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                 Abstract: The analysis compares the time efficiency of the the aß and 
aß? filters. It is concluded by simulation on different trajectories that the aß? filter 
requires fewer updates than the aß filter when tracking accelerating targets, while 
offering superior tracking accuracy. Furthermore the effect of taking M successive 
looks at the target and then look again after N sampling intervals is examined 
 
 

1 Introduction 
 
In conventional track-while -scan radars with mechanically rotated antennas, the radar has to allocate 
the time in each azimuth section in a pre-determined fashion between the different tasks that must be 
executed. The advent of the phased array radar with the capability to electronically steer the main beam 
contributed to overcome many of the problems and limitations inherent to traditional TWS systems. 
      
A Multi-Function Radar (MFR) combines the electronic steering of the antenna beam with the use of 
computer control to replace a number of conventional sensors.  This enables the MFR to carry out 
volume surveillance, tracking, missile communications and aircraft support and navigation. Thus the 
MFR attempts to substitute a number of sensors, each of which dedicates all of its time in performing a 
single function. Therefore the issue of time management acquires a pivotal role in optimising the 
performance of the MFR.  
 
In recent years a considerable amount of effort has been put in investigating ways to optimise the time 
efficiency of phased arrays when carrying out tracking. Although many of the algorithms developed to 
provide a smoothed estimate of the target position employ a fixed time update interval, there have also 
been attempts to vary the update interval according to the dynamics of each track. For example, when a 
target travels in a straight line a large update interval is sufficient. When the target is manoeuvring the 
update interval is reduced to compensate for this.  
 
The issue of calculating the optimum update interval has attracted much attention [1-4]. Cohen 
demonstrates an algorithm based on the aß filter which varies the update interval according to the 
residual in the prediction of the target position. It is shown that the update interval reduces at the points  
where the target manoeuvres, while at parts of smooth motion it is maintained at its maximum value. 
This leads to improved time efficiency comp ared with the simple aß filter that uses a fixed update 
interval. Wilkin [4] extends Cohen’s work by introducing additional mechanisms that allow the update 
interval to be maintained at its maximum allowed value for longer periods.  
 
The aim of this work is to compare the time efficiency of the aß and aß? filter for tracking. Firstly an 
algorithm is introduced that allows the sampling interval in the two filters to vary. The filters are then 
compared for five different computer-generated trajectories, by examining the number of updates each 
filter had to perform and the mean error. Then the performance of the two filters is assessed by taking 
M successive samples of the target position and then looking back after missing the following N 
samples. The variation of error for different M/N ratios is examined and the performance of the two 
filters for the same M/N ratios is compared. 
 
2 aß and aß? filters for constant update time interval 
 
Many tracking algorithms are based on the Kalman filter. Simplifications can be made to the general 
Kalman predictor-corrector filter which lead, for the second- order Kalman filter that assumes constant 
velocity between updates, to the alpha-beta filter [3]. The aß filter provides prediction of the position 
given by: 
 
rp(n) = rs(n-1)+Tvs(n-1)  (1) 
 



while for the velocity we have: 
vp(n) = vs(n-1)   (2) 
 
where rp is the Predicted Position,  rs is the Smoothed Position, vp is the Predicted Velocity,  vs the 
Smoothed Velocity and T is the update time interval. The filtering equations of the aß tracker provide 
smoothed estimates of the target’s position and velocity, as given by: 
 
rs(n) =  rp(n) + a [rm(n) - rp(n)]                (3)          
vs(n) = vs(n-1) +(ß/T) [rm(n) - rp(n)]  (4) 
 
where a, ß are constants and rm(n) is the measurement of the position at data point n. Bar-Shalom [1] 
shows that the smoothing coefficients a and ß are given by: 
 
  a = v(2ß) - ß/2   (5)       
  ß = 2(2- a) - 4v(1- a )  (6) 
 
It has been shown [2, 3, 4] that the value of a that optimally balances short-term noise reduction and 
rapid response to manoeuvres is approximately 0.5. Thus from (6) we have ß = 0.172. Similarly by 
applying the same simplifications to the third order Kalman filter which assumes constant acceleration 
between updates, one obtains the aß? filter. The aß? filter provides prediction of the position and 
velocity given by: 
 
rp(n) = rs(n-1)  + Tvs(n-1) +0.5(T^2)as(n-1)                                                                        (7)  
vp(n) = vs(n-1) + Tas(n-1)                                                                                       (8)  
where as is the Smoothed Acceleration , for which we have:      ap(n) = as(n-1)              (9) 
 
ap being the Predicted Acceleration. The filtering equations of the aß? filter provide smoothed 
estimates for the position, velocity and acceleration: 
 
rs(n)  = rp(n)  +  a [rm(n) - rp(n)]                       (10) 
vs(n) = vp(n) + (ß/T) [rm(n) - rp(n)]         (11) 
as(n)= as(n-1) + (?/T^2) [rm(n) – rp(n)]         (12) 
 
Similarly to the aß filter Bar-Shalom shows that (5) and (6) are valid for the aß? filter for calculating a 
and ß, and that ? is given by:      
? = (ß^2)/ a                                                             (13) 
where by using a = 0.5 and ß = 0.172, then ? = 0.029. 
 
3 aß  and aß? filters with variable update time   
 
Cohen [2] shows that instead of maintaining a constant update interval for the aß filter it is more 
efficient to allow for it to vary. For the aß filter the update time interval T(n) is shown to be given by:  
T(n) = T(n -1)/ve(n)          (16) 
where T(n-1) is the previous update time interval and e(n) the error in the position prediction . For the 
aß? filter one has:  
T(n) = T(n-1) / ? e(n)                          (18)  
Also by normalising the error e(n) in (16) and (18) to the noise standard deviation s the update time 
interval remains unchanged when the error is equal to s [2]. Thus: 

en(n) = e(n)/s,                                                (19)    ?  
For the aß filter we have: T(n) = T(n -1)/ v(en(n))  (20) 

And for the aß? filter:        T(n) = T(n-1)/? en(n)                (21)  
Furthermore, Cohen argues that T(n) as given by (20) and (21) will vary rapidly even in the non-
manoeuvring sections of a trajectory due to the randomness of the noise. To overcome this, Cohen 
suggests the use of a first order filter to smooth the residual as follows: 
es(n) = es(n-1) +ar [ e(n) – es(n-1)]                       (22) 
 
This is used in (19) to find the normalised residual. It is also shown that smoothing the residual as in 
(22) leads to a faster increase of T(n) after the manoeuvre has ended. The value of the gain ar depends 
 



 
on the specific track, but generally Wilkins [4] 
suggests values between 0.5 and 0.9. A value of 
ar=0.75 is used for the purposes of this work. 
Also Wilkin demonstrates that the residual in 
(22) should be computed as:   

er(n)=v([rmx(n)-rpx(n)]^2+[rmy(n)-rpy(n)]^2)  
(24) 
Equations (24), (22), (19), (20), (21) and (23) are 
used to calculate the update time interval in the 
programs written. Figure 1 demonstrates the 
variation of the update interval during a constant                         
velocity trajectory with two turns.  T(n) is small 
initially, then it decreases again due to noise and 

Figure 1 Demonstration of the time-varying                then again at the manoeuvring part.      
algorithm for the aß filter.                                             
 
4 Simulation to assess the performance of the aß and aß? filters 
 
4.1 Comparison of the aß and aß? filters with variable update time 
 
In order to investigate the time efficiency of the two filters simulation was performed using five 
computer-generated trajectories. The first is for constant velocity, while the remaining four are for 
constant acceleration. Details of the trajectories are included in Table 1.The results obtained for the aß 
filter are summarised in Table 2 and those for the aß? filter in Table 3. Measurement noise was added 
directly on the x and y co-ordinates, as Cohen suggests. Also the error is measured by (24). The noise 
standard deviation was 1.098m. The results shown in Tables 2 and 3 are the average of multiple runs 
for each case.  
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
           
            
 
For Trajectory 1 the aß tracker, as expected, performed better with fewer updates and smaller error. 
However for the rest of the trajectories, where acceleration is present, the aß? filter performs 
considerably better that the aß filter. For example, for Trajectory 2 it required a three times fewer 
updates while at the same time the error is maintained at significantly lower levels. Similarly for 
Trajectories 3, 4 and 5 the aß? filter achieves a lower number of updates, which are combined with 
improved tracking accuracy.  
 
 

0 1 2 3 4 5 6 7 8 9 10

x 10
4

6

8

10

12

14

16

Range, m

Height, m

Variation of the Update Interval. CV Trajectory, 2 Turns, alpha-beta Filter  

0 1000 2000 3000 4000 5000 6000
-1

0

1

2

3

4

5

Sampling Points

Update Interval, sec

Trajectory Description Initial Velocity (m/sec) Acceleration (g) Duration (sec) 
1  Straight line 750 0 135 
2 Straight line 20          2 500 
3 Straight line 20 0.2 500 
4 Circular 180° 

turn 
10 1 254 

5 Circular 180° 
turn 

10 2 537 

Table 1: Details of the trajectories used for simulation 

Trajectory 1 2 3 4 5 
Number of 
updates  

63 622 249 214 544 

Error (m) 1.3096 64.4844 9.2734 796.2702 1.4993*10^3 

Table 2: Results for the aß filter 

Trajectory 1 2 3 4 5 
Number of 
updates  

73 176 154 130 305 

Error (m) 1.8877 13.9293 2.3758 324.0662 287.3181 

Table 3: Results for the aß? filter 



4.2 Varying the time looking at the data and the time looking away. 
 
For the second part of this work the target is tracked by taking M successive looks, spaced 1 sec apart, 
and then take the next measurement after N sec. The M/N ratio was varied to investigate the effect on 
tracking accuracy.   Figure 2 includes the results obtained for different values of M and N. Here the aß 
filter is used to track Trajectory 2. From Figure 2 it appears that the error reduces drastically when the 
M/N ratio is increased from 1 to 3. However maintaining M/N higher than 3 appears to offer little 
improvement.           
 
It is also interesting to note that for the same M/N ratio, the lower the values of M and N the lower the 
error is. Thus if for example one is tracking two targets, then a lower error is achieved by sharing the 
available time to look at each target for 10 sec, rather than for 20 or 30. Figure 3 shows that for the 
same M/N ratio there can be large differences in the error for different trajectories. Figure 4 attempts to 
compare the performance of the aß and the aß? filters for the same M/N ratio. For this comparison 
Trajectory 3 is used where acceleration is present and it appears that the aß? filter has considerably 
smaller error.       

 
 5 Conclusion 
 

 
5 Conclusion 
 
The time efficiency of the aß and the aß? filters has 
been compared, by using variable update time for 
both filters. The aß? filter uses fewer updates than 
the the aß filter when tracking accelerating targets. 
This is combined with significantly improved 
tracking accuracy. Also the tracking error has been 
investigated by taking M successive looks at the 
target and looking back after N update intervals. It 
was found that the error reduces considerably when  
the M/N ratio is increased from 1 to 3, while little         

                                                                                 improvement is achieved from values of M/N higher       
                                                                                  than 3. Also, for the same M/N ratio a smaller error 
is obtained when M and N are kept small. As an example, M=10 and N=3 generates a smaller error 
than using M=20 and N=6. Finally the aß? filter was found to have a smaller error than the aß filter 
when tracking accelerating targets with the same M/N ratio.  
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Figure 2: Effect of Different M/N ratios 
on tracking accuracy  
    

Figure 3: Tracking Trajectory 3 with the aß 
filter and the same M/N ratio as in Figure 2 
     

Figure 4: Comparison of the aß and 
the aß? filters  


