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Abstract: This paper gives an overview of the Demspter-Shafer algorithm, with a brief
comparison to a Bayesian methodology, and shows how it may be used for the track association
problem encountered in a multispectral seeker application. Three application starting points
are considered, incorporating various degrees of ignorance, and compared. The benefits of
using Dempster-Shafer are then weighed against the potential drawbacks. In conclusion, the
Dempster-Shafer algorithm gives an advantage in the route taken to a decision point, and
allows the incorporation of ignorance, something that is not possible with the Bayes approach
which offers more rigorous analysis based on specific assumptions.

1 Introduction

The problem of association arises in many applications where multiple sensors, or more generally, sources
of data, are used to gather information about an object. Before the information from these separate
sources of information can be combined to gain a more complete or more accurate representation of the
object in question, it must be ascertained that the information relates to the same object. Usually a
probabilistic method is used to determine the probability of the information relating to the same object,
and popular candidates are Bayesian probability, Dempster-Shafer, Neural Networks and Fuzzy logic.

In this paper, the particular problem of track association in a multispectral seeker is considered, and the
use of the Dempster-Shafer algorithm is compared to a current Bayesian technique. Tracks are formed in
each of 3 different sensors, and then associated and fused appropriately, with track fusion being prefered
to measurement fusion for robustness.

The debate as to the validity and applicability of the Dempster-Shafer method compared to the Bayesian
and more classical probability methods has raged since Dempster first suggested his method in the 1960’s.
As yet no definitive conclusion has been reached, although certain applications often make better use of
one method or the other (an example would be object identification/classification, where Dempster-Shafer
has been shown to give significant benefits over simple Bayes[1], although sometimes at the expense of
computational resources[2]). The track association problem has as yet shown no tendency to one method
or the other.

2 The Track Association Problem

A simple but effective demonstration of the track association problem (and in fact the actual starting
situation being researched) is the 2 sensor - 2 track case, where two tracks are formed by each sensor on
2 objects from an unknown number of real objects in the scenario. The tracks contain information on
the object position and velocity, depending on the capabilities of the sensors (an IR sensor can measure
angular position and derive angular velocity, whilst a radar can measure angular position, range and
range rate, and derive angular velocity). The problem is then

Given that each sensor a and f§ forms two tracks, ai,as, and fi, 2, which pairs (o;f)
associate, i.e. relate to the same object?

Once this has been decided, the information from each sensor about an object can be fused to gain a
better estimate of the object’s position and velocity.

3 Applying Dempster Shafer Theory|[3]

The first step in applying Dempster-Shafer theory to the problem is to create the Frame of Discernment,
©. This is a set of mutually exclusive and exhaustive possibilities, i.e. a set of hypotheses. For a 2 sensor
- 2 track problem there are 7 hypotheses:



Hypothesis | f1 | #2 | Number of Associations
Hy - - 0
H1 (651 - 1
H2 - a1 1
H3 (65) - 1
H4 - (6D) 1
H5 a1 (6D) 2
H6 (65) (651 2

and so the Frame of Discernment is:
@ = {H07H17H27H37H47H57H6} (1)

From this Frame of Discernment a Power Set is derived, 2, which is a set of all elements in © and all
possible combinations of elements in ©, i.e. all possible subsets of ©, including the empty set.

2° = {{0},{Ho},{H:},{Hs},... {Hs},
{Ho, Hy}, {Ho, Hy},... {Hs, Hq}

{H07H17H27H37H47H57H6}} (2)

There are three groups of elements that are of particular interest in this problem. The first of these
includes the singleton elements, as they hold the individual hypotheses. The second group of interest
includes those elements that represent associations, e.g. {Ha, Hg} represents the association ay 2, while
{Hy, Hy, H5} represents a; associating with neither of the f tracks. The third group is simply the last
element in 2 and is the Frame of Discernment.

Each element A in 2° can be assigned a Basic Probability Number (BPN), m(A), which is a measure of
the belief assigned exactly to that element, yet implies nothing about belief assigned to proper subsets
of that element. Further to this, a Belief Function can be calculated over 2€, where Bel(A) is the sum
of the belief assigned exactly to A and all subsets of A in 2€ (this is similar to cumulative probability in
classical probability), and is the amount to which that element is supported by the available evidence.

Bel(A) = > m(B) (3)

VB:BCA
There are two rules for the BPN’s:
m(@) = 0 (4)
> om4) = 1 (5)

This in turn implies that Bel(©) =1

Any belief assigned exactly to ©, (m(©) > 0)), implies a measure of complete ignorance, as this implies
belief that any of the hypotheses may be true, and it is through this mechanism that Dempster-Shafer
theory allows ignorance to be incorporated.

3.1 The Dempster Combination Rule

The Dempster Combination Rule is a means for calculating the new BPN’s of a Power Set when new
data is received. The new data is in the form of a second Power Set with it’s respective BPN’s, and so
the combination of 29 with 29 to give 2§, has BPN’s calculated using:

> my(C)ma(D)

_ bcConD=B
20T DY momo) v
CND=0

It should be noted that there is no mathematical basis for this rule, although it does have the desirable
features of commutativity and associativity, which in turn means that the result of combining any number
of belief functions is independent of the order of combination. However, other methods exist (such as
that due to Fagin and Halpern[4]) that possess these same features but yield different results.



4 Calculation Procedure

The current association probability calculation procedure involves the steps shown in figure 1. To obtain
the association probabilities after new data has been gathered, the hypotheses probabilities must first be
calculated, and from these the association probabilites may be calculated. Figure 2 shows the equivalent
procedure using Dempster-Shafer, whereby it is possible to calculate the element BPN’s directly after
new data has been gathered.
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Figure 1: Bayes Process Flow Figure 2: Dempster-Shafer Process Flow

5 Comparison with Bayes

Dempster-Shafer theory differs significantly from Bayes theory, in particular for this application with the
handling of ignorance. A distinction is drawn between a lack of supporting evidence and the existence of
contradictory evidence. Consider the case of 2 mutually exclusive and exhaustive hypotheses. If there is
no knowledge about which hypothesis is true, Bayes would require the assumption that each hypothesis
has an equal probability of 0.5. However, if there is equal evidence for both hypotheses, they are still
each assigned a probability of 0.5. In contrast, Dempster-Shafer allows each hypothesis to be assigned a
belief of 0 when no evidence is available, and equal belief for equal evidence, although not necessarily a
belief of 0.5 if some ignorance remains. In this way differing degrees of ignorance can be incorporated.

6 Definition of the Power Set a prior: Basic Probability Numbers

There are several possible starting points when applying Dempster-Shafer theory to the track association
problem. The current Bayesian method makes several assumptions and calculates a priori probabilities
based on these. However, the availability of a method for incorporating ignorance allows more freedom
with Dempster-Shafer. Three methods for defining the a priori Power Set suggest themselves:

a priori hypothesis probabilities The first of these would be to take a similar approach to that
employed already with Bayes. a prior: hypothesis probabilities can be calculated with an assumed
probability distribution class and mean, and used as the basic probability numbers for the singleton
elements within the power set. As these a priori probabilities sum to 1 no ignorance is assumed, or indeed
may be included in accordance with equation 5. As new data arrives these BPN’s will be modified, and
decisions can be made accordingly.

This method is certainly valid, but is in contrast to the normal use of Dempster-Shafer, in that it starts
with all the belief in the singleton elements. The normal approach is to start with belief in the higher
order elements of the power set, and then as data is applied, the information is refined so that only the
singleton elements have any belief. The method is also questionable in it’s advantages over Bayes in that
it still makes use of potentially incorrect assumptions (e.g. the distribution of the number of objects) in
the calculation of the a priori hypothesis values. The only apparent advantage is the route via which a
decision is made, as discussed in section 4.

a priori association probabilities The second method makes use of the a priori association probabil-
ities. Whilst these may be derived from the hypotheses probabilities, which assume a distribution class
and mean, they may also be calculated without assuming a distribution. Instead, only one number needs
to be assumed. This incorporation of ignorance (one less assumption) can be seen in that the BPN’s are
assigned to higher order elements of 2© (the elements that contain all hypotheses that imply a particular



association), rather than the singleton elements as in the first method. As the association probabilities
are joint probabilities, they sum to more than 1. In order to incorporate them as BPN’s in a single Power
Set, they are normalised, again meaning that no other ignorance exists.

This method is more akin to the standard use of Dempster-Shafer as the belief is focused on higher
elements of 2 and then propagates down to the singleton elements as new data arrives. Again there is a
potential advantage in the route via which a decision is made and it should be noted that the ignorance
may be preserved if insufficient data is available to replace the ignorance. This in effect means that no
decisions will be made that are based on poor evidence.

Complete Ignorance The final method considered is to assume complete ignorance until any data is
received. The initial power set would therefore have all belief assigned to ©. New data will result in
the propagation of the belief to lower order elements of 2°, eventually into the singleton elements. This
method is beneficial in that it assumes no prior knowledge, and is the way in which Dempster-Shafer is
most often used. Ignorance may be preserved as in the previous method.

7 Utilising New Data

Once the a priori BPN’s have been defined, the task of updating the BPN’s on the arrival of new data
using equation 6 remains.Calculating the BPN’s from the new data is often the most inexact part of using
Dempster-Shafer, as BPN’s are not equivalent to probabilities, and are by definition open to subjectivity.
The method that is proposed for this association problem utilises the statistical distance between two
tracks, (a — b)/oc, 0. = \/02 + o7, whereby the BPN for an association is given as:

UCUIZ)TiOT (7)
(a - b)o?

where o2 ;. /0% is a scaling factor defining how good the data is. If the sum of association BPN’s is
greater than 1 they are normalised, and if the sum is less than one (i.e. there is insufficient data), the
remaining belief is assigned to © to express ignorance. This approach is intuitive, as it implies that
the belief in association reduces with increasing track separation (a — b)/o. (tracks are less likely to
be associated if they are measured to be far apart), whilst the belief also reduces with increasing track
covariance o, (the quality of the track is poor or very noisy, implying a lack of good quality evidence).
This is only one suggested method, and others may provide better performance.

m(A) =

8 Conclusions

This paper has shown the basic mathematical basis of the Dempster-Shafer algorithm. It is noted that
there is no mathematical basis for the Dempster combination rule, although it does seem logical and fulfils
the commutativity and associativity requirements. Dempster Sahfer has been widely applied to many
problems where previously Bayesian or classical inference methods have been used, with some success.

The algorithm has then been applied to the problem of track to track association, an area that has
apparently not received much attention from Dempster-Shafer proponents in the past. Three starting
points have been proposed, each with a varying degree of ignorance or assumption included. An intuitive
method for incorporating new data has also been suggested, although its performance has not been tested.

The Dempster-Shafer algorithm seems advantageous in that it arrives at the hypothesis/association prob-
ability via a more direct route than the current Bayes method. It also allows tailoring of the algorithm
according to confidence in assumptions, whilst complete ignorance (0 confidence) can also be used, some-
thing that can not readily be done using the Bayes approach which offers more rigorous analysis based
on the specific assumptions.
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