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   Abstract – We propose a coded Discrete Multitone (DMT) modulation. The coded DMT is 
constructed using Reed Solomon (RS) code, combined with Berlekamp Massey algorithm, and 
Discrete Fourier Transform (DFT). The fundamentals of RS code and DFT are outlined. We discuss 
several implementation issues and potential benefits of the coded DMT.        
 
1. Introduction 
 
   Multi Carrier Modulation systems rely on segmenting the total available spectrum and then employing 
the multiple channels in combination. The transmitted signal is the aggregate of the signals on these 
individual channels. It is appropriate that signal design and coding should take account of this aggregation. 
   Since Shannon published a paper on channel capacity [1], there have been many advances in coding 
theory. We consider a block code, called Reed Solomon code [2], combined with a decoder, known as 
Berleka mp Massey algorithm. In traditional applications, block codes are defined over finite fields. Recent 
paper shows that they can be defined over the real-number and complex number fields [4]. 
   We present the fundamentals of Discrete Fourier Transform (DFT) [3], and examine the relationship 
between the DFT and error control codes. Under certain conditions, discrete time sequences carry 
redundant information which then allow for the detection and correction of errors [5]. 
   Areas of recent activity on multi carrier modulation include designing codes with spectral nulls [6], 
application to asymmetric digital subscriber line [7], investigating the distribution of intermodulation 
distortion [8], and controlling peak to average power ratio [9]. 
   Discrete Multitone (DMT) modulation is a particular form of multi carrier modulation, where Inverse 
Fast Fourier Transform (IFFT) and Fast Fourier Transform (FFT) are used for modulation and 
demodulation. 
   
2. Reed Solomon code and Berlekamp Massey algorithm 
 
2.1 Reed Solomon code 
 
   The set of Reed Solomon (RS) codes is a subset of BCH codes [2]. 
For this set of codes, the block length 1−= mqn  divides the number 1−q  of non-zero elements in the 

multiplicative field of the symbol alphabet. That is to say, the symbol field )(qGF  and the error locator 

field )( mqGF  are the same. Let )(qGF∈β , then the minimal polynomial of β  over )(qGF  is  
                                                                     

( ) ( )ββ −= xxf                                                                         (1) 

 
Hence the generator polynomial )(xg  of a t  error correcting RS code is  
 
                                                          ( ) ( )( ) ( )txxxxg 22 ααα −−−= L                                                         (2) 
 
where α  is a primitive element. 
   RS codes are optimum in the sense of Singleton bound. The optimality, the existence of efficient 
encoding decoding algorithms, flexibility offered by the wide range of codelengths, and the existence of 
hardware to perform encoding decoding operations justify our interest in this set of codes. 
 
2.2 Berlekamp Massey algorithm 



 

 
   Peterson Gorenstein Zierler decoder [2] is a conceptually clear algorithm for decoding BCH codes, but 
Berlekamp Massey algorithm provides computationally more efficient decoder, by circumventing matrix 
inversion. Most of the computations required to decode BCH codes using Peterson Gorenstein Zierler 
decoder centres on the solution of a matrix equation. The matrix equation is equivalently represented by the 
equation 
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For fixed Λ , this is the equation of an autoregressive filter. Seen in this way, the problem becomes one of 
designing the linear feedback shift register that will generate the known sequence of syndromes iS ’s. 

Denote a minimum length shift register for producing rSS ,,1 L  by ( ) ( )( )xL r
r

Λ, , where rL  is the shift 

register length, ( )( )xrΛ  is the feedback connection polynomial, and ( ) ( ) r
r Lx ≤Λdeg . Berlekamp Massey 

algorithm provides a way to compute a shortest length shift register ( ) ( )( )xL r
r Λ,  that generates the 

sequence rr SSS ,,, 11 −L , given ( )( )( ) 11, −≤≤∀Λ rixL i
i
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3. DFT and redundancy of DFT 
 
3.1 Discrete Fourier Transform 
 
   Discrete Fourier Transform (DFT) is the Fourier representation of a finite length sequence, and it 
corresponds to samples equally spaced in frequency of the Fourier transform of the signal. 
Given a finite duration sequence ( )nx  of length N , defined over the range 10 −≤≤ Nn , its DFT is given 
by 
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and Inverse Fourier Transform (IDFT) is given by  
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where ( )Nj

N eW /2π−= . Properties of DFT include linearity, circular shift, symmetry, and circular 
convolution [3]. DFT plays a central role in the implementation of a variety of digital signal processing 
algorithms, as a result of the existence of efficient algorithms for the computation of the DFT. The 
fundamental principle that these algorithms, collectively known as Fast Fourier Transform (FFT) 
algorithms, are based upon, is that of decomposing the computation of the DFT of a sequence of length N  
into successively smaller DFTs [3].    
 
3.2 Redundancy of DFT 
 
   We describe the relationship between DFT and error control codes. Under certain conditions, discrete 
time sequences carry redundant information which then allow for the detection and correction of errors. 
Let ( ) ( ) ( )( )1,,1,0 −= Nxxxx L  be a vector denoting a data sequence, let ( )kRN  denote the remainder of the 

integer k  when divided by N , let a  be any integer in the range 10 −≤≤ Na , and let K  be a positive 
integer less than N . We consider the data sequence having the property that ( )( ) 0=kRX N  for 

( )1,,1, −−++= KNaaak L . That is, the sequence with KN − consecutive zero spectral components. For 
this set of data sequences, the vector x  can be reconstructed from any K  of its N  components. Assuming 
a received data sequence ( )iy  is obtained by passing the original data sequence ( )ix  over an additive noise 
channel where T  or fewer values of the transmitted data sequence are corrupted by noise, then the original 



 

data sequence ( ) 1,,1,0, −= Niix L  always can be computed from the received data sequence ( )iy , 
1,,1,0 −= Ni L  if ( ) 2/KNT −≤  [5]. 

 
4. Discrete Multitone Modulation 
 
   A simplified block diagram of the DMT transmitter is presented in figure 1. 

 
At the input to the system, the bit stream is partitioned into blocks of size RTb =  bits, where R  is the input 
bit rate, T  is the DMT symbol period, and b  is the number of bits contained in one DMT symbol. The bits 

collected during the thm  symbol interval are allocated among N  subchannels or tones in a manner 
determined during system initialization with ib  bits assigned to tone i , and bbi =∑ . On subchannel i , 

the 
ib  bits are mapped to a constellation point 

miX ,
 in a constellation size ib2 , and the collection of 

constellation points { }NiX
mi

,,1:
,

L=  serves as the input to an Inverse Fast Fourier Transform (IFFT) 
block. The time domain signal that is transmitted over the channel is obtained by performing a length 

NN 2=  IFFT on the complex constellation points, where constrains are imposed to ensure a real valued 
signal. 
   The receiver corresponding to the transmitter illustrated in Figure 1 is presented in Figure 2. 
 

                                 
This structure consists of the inverse operations of those performed in the transmitter. At the input to the 
receiver, N  time domain samples { }1,,0:, −= Niy mi L  are collected each DMT symbol period, and a Fast 

Fourier Transform (FFT) is performed to obtain a set of noisy constellation points { }NiY
mi

,,1:
,

L= . 
 
5. Coded Discrete Multitone Modulation 
 
   For the data rates and types of applications that we want to support, coding scheme should have the 
following desirable properties: 1. large coding gain, 2. reasonable implementation complexity, 3.flexibility, 
adaptable to data rate, 4. computational efficiency.  
To achieve all the goals listed above, we propose a block coding scheme operating across the tones. Figures 
3 and 4 illustrate how the proposed coding scheme is incorporated in the DMT system. Only those portions 
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of the DMT transceiver involving the encoding of bits into complex symbols, and the decoding of complex 
symbols into bits are depicted, since the modulation and demodulation operations remain unchanged. 

                     
   The encoder in Figure 3 operates on the bits at the output of the bit allocation unit, producing a set of 
complex symbols that serves as the input to the IFFT block. One approach is to use multiple copies of the 
RS encoder. Another method is to encode across the subchannels as shown in Figure 3. In the latter case, 
the signal selector now becomes time varying, selecting points from different size constellations as the 
encoder operates across the block, and therefore introduces interdependencies among the signal points 
selected on different tones. As a result of the redundancy of the RS code, the signal selector will make the 
best tradeoff between bandwidth expansion, where additional tones are used for transmission, and signal set 
expansion, where the sizes of the constellation supported by a subset o f the tones are increased, in 
distributing the additional bits. This unique capability of the DMT system allows the blockcode to achieve 
respectable coding gains over bandlimited channels. The coded bits are allocated according to the spectral 
characteristics of the channel. 
   In the receiver, depicted in Figure 4, a single erasure decoder is used to operate across the subchannels on 
the noisy constellation points at the output of the FFT. The erasure decoder finds the closest code sequence 
to the received signal points under the assumption of essentially infinite constellation sizes in each of the 
subchannels, and then masks off the appropriate numbers of bits from the decoded constellation labels 
according to the information stored in the bit allocation table. The Berlekamp Massey algorithm, combined 
with the computation of erasure locator polynomial, can be used to correct both errors and erasures. 
 
6. Conclusion 
 
   We proposed a coded Discrete Multitone (DMT) modulation. The coded DMT is constructed using Reed 
Solomon (RS) code, combined with Berlekamp Massey algorithm, and Discrete Fourier Transform (DFT). 
The fundamentals of RS code and DFT were outlined. We discussed several implementation issues and 
potential benefits of the coded DMT. 
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Figure 3. Coded DMT transmitter Figure 4. Coded DMT receiver
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