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Abstract 

Measurements of WAN traffic have prevailed the existence of multi-scaling features. Our study looks 
into measured TCP traffic from the wide area network in determining a single Hurst parameter does not describe 
the behaviour of the traffic at all time scales. But rather two distinct LRD behaviours are apparent at low time 
scales and large time scales. Based on the above analysis, we propose a new model that captures the variation of 
LRD behaviours at different time scales. Our model is a multiple intermittency chaotic map that expresses traffic 
generation based on non-linear dynamics. We show how this approach can produce traffic in a parsimonious, 
predictable and easily parameterisable manner. In validation, traffic traces from Lawrence Berkeley Laboratory 
are analysed to determine the multi-scaling features. We then make a statistical comparison between the 
synthetic traffic from our model and the real traffic traces. 
1 Introduction         

Network dimensioning and performance evaluation relies heavily on the underlying characteristics of 
the traffic. Hence, it is  essential to understand the range of behaviours that are exhibited such as heavy-tailed 
distributions, long-range dependence (LRD) and self-similarity. Analyses of high-quality traffic measurements 
have revealed the prevalence of long-range dependent features in various packet switching communication 
networks. Included are local area networks (LANs) [1], wide area networks (WANs) [2], variable -bit rate (VBR) 
video traffic [3], world wide web (WWW) traffic [4], and very-high-speed backbone network service (vBNS) 
traffic [5]. Collectively, these measurement works constituted strong evidence that burstiness was not an 
isolated, spurious phenomenon but rather a persistent feature existing across a range of network environments. 
The degree of correlation of the traffic and hence the LRD can be quantified using statistical scaling analysis 
with the Hurst parameter, H lying between ½ and 1 [6].  

Studies based on measurements of Internet traffic [2,7,8] have implied that a single scaling does not 
describe the behaviour of the traffic at all time scales. Our study looks into measured TCP traffic from the wide 
area network [9]. These are measurements of wide area Internet traffic that connects Berkeley Labs with the rest 
of the world with time stamps accuracy of microseconds. We have analysed these traffic traces at low time unit 
in terms of milliseconds and argue that, a single LRD behaviour does not describe the measured Internet traffic 
over all time scales of interest but can be divided into at least two distinct ranges with different H values. Using 
the rescaled adjusted range, R/S statistical analysis  [10], we have been able to show the two LRD behaviours at 
different timescales with a clear cross over point in between.  

Furthermore we introduce a novel chaotic multi-map that has the capability of showing two different 
scaling for different time scales in line with the IP traffic shown from the traces. Chaotic map models have been 
applied as models of ON/OFF packet traffic [11,12]. They are accurate, predictable and computationally 
efficient. Additionally, these models have an intuitive relationship to the underlying physical ON/OFF  process. 
But significant limitations were observed in their analytical tractability and poor aggregated modelling. 
Considerable achievement has been achieved in terms of overcoming the limits and extended the use of chaotic 
maps such that the mean traffic load, Hurst parameter and variance amplitude can be approximated analytically 
from the map parameters [13, 14].  

2 Statistical analysis of traffic traces  
2.1  Traffic traces studied 

Since the collection and analysis of the original Bellcore traces [1], the area of traffic measurement has 
been tremendously active in determining the fact that network traffic exhibits self-similar scaling properties over 
a wide range of time scales. The measurement or traffic trace driven approach to networking research provides a 
balance to the more theoretical aspects of networking research. The traces that are looked at in this study are 
TCP traffic traces from the Wide Area Network (WAN) over which all traffic into or out of the Lawrence 
Berkeley Laboratory, located in Berkeley, California. The tracing was done on the Ethernet DMZ network using 
tcpdump on a Sun SparcStation using the BPF kernel packet filter. The measurements captured have packet 
arrival timestamps in microsecond precision. Even though, we have analysed three sets of traffic traces taken at 
different times; in this paper we have chosen one of the traces for detailed analysis. This trace (lbl-4) contains an 
hour worth of traffic data in which around 1.3 million packets were captured. These traces have been originally 
recorded and analysed by Paxson and Floyd [2].  
2.2 Mathematical description of statistical analysis 

The notion of self-similarity is not merely an intuitive description, but a precise concept captured by the 
following mathematical definition [10]. A self-similar time series has the property that when aggregated the new 
series has the same autocorrelation function as the original. That is, given a stationary time series X =  (Xt: t = 0, 
1, 2, …) with constant mean µ = E [Xt] (1), finite variance σ2 = E [(Xt - µ)2] (2), and an autocorrelation function 
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r(k) = E[(Xt - µ)(Xt+k - µ)] (3); we define the m-aggregated series X(m) = (Xk
(m) : k = 1,2,3, …) by summing the 

original series X over non-overlapping blocks of size m. That is, 

)4(
1

)1(

)( ∑
−−=

=
km

mkmi
i

m
k X

m
X  

Then if X is exactly self-similar, it has the same autocorrelation function as the series X(m) for all m, i.e., 
r(m)(k) = r(k) for k ≥ 0. On the other hand, if r(m)(k) →  r(k) for all k large enough, then X is called asymptotically 
(second-order) self-similar. Note that this means that the series is distributionally self-similar: the distribution of 
the aggregated series is the same (except for changes in scale) as that of the original. An interesting feature of the 
preceding definition is that the autocorrelation of the aggregated self-similar process does not go to 0 as m→ ∞. 
The Hurst parameter expresses the speed of decay of the series’ autocorrelation function such that r(k) ˜  k (1-H) 
(5). For a self-similar series, ½ < H < 1 whereby as H approaches 1, the degree of self-similarity increases.  
3  Multiple Intermittency map 
3.1 Structure of the multi -map  

Single Intermittency maps have already been used to model LRD behaviour in an ON/OFF traffic 
source [11,12]. The multiple intermittency map has a general structure that is similar to a single intermittency 
map but has multiple portions in the ON section. As two different scaling are exhibited in the Internet traffic 
traces that we looked at, we have devised the structure of the map so that it has two portions in the ON section as 
shown in Figure 3.1.    
 

 

 
 
 
 
 
 
 
 

          
 

Figure 3.1 ON/OFF  source model representation and multiple intermittency map structure 

The multiple intermittency map has the following equations:  
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Packets are generated as long as xn is less than the discriminant value d2. This is described by an indicator 
variable yn 
 
 
 
 
 
3.2 Parameterisation of the multi-map 
3.2.1 Packet size distribution 

On analysis of the trace packet sizes, we have determined a tri-modal distribution whereby three packet 
sizes and relative distribution sizes give approximation to the overall measured packet size distribution. 
Furthermore, we have looked at the “simple Imix” packet size mixture proposed after extensive studies of 
Internet measurement at the National Laboratory for Applied Network Research (NLANR) [15]. In agreement, 
the results of this study have shown that accurate approximation is achieved when using their proposed packet 
mixtures. Hence, the multi-map model produces one of the three specific packet sizes when it in the ON section.  
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3.2.2 Multi scaling analysis 
We have chosen a finest time unit of 1milliseconds to perform the multi-scaling analysis. Hence, the 

number of packets/bytes over the Ethernet every 1ms is analysed and using R/S statistics (figure 4.1), the two 
scaling slopes that correspond to the Hurst parameters are calculated. Finding the Hurst parameters gives us a 
direct relationship with parameters m1 and m2, H=(3m-4)/(2m-2) (8) [14]. We also find the cross over point 
which corresponds to a time unit (t ) relative to the time unit of analysis. The cross over point corresponds to the 
e and d1 parameters that are effective in determining the time scales over which LRD is present. Further 
information can be referred to the work we have done in [16]. 
3.2.3 Time scale and load analysis 

The load and variance of the traces in respect to the time unit of analysis is worked out. Parameter d2 
and m2 determine the proportion of time increments that have a packet and hence the load; we follow a look up 
table whereby the two parameters versus the load can be referred to in comparison to the specific load of the 
trace. We further determine the time unit that corresponds to the iteration time of the multi-map model using the 
formula ?t2 = Pl / C ;where Pl is the maximum packet size and C is the maximum link rate.     

The following parameters have been calculated: m1 = 1.8, m2 = 1.6, e = 1*10-6, d1 = 1.9*10-5, d2 = 
0.1, ? t2 = 500µs. The packet sizes are:– s = 45 bytes, m= 520 bytes, l = 1451 bytes,  Ps = 0.6515, Pm  = 0.333, 
Pl = 0.0155 
 
4. Comparison of real versus synthetic traces 
4.1 R/S scaling analysis 

The figures below show the R/S statistics achieved using the multi-map as a model compared to the 
analysis from the real TCP traffic traces from the wide area networks. These graphs correspond to synthetic 
traffic that is achieved by parameterising the multi-map model to have the same characteristics as real traces. 
Their multi-scaling feature similarity is clearly shown in the figure.  
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Figure 4.1 R/S analysis for lbl-4 Internet traffic trace and its equivalent trace from multi-map model 
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4.2 Other statistical comparisons 
The multi-scaling feature seen in the traces with the two H values is not enough on its own merit to 

signify the traffic. Other statistical analyses need to be considered such as the actual variability of the traces as 
well as the mean load. We have measured the variance, mean load of the traces and compared them with the 
model’s synthetic trace. Table 1 below shows the statistical comparison for the trace and its corresponding 
equivalent synthetic traces achieved from the multi-map. 

 LBLTCP4 Multi-map 

 Packet count Byte count Packet count Byte count 

Variance 0.527 167.8 0.5 137 

Mean load 0.2397 330 0.232 293 

H1 0.87 0.90 0.82 0.82 

H2 0.66 0.65 0.65 0.61 

Table 1: The lblTCP4 and its equivalent synthetic trace statistical analysis  

5. Conclusions 

We have introduced the multiple intermittency map, as a model capable of simulating multi-scaling 
traffic. A statistical comparison was made between the real traffic trace and the synthetic trace with similar 
results in terms of the multi-scaling features as well as mean traffic load and variance analysis. This model 
provides a parsimonious, fast and easily parameterisable model that depicts today’s real internet traffic 
characteristics.   
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