Vol. 9, No. 12, December 1997, pp. 1598 - 1600
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Nonlinearly strained FBG

• Nonlinear strain changes dispersion

• Double bend avoids wavelength shift

• Difficult to keep fibre bonded to 
cantilever

Imai, T., IEEE Photonic Technology Letters, Vol. 10, No. 6, June 1998, pp. 845 - 847
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Temperature gradient tuned FBG

Eggleton, (PTL-12, p. 1022, 2000)

32 individual heaters – arbitrary chirp profile, inc. disp. slope
6 element Peltier across whole device to avoid wavelength shift
108 ps/nm tuning range, ~1 nm bandwidth, 3 W power
4 dB loss variation over passband, 50 ps delay ripple

Nonlinear thickness thin film – current heating
Proposed thermally isolated DC heater to avoid wavelength shift
Rogers, Opt. Lett, 24(19), p. 1328, 1999. Not yet demonstrated

V+ V-
50ps/nm tuning

Matsumoto, OFC’01 TuS4 (Mitsubishi)
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Twin Fibre Grating Compensator

• Operated by increasing the strain in grating A 
whilst reducing the strain in grating B, and 
vice versa

• Simple linear strain tuning mechanism
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Measured results of twin FBG
System measurements at 40GBit/s

0

1

2

3

4

5

6

-300 -200 -100 0 100 200 300
Net dispersion, ps/nm

P
e

n
a

lt
y
, 

d
B

Q

No ADC

With ADC

Fells, J. A. J., Proc. ECOC 2000, September 2000, PD 2.4

WITH ADCNO ADC
Original design



J. Fells - 16© 2001 Nortel Networks

0

1

2

3

4

5

6

-600 -400 -200 0 200 400 600

Net Dispersion, ps/nm

P
en

al
ty

, d
B

Q

80 Gbit/s system results

Without ADC
32.7 ps/nm window

With ADC
884.9 ps/nm window

for <1.5dBQ penalty

-465.3 ps/nm

No ADC

+419.6 ps/nm

With ADC

J.A.J. Fells et al. OFC’2001 Postdeadline

1549.0

1549.5

1550.0

1550.5

1551.0

1551.5

1552.0

0 20 40 60 80 100 120

Position, mm

B
ra

gg
 w

av
el

en
gt

h,
 n

m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

K
ap

pa
, m

-1

Reverse Quadratic

Continuation of quadratic

New design



J. Fells - 17© 2001 Nortel Networks

Signal fading CD detection 
techniques
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Adaptive dispersion control

• Add AM tone at 8 GHz to 10 Gbit/s tx signal
– 15 % modulation depth, 0.5 dB power penalty as a result
– Monitor fading of AM tone, 975 ps/nm capture range
– Manual adaptive compensation using nonlinearly chirped FBG

Pan, OFC’01 WH5 (USC-LA)

• Monitor clock fading in 10 Gbit/s RZ system
– ±600 ps/nm capture range at 10 Gbit/s

• Monitor clock regeneration in 10 Gbit/s RZ system
– ±640 ps/nm capture range at 10 Gbit/s

• Only ±60 ps/nm at 40 Gbit/s for both schemes

Petersen, OFC’01 WH4 (USC-LA)
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Why Adaptive PMD compensation?

• Impact of PMD increases linearly with bit-rate

• Instantaneous DGD of the system for a particular channel will 
randomly vary so an adaptive compensation is required
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Adaptive PMD compensator
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Control signals for 10GBit/s NRZ

Power spectral density Eye opening
• 5 GHz very sensitive
• 2.5 GHz unambiguous up to 200 ps.

Similar approach can be used for any bit-rate
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Measured results
• Includes all orders of PMD, typical of real installed fibre 

with a mean PMD of 36ps

Watley, D. A., Proc. OFC 2000, March 2000, Paper ThB6, pp. 37-39
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Conclusions
• Dynamic gain flattening

– Necessary to equalise channel powers
– Sinusoidal lattice filter implementation

• Adjustable dispersion compensation technologies
– Interferometer devices: Etalon, Ring Resonator, Cascaded MZ
– VIPA: Virtually imaged phase array
– FBG devices: nonlinear strain, nonlinear chirp, temp. gradient

• Adaptive dispersion control schemes
– Clock fading/regen detection method

• Adaptive PMD compensation
– Fixed delay architecture shown
– RF spectral analysis control scheme
– Field measurements show >3.5dB penalty reduction


