NCRTEL NETWORKS[™]

Adaptive Optical Transport

London Communications Symposium 2001

Julian Fells

utline

- Introduction to adaptive systems
- Adaptive Gain Flattening
- Adaptive Dispersion Compensation
 - Adjustable dispersion compensation technologies
 - Control schemes for adaptive compensation
- Adaptive PMD Compensation
- Conclusions

-Acknowledgements to Simon Parry (DGFFs) and Dan Watley (PMD Compensation)

daptive optical transport

/hy Dynamic Gain Flattening ?

Fixed flattening filters cannot remove:

I. Static errors.

- Component tolerances
- Manufacturing tolerances
- Erbium fibre doping variations
- Raman transmission fibre

2. Dynamic errors

– Gain tilt

NETWORKS[®]

- Non-linear effects
- Thermal variations
- Dynamic add/drop

Dynamic range of i/p powers lower At higher bit rates

GFF Lattice Filter

-5 stage sinusoidal filter

GFF adaptive control

Spectral Feedback

- Optical Spectrum Analysers Optical SNR
- Optical Channel Monitors Optical power

Control Algorithm

- Response time limited by spectral feedback
- Accuracy limited by spectral feedback

/hy adjustable dispersion?

ncreased margin

- Operate in 'sweet spot' of dispersion curve

Frack changes in dispersion

– Temperature shift of λ_0 , fibre re-patching,

Optical protection switching

- Transmission path, thus dispersion changes

All-optical routing

- Different channels have different dispersion

Balance nonlinearity

- Tailor dispersion to match channel power

Static provisioning of system

Residual slope mismatch between DCF and transmission fibre

EMS etalon

- **Asymmetric Fabry-Perot**
- 1/4 wave stack on bottom

MEMS variable reflector on top

- Actually micro-cavity F-P etalon

Vary top reflectivity to change finesse

- This alters dispersion

Madsen, C. K., IEEE Photonic Technology Letters, Vol. 12, No. 6, June 2000, pp. 651-653

ing resonator

4 stage ring-resonator in silica waveguide

- 3940 ps/nm tuning range, 13.8 GHz bandwidth, periodic response, compact
- 4.4 dB fiber-fiber loss (0.8 dB per facet, 0.7 dB per ring)
- 0.5 dB penalty at 10Gbit/s, 4 channels measured

Disadvantages

- Polarisation dependence
- 8 control elements

Madsen, OFC'01 PD9 (Lucent)

- 6 dB loss variation over passband
- FSR limited (index contrast/bend radius)

ascaded Mach-Zehnder

- ntegrated structure incorporating a series of tunable couplers, asymmetric and symmetric MZ interferometers
- Dispersion is induced by the different frequency components travelling through the variable length paths
- Net outcome is a variable dispersion equaliser with a periodic structure in the wavelength domain.
- Tuning range 1500 ps/nm

NETWORKS[™]

- Compromises between pass bandwidth and tuning range
- Quite a complex device to control

SÌLICA WAVEGUIDE

Si SUBSTRATE (76 mm × 88 mm)

DELAY ARM

3 dB COUPLER

O

irtually imaged phased array /IPA)

- Vavelength determines point at which the i/p light passes through lass plate
- istance travelled by a spectral omponent determined by no of effections within plate
- nduced chromatic dispersion aried by changing the angle of ne plate
- eriodic response

NETWORKS[™]

Shiraski, M., IEEE Photonics Technology Letters, Vol. 9, No. 12, December 1997, pp. 1598 - 1600

onlinearly strained FBG

- onlinear strain changes dispersion
- ouble bend avoids wavelength shift
- ifficult to keep fibre bonded to antilever

emperature gradient tuned FBG

Matsumoto, OFC'01 TuS4 (Mitsubishi)

32 individual heaters – arbitrary chirp profile, inc. disp. slope 6 element Peltier across whole device to avoid wavelength shift 108 ps/nm tuning range, ~1 nm bandwidth, 3 W power 4 dB loss variation over passband, 50 ps delay ripple

Eggleton, (PTL-12, p. 1022, 2000)

win Fibre Grating Compensator

- Operated by increasing the strain in grating A whilst reducing the strain in grating B, and vice versa
- Simple linear strain tuning mechanism

Fells, J. A. J., Proc. ECOC 2000, September 2000, PD 2.4

leasured results of twin FBG ystem measurements at 40GBit/s

Fells, J. A. J., Proc. ECOC 2000, September 2000, PD 2.4

ignal fading CD detection echniques

Adaptive dispersion control

- Petersen, OFC'01 WH4 (USC-LA)
- Add AM tone at 8 GHz to 10 Gbit/s tx signal
 - 15 % modulation depth, 0.5 dB power penalty as a result
 - Monitor fading of AM tone, 975 ps/nm capture range
 - Manual adaptive compensation using nonlinearly chirped FBG
- Pan, OFC'01 WH5 (USC-LA)
- Monitor clock fading in 10 Gbit/s RZ system
 - ±600 ps/nm capture range at 10 Gbit/s
- Monitor clock regeneration in 10 Gbit/s RZ system
 - ±640 ps/nm capture range at 10 Gbit/s
- Only ±60 ps/nm at 40 Gbit/s for both schemes

/hy Adaptive PMD compensation?

- mpact of PMD increases linearly with bit-rate
- nstantaneous DGD of the system for a particular channel wi randomly vary so an adaptive compensation is required

daptive PMD compensator

ontrol signals for 10GBit/s NRZ

Power spectral density

5 GHz very sensitive

NETWORKS^{**}

- Use combination
- 2.5 GHz unambiguous up to 200 ps

Similar approach can be used for any bit-rate

leasured results

Includes all orders of PMD, typical of real installed fibre with a mean PMD of 36ps

Watley, D. A., Proc. OFC 2000, March 2000, Paper ThB6, pp. 37-39

onclusions

Dynamic gain flattening

- Necessary to equalise channel powers
- Sinusoidal lattice filter implementation

Adjustable dispersion compensation technologies

- Interferometer devices: Etalon, Ring Resonator, Cascaded MZ
- VIPA: Virtually imaged phase array
- FBG devices: nonlinear strain, nonlinear chirp, temp. gradient

Adaptive dispersion control schemes

- Clock fading/regen detection method

Adaptive PMD compensation

- Fixed delay architecture shown
- RF spectral analysis control scheme
- Field measurements show >3.5dB penalty reduction

