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Abstract:  This paper discusses issues that arise when a neutral genotype-phenotype mapping is 
used in the context of a real-world evolutionary computation application. Previous studies have 
suggested that a neutral encoding may alleviate the problem of local optima by allowing drift at 
the same fitness level. We show that neutrality can indeed produce a search space free of local 
optima but that it must be carefully introduced with due consideration to details of the application 
being considered and its associated search space. Although the details of the neutral encoding are 
specific to the application, we seek to deduce some heuristics that are likely to prove useful for 
designing genetic encodings for other problems to facilitate search for fitter phenotypes. 

 

1 Introduction 
The impact of neutrality in the mapping from genotype to phenotype is attracting an increasing amo unt of 
interest in the artificial evolutionary community [1]-[5]. In these mappings a number of different genotypes map 
onto the same phenotype such that there are typically many examples of a given phenotype distributed 
throughout genotype space. Under certain conditions the set of genotypes mapping onto a given phenotype are 
connected by single actions of a genetic operator (such as mutation) and thus can form large neutral networks 
that can percolate throughout genotype space. A population can drift along these networks until it encounters 
areas in genotype space that allow further increases in fitness and may thus avoid becoming trapped in sub-
optimal regions of genotype space. Through alleviating the problem of local optima neutrality in the genotype-
phenotype mapping may thus be beneficial to the evolutionary process. However, if used incorrectly it may also 
be detrimental. How and when to incorporate neutrality in an artificial genotype-phenotype mapping is an area of 
ongoing research and an aim of this paper is to contribute to this research. In particular we address these issues in 
the context of a real-world engineering search problem, while previous studies have typically considered abstract 
search spaces. 

Interest in neutral genotype-phenotype mappings was fuelled by important work in molecular evolution. The 
folding of RNA molecules was studied as an example of a genotype-phenotype mapping. It was shown that this 
mapping contains high degrees of neutrality that contributes significantly to the molecule’s evolvability [6]. This 
work encouraged artificial evolution practitioners to explore the effect of neutrality in abstract fitness landscapes 
[2] and existing artificial genotype-phenotype mappings [3]-[5]. In some of this work it was suggested that the 
neutrality was beneficial [3] and in others to be of little or no use [5]. This raises an important issue; neutrality 
alone is not sufficient for improving the efficacy of the evolutionary process. The right type of neutrality must be 
introduced into the genotype-phenotype mapping for it to be of benefit. Exactly how to do this is likely to be 
specific to a particular application – the use of domain knowledge, for instance, will remain important. However, 
the development of more general heuristics to aid in the design of beneficial neutrality in genotype-phenotype 
mappings would be a significant step forward.  

In this paper we explore some of the issues that arose during the construction of a neutral genotype-phenotype 
mapping for a planning tool to aid in the design and growth of telecommunication networks. Although specific 
to this application the lessons learned are likely to be of interest to others constructing such mappings for 
different applications and are a step towards the development of a useful set of heuristics. 

2. The NetGrow planning tool 

The NetGrow planning tool aims to aid in the initial design and subsequent growth of telecommunication 
networks. Network designers often use a set of planning rules during this process that take the form of a series of 
IF-THEN rules. It is the manual application of these rules in a given context that produces the network design. 
The NetGrow tool recognises this fact and complements the work of the designers by encoding and optimising a 
set of planning rules rather than a final network design. Thus the output of the tool is an optimised set of 
planning rules that can easily be understood by human designers, can be used in conjunction with other planning 
tools and may be of more general use than a single network design for a given situation. The tool is described in 
more detail in [7]. 

Here we consider an application of the tool to a simplified version of a real network design problem - the growth 
of the Internet data network in the UK. The initial network consists of 3 high-capacity core nodes that currently 
handle all data traffic. Demand originating at exchanges that do not have a co-located core node is routed via the 



standard phone network (or PSTN) to an entry point into the data network. In order to accommodate increasing 
demand and reduce the load on the PSTN, lower capacity access nodes are to be added at a subset of 20 potential 
sites in order to draw off data traffic at an earlier stage. These access nodes connect directly to the nearest core 
node. Thus there are several costs that are incurred by a given network design, hardware costs resulting from the 
addition of access nodes and their connection to the nearest core node, the cost of routing calls via the PSTN and 
an added cost that is incurred for any demand that is not satisfied. A good network design will therefore strike a 
balance between these costs to minimise the overall cost of the network. Full details of the cost function and 
other aspects can be found in [7]. 

In order to determine which of the sites will house access nodes a simple planning rule is encoded that takes into 
account the traffic demand at a site and its distance away from an entry point into the data network, the following 
values are calculated for each site i:  

θ_demandi = a * (b - demandi ) θ_distancei = c * (d - distancei ) 

Where b and d are threshold parameters, a and c are scaling parameters, demandi is the demand at site i and 
distancei is the distance that site i is away from the nearest existing node. If both these values are above zero then 
the site becomes a candidate to house an access node:   

IF (θ_demandi > 0) AND (θ_distancei > 0) THEN add site i to candidate list 

A “firing strength” is then calculated for each site in the candidate list: FiringStrengthi = θ_demandi + 
θ_distancei. The site with the highest firing strength is chosen to house an access node. The candidate list is then 
recalculated and the process repeated until the candidate list is empty i.e. no more sites satisfy the planning rule 
conditions. This iterative process is necessary as the action of a rule affects the calculated conditions i.e. adding a 
node affects a site’s distance to the nearest existing node and thus the order in which nodes are added is 
important. The scaling parameters a and c enable the relative importance of the two conditions to be controlled 
i.e. if a was much higher than c then sites with high demand would fire more strongly than those a long way 
from the existing network and vice versa. 

3. Planning Rule Encoding 
Each of the 4 parameters a, b, c and d was represented by a 5-bit value and was thus quantised into 32 levels 
between a defined minimum and maximum value. The resulting genotype was 20 bits long giving 220=1048576 
distinct genotypes. This is a manageable number allowing exh austive enumeration of the space and thus 
definitive statements to be made about its structure. As there are also 20 potential sites there are also 1048576 
possible configurations of access nodes i.e. network designs. In order to determine the extent of the neutrality in 
this mapping, the phenotype resulting from application of each possible genotype was determined. Out of the 
1048576 possible phenotypes only 52 were generated by all possible instances of the encoded planning rule and 
there was thus large-scale neutrality in the mapping. On average approximately 20165 genotypes mapped onto 
each phenotype. 

4. Fragmented Neutral Networks 
The above encoding resulted in 52 sets of genotypes that map to a specific phenotype i.e. there are 52 neutral 
sets. However, in order to allow a population to explore these neutral sets in search of areas of genotype space 
that will allow further increases in fitness (when no immediate increase in fitness is possible) these sets must be 
connected by application of the genetic operator i.e. probable changes to the genotype must allow movement 
through genotype space without affecting the fitness value. It is thus important to determine the connectedness of 
the elements in these neutral sets. Here we restrict our analysis to the simplest modification to the genotype - 
single point mutation. Thus, the first genotype in the neutral set is moved into a subset. For each of the 
remaining genotypes it is determined whether they are a single mutation away from any of the genotypes in the 
subset. If so, they are moved to the subset. This process is repeated until there are no new additions to the subset.  

This analysis reveals that many of the neutral sets are not fully connected but are separated into a number of 
smaller sub-networks. In this case a total of 86 neutral networks were present. This may be detrimental as it 
reduces the ability of the population to explore genotype space through neutral drift. A population may be 
restricted to one of the sub-networks. In order to assess whether this was potentially problematic, the 
accessibility between the neutral networks was assessed. All one-point mutants of each genotype on a neutral 
network were generated and the resulting phenotypes recorded. Should any of these one-point mutants give 
access to another network then the two networks were defined as accessible from each other. During evolution 
the main concern is to have access to networks that allow an increase in fitness. If all the networks allow access 
to networks of higher fitness (apart from the global optimum) then there are no local optima in genotype space. 
Thus, the number of networks of higher fitness that were accessible from each of the 86 sub-networks was 
recorded.  



This analysis revealed that 3 of the networks did not allow access to higher fitness networks via single-point 
mutations. One of these networks corresponded to the global optimum; however, the other two networks 
correspond to local optima. Both of these networks contained 3069 genotypes and were one sub-network of 2 
distinct sub-network sets. That is, both represented phenotypes that were represented by two neutral sub-
networks that were inaccessible from each other. In both cases the other sub-network did allow access to higher 
fitness networks. Thus, fragmentation of the neutral networks had generated local optima. In order to assess the 
cause of this fragmentation, the differences between the two sub-networks was assessed in each case. Sections of 
the genotype that were crucial to the development of the phenotype would be constant for all genotypes in a 
specific sub-network whereas sections in which variance was permissible (for the given sub-network) would by 
definition vary from genotype to genotype. Differences between genotype sections, which were constant with 
respect to a single neutral sub-network, but varied with respect to its corresponding “partner” neutral sub-
network are problematic. These lead to fragmentation of the overall neutral set into the respective sub-networks. 
Thus, such genotype sections were ascertained and in both cases it was found that the value encoding the 
demand threshold corresponded to just such a varying section. In one case the value for one sub-network was 7 
and for the other the value was 8. Although these values resulted in very similar demand thresholds and 
generated the same phenotype, in genotype space they were separated by a hamming distance of 4 i.e. 4 single-
point mutations away. Thus, the choice of a binary encoding had resulted in fragmentation of the neutral 
networks and hence the generation of local optima.  

In order to address these difficulties it was necessary to ensure that contiguous values of the parameters i.e. those 
that are a single quantised level from each other, were also close to each other in genotype space. This was 
achieved by adopting the familiar Gray encoding scheme. Here, contiguous values are always a hamming 
distance of 1 away from each other and hence the problem highlighted above would not arise. The above 
analysis was repeated for the new encoding scheme and revealed that in this case there was no fragmentation of 
the neutral networks. Each of the 52 phenotypes was represented by a single fully connected neutral network. 
This removed the local optima that were found for the binary encoding. 

5. Designing Phenotype Space 
The mapping explored above was highly neutral. A total of 220 genotypes mapped onto only 52 phenotypes. 
However, there were 220 possible network designs and the 52 that were generated by the planning rule may not 
have been of the highest quality - good solutions may have been thrown away in the design of the planning rule. 
In order to assess whether this was the case, the fitness of each of the possible network designs was generated. 
This revealed that there were indeed network designs that were of a higher fitness than those allowed for by the 
initial planning rule. Of the 1048524 network designs that were not possible, only 2 were of slightly higher 
fitness than the best of the 52 possible network designs. Although in many cases this may be an acceptable price 
to pay for the prospect of removing local optima, it would be desirable if the best solution achievable was 
allowed for by the planning rule. The reason this is not so in this example can be understood by examining the 
relationship between the planning rule and the fitness calculation. The planning rule takes into account the 
demand at a site and its distance away from an existing node. It is the latter that is problematic. If a site does not 
contain a node the demand is routed via the PSTN to the nearest node. However, the cost for this is the same 
independently of the distance of that node. In effect, this part of the planning rule is irrelevant and serves only to 
slow the evolutionary process down. This is evidenced by examining the best of the encoded planning rules, 
which set the distance threshold at a low level so that the condition is always true. Conversely, demand is a very 
important indicator for where to place access nodes - nodes need to be placed where there is high demand as this 
reduces the necessity for routing calls via the PSTN and reduces the chance of demand not being satisfied. This 
part of the planning rule relates well to the fitness calculation. In fact, the best of the 52 solutions could easily 
have been achieved by simplifying the planning rule and encoding only the demand threshold. However, demand 
alone is not sufficient for generating the best possible network design. For this, further conditions are required 
that relate well to the fitness calculation. 

As already mentioned, when a site does not contain a node its demand is routed to the nearest node. Thus, if a 
node is added to a site it may find that additional demand is generated from nearby nodes. It may be important, 
therefore, for the planning rules to take into account not only demand at a site but also demand in nearby sites. 
These requirements are captured by the following rule, which is applied to each site: 

IF (demandi > a) OR (demand_in _radiusi(b) > c) THEN Add access node 

Where a and c are threshold parameters, demandi is the demand at site i and demand_in_radiusi(b) is the demand 
within a radius b from site i. Note that in this case the action of the rules does not affect the calculated condition 
and thus the iterative process is not required. The 3 parameters a, b and c were represented using 5-bit Gray 
encoded values resulting in a 15-bit genome. The neutral sets resulting from these planning rules were generated 
and their connectedness assessed as previously. The new rule set produced a total of 137 phenotypes and thus, 



with a genotype space of 215=32768, approximately 239 genotypes mapped onto each phenotype on average. 
Analysis was also carried out to determine whether any of the neutral networks corresponded to local optima. In 
this case no such local optima existed. The new rule set had thus created a set of phenotypes that included the 
best possible network design and a genotype space free of local optima. This was achieved by more carefully 
embedding domain knowledge into the design of the genotype-phenotype mapping. 

6. Discussion 

The above analysis shows that it is possible to create a search space that is free of local optima through 
appropriate use of neutrality in the genotype-phenotype mapping, which is an important property as evolution is 
used for more difficult real-world problems and the associated search spaces become more rugged. The problem 
investigated in this work was relatively trivial and could have been solved using exhaustive enumeration or a 
search technique using a direct encoding (although a typical direct encoding consisting of 20-bits where each bit 
dictated whether a site housed an access node resulted in several local optima). However, the purpose of this 
paper is to investigate the issues associated with a neutral mapping on a manageable problem with a view to 
developing heuristics that would be applicable to more difficult problems when simpler techniques may not be as 
successful. Some of these heuristics will inevitably be application specific and require the use of domain 
knowledge. However, it may also be possible to develop more general heuristics that are applicable to a wider 
range of real-world problems. One example of this is the encoding that is used. Many of the problems 
highlighted in this work resulted from fragmentation of the neutral networks, which ultimately was an artefact of 
the binary encoding. The problems were alleviated by the use of Gray encoding, however, the problems may not 
have arisen at all if a different encoding scheme would have been used. For example, the parameters could have 
been represented by real values and the mutation operator either increase or decrease the value by a given 
amount. In effect, in this case the quantisation level is set by the amount the mutation operator modifies the value 
by (which may also be under evolutionary control as in an evolutionary strategy) and small changes in the 
parameter value would not require disproportionate and impossible changes to the encoded values. The causes of 
the fragmentation for the binary encoding would thus be removed. However, it is not obvious that this would 
produce better results during search. Percolating neutral networks are a means to an end, they allow more of 
genotype space to be probed for better-adapted phenotypes. The real value encoding may reduce this probing by 
reducing the number of mutations available for a given individual. This and other encodings will have their own 
set of issues that need to be assessed. The lessons learnt in this work, however, suggest that in situations where 
similar values of a parameter are likely to result in similar fitness’, an encoding that preserves this relationship in 
genotype space is necessary to reduce fragmentation of the neutral networks and thus facilitate search for better 
adapted phenotypes.  
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