
 Simple Position Estimation for Wireless Sensor Networks 
Toks Adebutu Lionel Sacks† Ian Marshall‡ 

† Electrical and Electronic Engineering, University College London, ‡ BTexact Technologies  

Abstract:  Wireless sensor networks need to have positioning information in order to form a coherent picture 
of the environment they are sensing. Traditional methods of providing this information, such as GPS, fall 
outside the cost, power and processing constraints of these networks. This paper presents a solution to this 
problem based on an exploration of the possibilities that exist given the network constraints and using some 
of these hidden constraints to an advantage. The method is based on the assumption that inter-node ranging 
and communication is possible and that there exists devices within the network that know their absolute 
position via GPS or hard coding.  The technique uses “iterative averaging” to enable the network converge to 
a stable solution. This approach gives fast, approximate localization information, given the constraints of 
sensor networks. 

1. Introduction 
Wireless sensor networking presents an alternative to traditional methods of environmental monitoring 
and surveillance. These sensor networks of small, low cost, low power devices that combine data 
processing with multiple sensing and the ability to communicate wirelessly will provide cheaper and 
in many cases more detailed information than current methods in wide usage. Many open research 
areas exist in this field. One particularly important issue is how a node’s location is uniquely 
determined; an important detail in recreating the environment for analysis after obtaining the results.  
This is by no means a trivial problem, as the nodes are deployed in an ad-hoc fashion and due to the 
cost, power and size constraints it is not possible to equip them with a sophisticated localization 
system such as GPS.  

Consequently, it is necessary to develop an approach for locating nodes within a sensor network, using 
only local information and able to operate within the tight resource constraints of sensor nodes.  
Additionally, since the nodes are potentially deployed in inhospitable environments with limited 
accessibility, it is important that the devices operate autonomously and are capable of adaptation to 
environmental changes.  Fault tolerance is another important issue as devices are prone to failure. 
They are likely to get buried as a result of high winds or strong water currents, or malfunction due to 
their manufacture by low cost mass engineering. It is feasible that nodes will temporarily lose 
communication, due to changing weather conditions; storms, high humidity, etc.  This paper presents a 
self-organizing, scalable, fault-tolerant solution that attempts to solve this problem based on the 
assumption that nodes are able to measure distances between themselves within a bounded error, using 
some ranging capability. 

2. Related Work 
There have been numerous attempts to solve the problem of node localization in ad-hoc networks. In 
[1], Hightower and Borriello provide a general overview of the work in this field.  Most of the 
methods assume that the nodes have some ranging capability  [2, 3, 4, 5], which introduces an 
additional factor that the algorithm needs to cope with. There are also methods [6, 7, 8], that do away 
with these ranging errors, but have complexities of their own.  The commonality between all these 
techniques is their computational complexity. “Iterative multilateration”, as presented in [3] uses an 
approximation to the Kalman filter. While this considerably reduces the complexity, this is still a fairly 
computationally intensive process that increases in complexity and takes an increasing amount of time 
to converge as the number of unknown nodes increases.  A similar iterative multilateration approach 
using linear regression is adopted by Robinson in [4].  Convex optimization, as used in [5], provides a 
position estimate based on the geometric constraints established by inter-node connectivity. A 
drawback of this approach is the need for a central node to perform the optimization which is not 
possible in our system because this will require heavy computation from this one node and 
significantly shorten its lifetime. Additionally, processing power necessary for this computation is 
simply not available on an 8-bit processor.  These methods all produce accuracies in the range of 10% 
to 100% radio range or 33% of the separation distance between position aware nodes. 



As mentioned above, sensor networks are limited in a number of ways. Any algorithm will need to (a) 
have a small code footprint; storage is very limited and invariably size is related to complexity and 
required computation; (b) ranging techniques are mostly  very inaccurate and it will be necessary to 
adapt to this; and (c) devices are very simple and will invariably not have floating point arithmetic  
capabilities. For these reasons it is necessary that the algorithm is uncomplicated and not limited by 
the capability of the devices. Algorithms that aim to attain the highest accuracy, within only some of 
the constraints of the network are not ideal. An alternative approach is to exploit the hidden network 
constraints, such as finite communications range and symmetry, to develop a robust algorithm that fits 
into the devices’ performance profile. Irrespective of how clever an algorithm is, if the ranging device 
can only work to an accuracy of centimetres, it is impossible  to get a measurement accurate to within 
millimetres, or whichever units are in use.  One method that has been implemented and investigated by 
myself is iterative multilateration, as presented by Robinson in [4] , with some modifications.  

3. Iterative multilateration 
The algorithm works on the premise that there are two types of sensor nodes; position-aware (PA) and 
position-determining (PD) nodes.  Aside from knowing their exact location, the position-aware nodes 
are identical to the position-determining nodes. Each node measures the distance (± the intrinsic error 
of the ranging equipment) between itself and all nodes within communication range. The next step of 
the algorithm is for all nodes to make an initial estimate of their position. Once all nodes have done 
this, each node uses this information to compute a perceived error for its pos ition estimate.  This 
perceived error is then used to correct the current location guess so as to reduce this error. The 
perceived error ?E, is considered to be a vector that moves the position estimate of a node to a point 
where all distance data is satisfied.  

If every node moves to this point, the 
positioning error will either oscillate wildly or 
increase exponentially.  To avoid this, position 
estimates are modified by only a small amount; 
(%mov). The optimum value of %mov was 
determined experimentally, and it was found 
that moving between 2 – 4% along the 
perceived error was optimal. Each iteration 
shifts a node’s position estimate to a point of 
lower perceived error and the nodes’ position 
estimates are gradually moved from the 
estimated (grey) positions to the real (black) 
positions. Figure 1 shows the reduction in 
positioning error as the algorithm converges 
for a run of the simulation. The introduction of 
a reset clause allows the algorithm to converge 
to a point of zero perceived error [4]. This 
takes anything up to 2000 iterations. There are 
many applications that require a high level of 
accuracy and have the resources to achieve it, 
but there are just as many, for which the power, 
processing and latency costs are too high. For 
these applications, “iterative averaging” is 
presented. 

 

Figure 1:  Initial position estimate for iterative multilateration. 
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4. Iterative averaging 
This method proposes all PDs set their position estimates to the average of the position estimates of all 
the nodes within communication range that have made at least one position estimate. This process is 
initiated by the PAs sending out their positions to all neighbouring nodes. These then send their 
position estimates out to their neighbouring nodes. The process continues iteratively until the network 
reaches a stable state and position guesses are no longer changing. 

For this to yield useful results there needs to be at 
least three position aware nodes in a fully 
connected two dimensional network.  This can be 
illustrated by a simple one-dimensional example. 
Assume a network with 5 collinear nodes. One 
node, A is a position determining node, as depicted 
in Figure 2I. At iteration 0, the position determining 
node sends its coordinate to node B – as shown in 
Figure 2. As none of B’s neighbours have 
previously made a guess, its position estimate is set 
to 0. B sends this new information to C and the 
same happens iteratively until E ends up with a 
position estimate of 0. Given that all the nodes have the same coordinates if they continue sending 
their estimates to each other and taking the averages, they will still all have estimates of 0. 

This obviously has no use in any situation. In order to overcome this, more position aware nodes are 
needed in the network.  With two position aware nodes, at the first iteration, both A and E send 
position estimates to B and D respectively. B and D then set their coordinates to 0 and 8 respectively. 
They are then both in a position to send their estimates to C, which then receives this information and 
sets its estimate to 4; the average of both values. C now sends this value back to both B and D. B 
computes the average of the values it receives from A and C, arriving at a coordinate of 2. D does the 
same for C and E, arriving at 6. Even with further information exchange none of the nodes will change 
their position estimates further. This shows that algorithm has converged to a stable solution. 
Examining the coordinates, we see that they are correct. 

Intuitively we can see that if the nodes send out their positioning information to all other nodes within 
communication range, this model extends to both two and three dimensional problems and 
satisfactorily determines the positions. The example presented here, however, is a trivial problem since 
the separation distance between nodes is uniform. In practise, this is not realistic , as separation 
distances vary by a great deal and this will affect the accuracy of the algorithm as it stands. To tackle 
this, a refinement phase is introduced, once the seeded algorithm has converged to a stable set of 
position estimates. This will factor in a weight to the above averaging process such that correlation 
between numbers of neighbours, average distance of neighbours, distance to nearest PD and 
positioning error is exploited.  Evidence of this correlation is presented in the next section. 

5. Results 
This section presents the preliminary results 
obtained for the algorithm.  All experiments were 
carried out on a 400×400 grid, with 16 evenly 
distributed position aware nodes having no 
communication between each other. All nodes had 
an effective communication range of 50. The 
algorithm converged on average in ten iterations, 
which is significantly faster than most current 
methods. However, 85% of nodes were located 
within one radio range , which is also half the 
separation distance between position determining 
nodes. These claims are supported by Figure 3.  Figure 3: Histogram of positioning error. 

Figure 2: Information flow between nodes in iterative averaging.
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The position estimates need a significant improvement in accuracy and precision, as there are very few 
applications that can cope with the current levels. Further analysis of the data showed a negative 
correlation between the number of neighbours and the positioning error; Figure 4 and a positive 
correlation between the distance to the nearest position aware node and the positioning error; Figure 5.  
As a result, the introduction of a refinement phase once the initial seeding process is complete is 
proposed.  This refinement will introduce weights that factor in the number of neighbours, distance to 
the nearest beacon and the distance to the neighbours, which as yet, has not been used. Up till now, the 
algorithm has functioned independent of range and has therefore not been influenced by ranging 
errors. 

6. Conclus ion 
Whilst significantly better results can be obtained by a number of existing methods, the results attained 
here suggest the possibility that a first principles approach can be almost as effective these methods. 
Work that has been carried out to develop a similarly complex algorithm to those discussed here 
shows how quickly trigonometric, quadratic and even higher order terms are introduced, which need 
intensive processing to compute. Sensor networks are implemented for a wide range of applications, 
with widely varying operational requirements. These requirements are invariably conflicting; 
recording all environmental changes, while conserving battery power. To record all environmental 
changes, it is necessary to sample frequently, but this in turn requires considerable power, which 
conflicts with the power conservation requirement.  Unless device technology advances further, sensor 
networking will continue to be characterised by large trade-offs. The trade-off in this algorithm is 
accuracy for cost, speed and power.  Various applications will require differing trade-offs and a one-
size fits all approach is currently unworkable. 
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Figure 4: Correlation between positioning error and number of 
neighbours.

Figure 5: Correlation between positioning error and distance to 
nearest PA. 


