

Performance-guided Neural Network for Self-Organising Network

Management
Sin Wee Lee, Dominic Palmer-Brown, Jonathan Tepper and Christopher Roadknighto

�Computational Intelligence Research Group, Leeds Metropolitan University, 0The Nottingham Trent University, oBTexact Research Laboratories

Abstract: A neural network architecture is introduced for real-time learning of input sequences
using external performance feedback. Some aspects of Adaptive Resonance Theory (ART)
networks [1] are applied because they are able to function in a fast real-time adaptive active
network environment where user requests and new proxylets (services) are constantly being
introduced over time [2,3]. The architecture learns, self-organis es and self-stabilises in response to
user requests, mapping the requests according to the types of proxylets available. However, in
order make the neural networks respond to performance feedback, we introduce a modification to
the original ART1 network in the form of the ‘snap-drift’ algorithm, that uses fast convergent,
minimalist learning (snap) when the overall network performance is poor, and slow learning (drift
towards user request input pattern) when the performance is good. Preliminary simulations
evaluate the two-tiered architecture using a simple operating environment consisting of simulated
training and test data .

1. Introduction
An Application Layer Active Network (ALAN) [3] was first introduced to enable the users to supply JAVA
based active service code known as proxylets. It runs on an edge system (Execution Environment for Proxylets –
EEP) provided by the network operator. The purpose of the architecture is to enhance the communication
between servers and clients using the EEPs that are located at optimal points of the end-to-end path between the
server and the clients without the requirements in dealing with the current system architecture and equipments.
This approach relies on the redirecting of selected request packets into the EEP, where the appropriate proxylets
can be executed to modify the packets contents without impacting on the router’s performance and thus no any
additional standardisations are required.

However, since ALAN provides active services that are unbounded in both scale and function, and with an
enormous range of services being developed and evolved at an unprecedented rate, it is necessary to combine the
active services with a highly automated and adaptive management [4,5,6] and control solution. In this paper, we
describe an artificial neural network (ANN) based approach for the adaptive management of ALAN. The
approach involves modifying the properties of ART networks [1], in order to develop a novel ANN-based
solution to adaptively select the appropriate proxylets available to the local EEPs, in response to continually
changing input requests. A novel reinforcement-based learning algorithm is developed to improve the
performance of the network under different commercial circumstances.

The remainder of this paper is structured as follows: Section 2 describes the architecture and the learning
principles of the proposed architecture. Experiments that we carried out on the novel learning algorithm on the
Distributed ART1 module (see Figure 1) are presented in Section 3, and conclusions and future work are
discussed in Section 4.

2. The Proposed Architecture
The tiered-ART network we propose is a modular, multi-layered architecture that can be used to select available
proxylets (services) in the networks, in response to continually changing input requests while trying to improve
the overall performance of the network. It is composed of 3 modules, a Distributed ART1 network, an ART1
network and a Kohonen Feature Map. The F11 ↔ F21 and F12 ↔ F22 connections of the Distributed ART1
network are weighted bottom-up and top-down connections that can be modified during the learning stage. The
F01 → F11 connections and the connections between the two ART modules connected through F21 → F12 are
unidirectional, one to one and non-modifiable. Each of the F22 nodes are hard-wired onto a specific pre-trained
region of the Kohonen Feature map where similar available proxylets are spatially organised on the 2-D map
according to their featural similarity (similar requests will appear in neighbouring map regions). The working of
the network can be summarised as follows:

Upon the presentation of an input pattern at the input layer F01, the Distributed ART will learn to group the input
patterns according to their general features using the novel learning principles, known as ‘snap-drift’ proposed in
the next section. If no existing matching prototype is found, i.e. when the stored pattern templates is not a good
match for the input, then the winning F21 node is reset and another F21 node is selected, whose pattern template
will be matched against the input, and so on. When no corresponding output category can be found, the network
considers the input as novel, and generates a new output category that learns the current input pattern.

The top three F21 nodes are used as the input for the ART1 module where an appropriate proxylet type is
selected accordingly. For the purpose of selecting the required proxylet, the proxylet type information indicated
by the ART1 acts as a reference to pre-trained locations on the Kohonen-Feature Map, which represent specific
proxylets. If the proxylet is unavailable, one of its neighbours is selected (the most similar alternative available).

 In order to guide the network’s learning, there is an external indicator of performance of the system as a whole.
A general performance measure is used because there are no specific performance measures (or external
feedback) in response to each individual network decision. This measure is used to enable the reselection of a
proxylet types to occur in order to improve system performance.

 Proxylet Metafiles F2 2 F12 F21 F11 F01

 ART1 Distributed ART1

Figure 1: The Proposed Architecture

3. Learning Principles

The learning process of the Tiered-ART network is described as follows. Note that the novel learning principles
described here are applied to the both ART modules in Figure 1.

3.1 Top-down Learning

The top-down learning of the network can be illustrated using the following equation:

wiJ
(new) = (1-p) (I ∩ wiJ

(old)) + p (wiJ
(old) + β (I - wiJ

(old))) (1)

where
wij

(old) = the top-down weight vectors at the start of the input presentation
p = performance parameter
I = binary input vectors
β = ‘drift’ constant

Initially, all the wij are set randomly in the range (0.99,1)

wij (0) = (0.99, 1) (2)

Thus with the learning, a simple distributed affect will be generated at the output layer of the network, with
different patterns tending to give rise to different activations across F2.

By substituting p in equation (1) with 0 for very poor performance, equation (1) simplifies to:

wiJ
(new) = (I ∩ wiJ

(old)) (3)

Thus fast learning is invoked, causing the top-down weights to reach their new asymptote on each input
presentation

 wJ → I ∩ wJ
(old) (4)

Feedback
Module

Performance Input (p)

Request
Input

Pattern

(For feature Extraction)

(For Proxylet Type Selection)

In contrast, for excellent performance where p = 1, equation (1) can be simplifies to:

wiJ
(new) = (wiJ

(old) + β(I - wij
(old))) (5)

Thus, a simple form of clustering occurs at a speed determined by β.

It is assumed that there is a considerable interval between updates of p during which time new previously unseen
requests are likely to appear. Equation (5), or indeed equation (1) whenever performance is not perfect, enables
the top-down weights to drift towards the input patterns. New category node selection may occur for one of two
reasons: as a result of the drift itself, or as a result of the drift enabling a further snap to occur (since drift has
moved away from convergence) if performance p goes down. Essentially, the principle is that drift, by itself, will
only results in slow (depending on β) reselection over time, thus keeping the network up-to-date without a
radical set of reselections for exiting patterns. By contrast, snapping results in rapid reselection of a proportion of
patterns to quickly respond to a significantly changed situation, in terms of the input vectors (requests) and/or of
the environment which may require the same requests to be treated differently. For example, bandwidth and/or
completion time may become critical at certain times.

In this simulation, β is set to 0.5. This will provide the control for the drifting of the weights vector where
eventually

 wJ → I (6)

With alternate episodes of p = 0 and p = 1, the characteristics of the learning of the network will be the joint
effects of the equation (3) and (5). This joint effect can enable the network to learn using fast and convergent,
snap learning when the performance is poor, yet be able to drift towards the input patterns when the performance
is good.

3.2 Bottom-up Learning

In the simulations, the bottom-up weights wji are assigned initial values corresponding to the initial values of the
top-down weights wij. This is accomplished by equation (7):

 wji(0) =
N 1
(0)w ij

+
 (7)

where N = number of input nodes.

By selecting this small initial value of wji, the network is more likely to select a previously learned category node
that to some extent matches the input vector rather than an uncommitted node.
For learning,

wjI
(new) =

| w I|
 w I

(old)

old)

jI

(jI

∩
∩

 (8)

This is fast, convergent learning.

4. Network Experiments
This section presents some conclusions drawn from the results for a number of simulations performed on the
Distributed ART1 (see Figure 1) to emulate possible environmental conditions and thus evaluate the behaviour
and performance of the system. Three simulations were performed: (i) long periods without external
performance feedback; (ii) long periods where there is a constant supply of performance feedback, and (iii) long
periods of feedback being available on alternate time steps.

These simulations illustrate the influence of performances feedback toward the on-line learning of the network.
The test patterns consist of 100 input vectors. Each test pattern characterizes the features/properties of a realistic
network request, such as bandwidth, time, file size, loss and completion guarantee. These test patterns were
presented in random order for 10 epochs where the performance, p, is set to the different possible environmental
conditions (long period of poor performance, long period of good performance and alternate performance
feedback). This on-line random presentation of test patterns simulates the possible real world scenario where the
order of patterns presented is random so that a given network request might be repeatedly encountered while
others are not used at all. Furthermore, no input pattern is removed from the list of possible requests after it is
encountered.

The first two simulations show the plausibility of the ‘snap-drift’ algorithm proposed in this paper. In these two
simulations, the network has been put to test with 100 input patterns. In the first simulation, fast learning has
been invoked due to the absence of performance feedback or long period of poor performance. The network
learned to classify the input patterns according to their general features rapidly; it stabilised within 4 epochs of
the training simulations. Standard ART 1 would stabilise in 3 epochs.

In the second simulation, the network learned to classify the test input vectors more gradually. This is because
during learning, the weights are drifting towards the input vectors, in comparison with the snap effect in the first
simulation. This simulation provides a dynamic view of the network where it is continuously learning throughout
the process with performance p alternating between good and bad. The overall picture is of an ongoing partial
reselection of proxylets. At the beginning of the simulation, the performance p is initialised to 0 to invoke rapid
system learning. The performance of the network is assumed to be measured after every simulation epoch. Since
the network is fed with the dummy performance values of 0 and 1 alternately, the weights started to drift toward
the input vector at the start of the second epoch (p = 1). But re-selection of the output node in attempt to improve
the network performance started when the network went from good performance to the bad performance phase
in the third epoch. In the third epoch (p = 0), some of the input vectors select different output nodes, either
previously committed or uncommitted nodes, depending on the drifting of the top-down weights they learned on
the previous epoch, and on the new fast learning. Since more then one output node is selected for learning at the
beginning of the simulation, partial reselection is possible where only one output node out of the 3 output nodes
previously selected is re-learned.

5. Conclusions and Future Work
In this paper, we have introduced a modular network architecture based on ART modules and the Kohonen
Feature Map. It is capable of stable learning of the network input request patterns in real-time and is able to map
them onto the appropriate proxylets available to the system. We have shown the plausibility of the ‘snap-drift’
algorithm, which is able to provide continuous real-time learning in order to improve the network performance,
based on the external performance feedback. These system properties have been confirmed by the conclusion
obtained from the experiments performed using the Distributed ART1 module, which was evaluated using
performance feedback scenarios.

The full architecture will be evaluated to explore its full potential in providing adaptive network management.
There are also several ways to further explore the architecture and algorithm:

• Investigate bottom-up learning with performance feedback to improve the efficiency of the reselection
process.

• Modify or substituting the original ART mismatch process to improve the robustness of the network
[7,8]

• Explore different ways of using the performance feedback.

References:
[1] G.A. Carpenter, S. Grossberg, “A Massively Parallel Architecture for a Self-Organising Neural Pattern

Recognition machine”, Computer Vision, Graphics and Image Processing, 37, pp 54-115, 1987
[2] D. Tennehouse, D. Wetherall, “Towards an Active Network Architecture”, Computer Communication

Reviews, Vol. 26, No. 2, 1996
[3] M. Fry, A. Ghosh, “Application Layer Active Network”, Computer Networks, Vol. 31, No.7, 1999
[4] I.W. Marshall, J. Hardwicke, H. Gharib, M. Fisher, P. Mckee, “Active Management of multiservice

Networks”, Proceeding of the IEEE NOMS2000, pp 981-983
[5] I.W. Marshall, C.M. Roadknight, “Adaptive Management of an Active Services Network”, British Telecom

Technology Journal, Vol.18, No. 4, 2000
[6] I.W. Marshall, C.M. Roadknight, “Differentiated Quality of Service in Application Layer active Network”,

Proceedings of International Working Conference on Active Networks, Springer-Verlag, pp 358-370, 16-18
Oct. 2000

[7] D. Palmer-Brown, “High Speed Learning in a Supervised, Self Growing Net”, In: I. Aleksander and J.
Taylor, eds., Proceeding of ICANN 92, Vol 2, pp 1159 - 1162, ISBN 0 444 894888, 4-7 Sept 1992, Brighton

[8] S. Barker, H. Powell, D. Palmer-Brown, “Size Invariant Attention Focusing (with ANNs)”, Proceeding of
International Symposium on Multi-Technology Information Processing. 1996.

