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Abstract: Compared to a base station centralised wireless network, the multi-hop wireless ad-hoc 
network probably provides a flexible method of establishing a limitless, robust, inexpensive 
alternative in architecture. However, as far as concerned with its performance, throughputs of the 
multi-hop wireless ad-hoc networks are often believed to be lower than that in base station 
centralised networks. This is because the relay nodes in a multi-hop traffic traversal duplicate the 
whole traffic amount, which degrades the effective bandwidth usage in a propagation area. Hence 
the estimation of the average hop count in a multi-hop wireless ad-hoc network is important since 
it is beneficial to the design of network size and node connectivity in consideration of the 
throughput of the multi-hop wireless ad-hoc network. In this paper we try to give methods to 
estimate the average hop in a multi-hop wireless ad-hoc network with certain degree in 
connectivity.  

 

1 Introduction. 

Some opposed opinions have been existed upon the architecture of the multi-hop wireless ad-hoc network, like 
the poor throughput, the large latency and the time -sensitive routing performance due to the patterns in the 
dynamic mobility. The throughput is believed in the degradation because relay nodes in a multi-hop path 
duplicate the traffic when they are forwarding the packets. Hence a multi-hop ad-hoc network is easily to 
produce heavy redundant traffic. The average hop count anyhow indicates the severity of traffic duplication. The 
latency of a packet delivery is often larger in a multi-hop network because each node acts as a store-and-forward 
buffer and causes delay. Therefore the average hop count is related to the delay enlargement.  The time-sensitive 
routing variance concerns with the mobility pattern directly, but it is actually has an indirect relationship with 
connectivity degree of the node. If a node has too few neighbours, it is easy to lose the routing path due to 
unexpected link disconnections. If a node has too many neighbours, the effective throughput with in the 
propagation cluster will be lower since more nodes share the same bandwidth. Thereafter a moderate value of 
node connectivity degree can stabilise the wireless routings while balancing the throughput. In a network with a 
certain size, the connectivity degree and average hop amount are contradicting things. So the average hop count 
is still the parameter under consideration for time -sensitive routings in a multi-hop ad-hoc network.  

In the following sessions, we refers the objective network to the link connection-oriented one because it has clear 
point-to-point peer that helps us to know the result of the node connectivity degree vs. the average hop count. 
This paper is organised as follows. In section II, we introduce the approach to estimate the average hops. In 
section III, some simulations are presented in order to compare the estimations. Section IV leads the conclusion. 

2. Estimation of average hop amount in ad-hoc networks 

The difficulty in estimating the average hop count in a multi-hop ad-hoc network shows at node distribution, 
propagation distance and dynamic patterns of mobility. In the following discussion, we assume the nodes in a 
plane obey the uniform distribution. A large propagation radius implies that the node likely has a big 
connectivity degree to other nodes. As a result, the average hop count also decreases. Our estimation is based on 
a big plane with enough nodes. Thus we believe the estimation value still near the average hop count even in a 
plane with nodes in mobility. 

In a grid pattern, we regard a 2-dimention rectangle plane M N×  grids. Hopping direction will follow roughly 
vertical and horizontal. We assume a grid can reach the neighbour grid in south, east, north and west direction 
while in a circle. We make this assumption in order to know the effect of node connectivity degree and density. 

For a node in grid ( , )x y , we iterate the possible grid ( , )u v  as receivers. Thus 
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2.1 Node density = 1 (the correspondent propagation radius 1.26r = ) 

We first put M N×  nodes in a panel of M N×  grids, which means each grid accommodate a node averagely. 
Thus the density of this network is 1 (node per grid). We denote ( , , )M N density the network. With a proper 
propagation radius in each node, we suppose each node can communicate with four nodes in neighbour grids. 

Considering the sum of hops between any node pair, i.e. 
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it in convenience by separating into six components. 

Component 1: When the destination node ( , )u v  is in the northwest of the source node ( , )x y , the horizontal 
distance is x u−  and the vertical one is y v− . Without considering shortcuts in diagonal traversals, the hops 
between two nodes will be x u y v− + − .   
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Component 2 : When ( , )u v  is in the southeast of ( , )x y , we have 2 ( 1)( 1)( 2)/12Co MN M N M N= − − + −  

Component 3 : When ( , )u v  is in the southwest of ( , )x y , we have 3 ( 1)( 1)( 2)/24Co MN M N M N= − − + +  

Component 4 : When ( , )u v  is in the northeast of ( , )x y , we have 4 ( 1)( 1)( 2)/12Co MN M N M N= − − + +  

Component 5: When the destination node ( , )u v  is in the same latitude of the source node ( , )x y , then y v= . 
The hops between two nodes will be x u−  if x u> , or u x−  if x u< . 
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Component 6 : When ( , )u v  is in the same longitude of node ( , )x y , we have 6 ( 1)( 1) /3Co MN N N= − +  

Combining all the six components, we get the whole hops count in this M N×  community with node density 1. 
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For simplicity, we consider a square plane with side length a . And let M N a= =  and 1 , 1M M N N± ≈ ± ≈  
while the plane is large enough. Therefore the average hop count will be the follows. 
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Until now we have made an assumption that the propagation radius of a node just covers four adjacent nodes. It 
is hard to get the proper value of the radius since the nodes are randomly placed in the plane. Here we give an 
approximation in the value of the radius. We put a number of 2N  nodes in a grid plane of N N× . Considering 
the possible four adjacent nodes in four directions, we hope the each node should have a radius to cover the 
space of 5 nodes, including that node and its four neighbours. Therefore 2 5rπ = , and we get 1.26r = . 

2.2 Node density > 1  

When node density is bigger than 1, it implicitly means that each grid accommodates more than one node. This 
can be achieved by increasing the propagation radius of a node. It is expected that the average hop count will 
decrease, however, the effective throughput per node will also decrease because more nodes compete for the 
limit bandwidth in the same propagation coverage. Meanwhile, it requires more energy consumption in nodes to 
obtain a longer propagation distance. As the propagation radius increases, we rescale the side length of the plane. 
We still keep the plane to accommodate a number of 2N  nodes, i.e. a N= . We denote 0 1.26r = , and use r  to 
represent the actual propagate radius. Then we convert the new side length as a normalise one, which equals to 

0/r r . Sequentially we get the new side length of the square plane to be 0' /( / )a a r r= . Finally we obtain the 

average hop count in a 2N -node-plane with node density of 0/r r  as the following. 
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2.3 Node density < 1 

We use the concept of the node density to describe how many nodes in a grid. However, in the last discussion 
about node density bigger than 1, we already realise that the grid actually is decided by the node propagation 
radius. According to the value of propagation radius, we can covert the plane to the new one with effective grids 
for further estimation in equation (2). In the simulation, we will know that average hop count will decrease 
dramatically when propagation radius r  takes a small value, e.g. 1r = , then many nodes will lose the 
connectivity to adjacent nodes. We denote 2( , ) /Den N a N a=  the density for N  nodes in a square plane with 

side length a . Thus each grid owns a space of 2 /a N , which the side length /a N . If we still consider the 

typical value 1.26, then the propagation radius per node should satisfy 1.26 /r a N> .  

3. Comparison in simulation 

Our simulation firstly sets up a rectangle plane with the side length of M and N. We predetermine the 
propagation radius of the node. Next, we iterate each node to judge the neighbour nodes in propagation distance, 
which means the existence of links. We use Dijkstra algorithm [5] to deduce the hop count. 

3.1 Node density = 1 

Under the node density as 1, we compare the result of equation (1) and simulation. The simulation was done in a 
square plane with side length a . For each node, the propagation radius ( 1.26r = ) implicitly covers four other 
nodes. We range the side length of the simulation plane from 5 to 30 to see the results (see Figure 1). We can see 
the simulation result is near the estimation value while it is always smaller. 
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Figure 1 Comparison of avg_hc(a,a,1) and simulation results 
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Figure 2 A sample layout for the diagonal traversal 

Reason 1 : During the simulation, the hopping traversal does not strictly follow the horizontal or vertical paths. A 
typical sample shows in Figure 2. The left plane is the original layout. Each node has a connectivity degree of 
three. We convert it to the right plane in order to show the rectangle plane clearly. We observe the traversal 
sometimes goes in a diagonal shortcut path.  As a result, the average hop count will be decreased.  

Reason 2: In the simulation, we define the propagation radius as 1.26, which equals to the total space occupied 
by five nodes. But the selection of proper radius is complex and 1.26r =  was deduced in a risky approximation. 
In fact, 1.26r =  is more than expected for a node to cover four adjacent nodes in propagation. We show this in 
simulation (see Figure 3). It is noted that the actual node connectivity is really more than the expected value of 4. 
But we also notice an exception happens when side length is small, e.g. 5a = . It is due to the edge effect in 
lower connectivity. 
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Figure 3 average node connectivity when r=1.26 
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Figure 4 average hc vs. propagation radius 

3.2 Node density > 1  

In the simulation for node density bigger than 1, we put 400 nodes (i.e. 20N = ) in a square plane. We do not 
explicit the grid numbers and the side length of the plane, as we will dynamically decide the value of side length 



of the plane according to the propagation radius. With this dynamical decision we try to keep the propagation of 
a node still covering 5 new grids in terms of new coordinate system. In our simulation, we range the propagation 
radius from 1 to 10 units in old coordinate system.  

It is noted that an abnormal value appears when propagation radius 1r = . The average hop count in simulation 
drops down to below one hop. This is because the some nodes are hardly to build any links to the neighbours 
under such a short propagation distance. We can imagine that the plane will show a pattern with many lonely 
nodes like islands (See Figure 5). When we take a typical value 1.26r = , ad-hoc nodes increase the inter-
connectivity and eliminate the “lonely island” effectively. (See Figure 6) 

 
Figure 5 Sample ad-hoc (20,20,1) 

 
Figure 6 Sample ad-hoc (20,20,1.26) 

3.3 Node density < 1  

We have pointed out that the nodes still obtain enough connectivity to construct a proper ad-hoc network even 
though node density is less than 1. It is because the node density is a concept of node number vs. network layout 
space, so it is not an absolute description for the capacity of nodes in connectivity. Instead, a better 
understanding should base on the propagation radius per node, i.e. r . With the parameter r , we can re-scale the 
grid pattern and estimate the average hop count, and that is similar to the conditions above. Therefore no more 
simulations are presented here. 

4. Conclusions. 
In this paper, we present a method in the estimation of the average hop count in an ad-hoc network using grid 

pattern. Considering a N  node ad-hoc network in a square plane, the average hop count will follow ( )O N . 
This estimation can help us to evaluate other network parameters such as the throughput since the intermediate 
nodes in hop paths duplicate the traffic. 

Furthermore, we also discuss the effort of node density and propagation radius against the average hop count. 
Increasing the density and propagation radius can escalate the connectivity degree per node. It means the average 
hop count will be decreased as a result when the total amount of nodes is certain. We use the grid space 
formulation to obtain the new grid system so that we can get the average hop count quantitatively with different 
node density and propagation radius.  

The ratio of the average node space over the whole plane size determines the accuracy of our estimation. If the 
ratio is too big that plane accommodates only a few nodes, it will seriously affect the result of our estimation. 
We also pointed out that a large density or propagation will degrade the performance of nodes in the same 
propagation coverage, since the resource like the bandwidth has to be shared. Also a large propagation radius 
requires more energy consumption of nodes, which is not economic to the battery life in the mobile node. On the 
contrary, a low density or small propagation radius will destroy the integration of the ad-hoc network. We can 
see when propagation radius 1r = , the simulation of average hop count suddenly drops down. It is because 
many nodes have to lose connections with others and become lonely islands. Therefore, a reasonable node 
distribution in the plane is important to the performance of a multi-hop ad-hoc network. 
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