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Abstract:  To improve communication efficiency companies nowadays start making their 
business services available electronically over the Internet. Examples can be found in the 
supply-chain management, finance relations and other sectors mainly for Business -to-
Business (B2B) interaction. The communication of electronic services follows specific 
interaction patterns that can be described through processes. A process description may 
be created manually or can be derived through process mining techniques from execution 
logs. The focus of this work is the automatic generation of branching conditions from 
statistical evaluations during the process mining. Our approach is to apply fuzzy logic 
[Zim91, Cox92, SK92] instead of crisp conditions to express uncertainty. The anticipated 
branching conditions are based on selected state attributes. The results are fuzzy rules 
suitable for a flexible description of branching conditions that allow for dynamic 
branching predictions.  

 

1. Introduction. 
Boolean expressions and crisp conditions are  not well suited for the expression of uncertainty. The main issue 
addressed in this work is to derive and to describe branching conditions that enable uncertain predictions rather 
than deterministic flow control. The basic assumption in our work is that the pro cess structure is known but the 
conditions for alternative branches are undefined. We also assume that a set of execution logs is available. These 
logs should provide system and process state information prior to each branching point. The internal branchin g 
decisions are likely to be based on that information. Our approach is to apply fuzzy logic [Zim91, Cox92, SK92] 
instead of crisp conditions to express the uncertainty. Initially we select system and process state attributes that 
might be relevant for the  different branching choices. The anticipated branching conditions are then based on 
these attributes. Consequently appropriate membership functions, required in fuzzy logic terms, are derived. 
Finally rules for the branching conditions based on fuzzy logi c are put together.  

The following sections are structured according to this process. Section 2 explains why crisp conditions are not 
appropriate for the specific needs in our context. Section 3 provides a strategy to select relevant state attributes. 
Section 4 describes a way to choose the fuzzy sets that are needed for the fuzzy rule creation, which is described 
in section 5. In section 6 we review the overall technique and present our conclusions.  

2. The need for uncertainty in Workflow Conditions 
In the previous section the issue of uncertain branching conditions in connection with process mining was 
introduced. In this section the problem is considered in more detail and we point out the requirements for 
possible solutions. As an example we look at a si mple alternative branching to interaction B or C after 
interaction A. We assume that three state attributes (a1, a2 and a3) are observable. The ranges of the attribute 
values in case of the two alternative branches can be overlapping, that is, the values a re not completely distinct 
for either branch. The branching -relevant attributes indicate the branching choice only with a certain probability 
and do not allow for a clear decision. Further more ambiguity may occur especially within the region of 
overlapping ranges. I.e. two attributes indicate different branching choices, which must not invalidate the derived 
condition. Therefore flexible rules are needed in this case rather than Boolean expressions and crisp conditions. 
These rules should support a decisio n or allow predictions rather than enabling a deterministic process execution.  

3. Finding branching-relevant attributes 
In our approach we assume that the density function for sate attributes is a normal distribution. This is 
accompanied by the assumption that the values of one attribute lie in one single interval for each alternative 
branch. I.e. if the value range would actually consist of many separate intervals, the range would be considered 
as a single interval without separation. Many attributes, like  price offers or order volumes, are likely to have such 
a normal distribution. Anyway, assuming a certain type of distribution is a simplification and some distributions 
are not well captured. These are mainly distributions with more than one maximum and m ultiple broken value 
ranges for alternative branches. Such distributions occur if, for example, one branch is chosen when a value 
exceeds a certain high value or falls below a smaller value, and if another branch is chosen in the middle case. 
For that case an approximation as a normal distribution and ranges in the form of intervals for both branching 



choices would not provide enough distinction for the two distributions. For the reason that the simplification is 
extremely helpful and most common situations  are well covered, we will continue assuming the normal 
distribution, being aware that some branching relevant attributes are not recognised by that. This does not 
introduce mistakes into the derived branching conditions but it possibly reduces the capabil ity. 

The normal distribution is specified by the mean and the variance, which can be estimated through the average 
value and the root -mean-square deviation of the observation. The range, simplified as an interval, is specified by 
a minimum and a maximum va lue. The interval can be estimated by simply taking the minimum and the 
maximum value of the observation but erroneous outliers may falsify that kind of interval estimation 
significantly. Therefore simple correction mechanisms like ignoring a little percen tage (e.g. one percent) of the 
biggest and the smallest values and calculating the interval from the remaining can bear better results.  

Figure 1 Fuzzy Sets for the labels of the control variables a1, a2, a3  

4. Choosing fuzzy sets for branching-relevant attributes 
For controlling tasks with uncertain decisions and possible ambiguity the application of fuzzy logic has proven 
to be appropriate. Fuzzy logic uses fuzzy sets that can be defined through membership functions. The 
membership function can provide a mathematical description of labels like ‘big’, ‘small’ or ‘medium’ 
concerning an attribute. The degree of membership for a certain value can vary between 0% and 100%. Fuzzy 
rules can then include those labels instead of crisp exp ressions. Figure 1 shows fuzzy sets for the three attributes 
a1, a2, a3 and related labels. The attributes become control variables in fuzzy rules like ‘ IF a1 is big AND 
a2 is close to 5 AND a3 is small THEN B follows A ’. The labels ‘big’, ‘small’ and ‘close to 
5’ replace crisp expressions like ‘a1>=10’, ‘a2 in(4.5; 5.5)’ and ‘a3<0.5’.  

Membership functions in general can be defined quite arbitrary. However in combination with fuzzy rules for 
controlling and decision -making fuzzy set s usually have simple membership functions with trapezoid shape. 
Three parameters, the top width, the bottom width and the centre specify those membership functions. Such 
membership functions are characterized by an interval where the membership is 100%, e dges with a linear 
decrease on membership and a remaining area on both sides without membership. Examples are shown in  
Figure 1. 

From a global perspective such trapezoid membership functions suit our desire to express the confiden ce for a 
branching prediction, which depends on different attribute values, very well. Again we assume observations of 
one attribute for two alternative branches with distinct normal distributions and small interval overlaps, as 
illustrated in Figure 2. It is likely that there is a value range for each branch and each attribute, where the 
confidence is very high (say 100%) that the branch is chosen if the attribute value is in that range. Further more, 
in the area of the overlap, the confidence is likely to decrease with growing distance from the 100% confidence 
area. Outside no indication for the branching decision exists at all, so that the confidence is zero.  

The exact strategy we propose is described in the following two parts se parate for the bottom intervals and the 
top intervals of the membership functions. The methods we propose imitate the intuitive approach with 
mathematical terms.  

Bottom interval  

The bottom interval represents the attribute value area where at least a mini mum indication for the related 
branching choice is given. For example we consider the case of a binomial branching choice, where two intervals 
and so with two fuzzy sets for one attribute are involved. In the following we refer to the intervals that enclos e 
90 or 95 percent of the observations, which are nearest to the mean, as the ‘90% -interval’ or the ‘95%-interval’. 
In case of an overlap we might want to reduce the bottom interval in the overlapping area if one branch has much 
more statistical support th an the other. Apart from any overlap the minimum extent should be the width of the 
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95%-interval. In the 95%-interval no overlap should reduce the branch confidence to zero because clear evidence 
exists that the branch may occur for those values. The maximu m additional extent should be until to the 
beginning of the 90%-range of the competing distribution, because starting from there the support for the other 
branch becomes very strong and if it is outside of the 95% -range of the considered branch, the own su pport is 
already very low. If the overlap is outside of the 95% -intervals, the bottom intervals are not reduced and span 
over the entire interval. In case of no overlap we will extend the intervals to fill the gap between them. It seems 
natural to give at least a little indication towards the branch whose observations are on average nearer to a newly 
observed value. So we extend the bottom intervals of both sets towards the middle of the gap. With those 
constrains the bottom interval of the fuzzy set is wel l defined and only the areas outside of both intervals stay 
unspecified. To reduce this unspecified area, we extend the outer limits of the bottom intervals to some high 
value, for example by adding ten times the interval size.  

Top interval  

The top intervals specify the area where the confidence for one branching decision is 100%. Therefore the top 
interval should definitely not extend the observation interval and also it should not reach significantly into an 
overlap area with noticeable confidence for the  competitive branch. A clear minimum constraint is the 
distribution mean. At least in the mean a 100% confidence should always be given. The pre -selection of relevant 
attributes guarantees that the means of the two distributions would always have a minimum  distance of one or 
two variance measures. So it is guaranteed that the minimum top intervals do not overlap.  

Figure 2 Attribute distributions for branches  B (solid) and C (dotted)  

 

We consider the case of a binomial branching ch oice in more detail. If the two observation intervals for one 
attribute do not overlap, the branching decision could have been made independently from other attributes. So 
we chose the entire observation intervals themselves as top intervals. In case of an  overlap that does not include 
either of the distribution means, the overlapping area is excluded from the top -intervals. This fulfils the 
requirement not to extent the top interval into an overlap area with noticeable confidence for the competitive 
branch. If the overlap includes either or both of the means, then the top interval spans until to the overlapped 
mean even though it then reaches into the overlapping area. The reason for that inconsistency is that the 
statistical support for one branch at the m ean point of the observations is significantly higher than for the other 
branch. If that would not be the case the attribute would fail in the pre -selection and would not be considered 
further. In any case of a one -sided interval overlap, the top interval is equal to the observation interval on the 
side without overlap.  

The resulting fuzzy sets are supposed to be used mainly for internal branching predictions, so that no meaningful 
labels need to be created. The next section will explain how the fuzzy sets can be composed into fuzzy rules that 
replace the branching conditions.  

5. Creating Fuzzy Rules for Workflow Conditions 
The previous section introduced fuzzy logic and described how suitable fuzzy sets for the different attributes and 
branches can be derived from the statistical observations. This section shows how fuzzy rules, that replace crisp 
branching conditions, are composed from those sets. The fuzzy rule for one branch is composed of the fuzzy sets 
relating to the attribute distributions relating to  this branch. Single attribute conditions in the form 
‘[Attribute] is member of [Fuzzy Set] ’ are connected with AND to build the rule for the branch. 
The result is one rule for each branch, for example ‘ IF a1 is big AND a2 is close to 5 AND a3 
is small THEN B follows A ’. The labels represent the previously derived fuzzy sets. Each rule lets us 

 
fuzzy sets for the 
branching choice 
confidence 

a2 

 
estimated distributions  

value ranges 

a2 

p



calculate a probability for one branch of an upcoming branching point based on the state attributes. The 
evaluation of the fuzzy rules was described in the previous s ection. 

OR-concatenations are not used in the generated rules. They would be reasonable if the rules were to be designed 
by business experts. But OR -connected attributes do not influence the result independently and are therewith 
difficult to identify. We consider the branching -relevant attributes as independent and therefore derive only 
AND-concatenations in our approach.  

To justify the use of AND-concatenations we look at a reference case. The rule we consider is ‘IF a1 is 
big AND a2 is small THEN B foll ows A’. Internally the labels ‘big’ and ‘small’ exist only as 
membership functions representing the probabilistic support for a branching choice. The AND -concatenation 
causes that the smaller membership value of a1 and a2 is returned as the confidence that  B follows A. This is, in 
case of a1 not being ‘big’ or a2 not being ‘small’, the confidence that B follows is zero. Assuming that the 
membership functions for ‘big’ and ‘small’ are derived according to the previous section, this behaviour is 
desired, because a membership function is zero only if no statistical support for the related branch exists. As we 
prefer a pessimistic approach it is reasonable to return a zero confidence for one rule if at least one of the 
memberships is zero. This is the case only if AND-concatenations are used. In case of OR, the maximum 
membership would be returned, which requires all memberships to be zero to get zero as the result. The AND -
concatenation also ensures that the effects of the simplified assumptions that we made con cerning the 
independency of branching-relevant attributes get compensated partly.  

In this section we completed our methodology for the composition of fuzzy rules, which provide a flexible way 
to describe uncertain branching conditions. In the last section we review the overall technique and present our 
conclusions. 

6. Conclusions. 
We introduced process mining as a technique to derive process descriptions from execution logs in the context of 
conversation processes for electronic business services. The focus  was on the automatic generation of branching 
conditions from statistical evaluations. It was shown that crisp conditions are not always sufficiently flexible to 
support probabilistic predictions and uncertain decisions. Nevertheless this flexibility was n ecessary if processes 
are mined from observations and not build on complete information and clear constrains. Our approach was to 
apply fuzzy logic instead of crisp conditions to express branching conditions with uncertainty.  
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