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Abstract:  More and more sensor networks are being suggested as alternatives to 
single sensor packages as a means of measuring and recording environmental 
variations. The rate at which the sensors make readings from the environment is 
both important in terms of presenting an accurate picture of environmental 
changes to the users and resource usage in the network. This paper is looking at 
means of making an adaptive control mechanism to change the frequency of 
measurements by each node, as an alternative to non-adaptive fixed sampling 
rates.  

 

1. Introduction 
With the advances in wireless technology increasingly it is becoming apparent that ad-hoc 
sensor networks are suitable to satisfy requirements of environmental monitoring. The 
development of small, low cost network of microcontrollers is providing both cost and 
scientific advantages to the large sensor packages which are expensive to build, maintain and 
deploy [1]. The small size and cheapness of the devices will allow these self-organising, 
wireless Ad-hoc networks to be rapidly deployed in large numbers over an environment for 
the purpose of various sensing tasks [2]. One of the greatest advantages that sensor networks 
offer oceanographers is that the network of sensors will measure environmental phenomenon 
in various physical locations at the same time, as oppose to the traditional sensors which only 
measure at one location at a time.  This allows the sensors to build a wide spatiotemporal 
picture of the environment and allows the measurements to be made in dangerous and 
inaccessible areas [3].  

In sensor networks the positions of individual nodes do not need to be engineered previously.  
The protocols in sensor networks posses self-organising capabilities. The adaptive behaviour 
and management of sensornets will allow additional benefits in terms of making 
measurements when and where they are needed most, to present the users with an accurate 
picture of the environment. As examined by [4] high precision measurements which current 
sensors are capable of are often not necessary. The uncertainty in measurement of suspended 
sediment concentration by an optical backscatter sensor (OBS) resulting from the effects of 
time-varying sediment size was examined by [4] and concluded that ±10% was the best that 
could be achieved.  

 

2. Application Context and Motivation 

Using low cost devices results in limited functionality and performance. Target environments 
are by their nature turbulent and therefore the sensors will need to continuously adjust to 
extremely dynamic systems.  Both the large number of the devices and the expected dynamics 
of the environment present challenges in the design of autonomous sensor networks. One of 
the most important challenges is the issue of presenting an accurate picture of the changes in 
the environmental variables. This can only be achieved if the physical phenomenon is sensed 
or sampled from the environment at an accurate rate. There is always the option over 
sampling, however over sampling has a resource cost. The aim is to produce an accurate 
spatial picture of the environment, while making an efficient use of resources e.g. CPU, 
memory and energy. Fixed sampling rates are not easily adaptable, and in turbulent 
surroundings the data collected will not produce an accurate representation of change in the 
environment. If a user requirement for the network is to measure environmental variations, 
e.g. changes in temperature and pressure, it is important that the rate at which the device 



makes readings from the environment is as close as possible to the rate of change. If the 
temperature of a particular area in the sensor networks environment is changing linearly for 
the time period which is of an interest to the users of the network then after a couple of 
readings the sensor, using an internal control loop mechanism should recognize this, and 
reduce from the rate at which the measurements are taken from the environment. This would 
be one step towards an efficient task sharing, so that resources of all the nodes are used 
effectively. 

The writers are proposing that a feedback control mechanism will be adopted in each 
individual node, in order to make the rate of sensing dynamic and adaptable. Traditionally 
control mechanisms have been used in order to manipulate highly dynamic systems. More 
recently feedback control mechanisms have been suggested as a means of controlling 
scheduling mechanisms in distributed real-time systems [5]. The writers are therefore 
proposing the use of control mechanisms in order to manipulate the rate at which each 
individual sensor collects readings from the environment. It is important to recognize that task 
delegation is an important part of a community of sensors. The Figure 1 presents the feedback 
mechanism proposed. The sampled data will get compared to a model representing the 
environment. An error value will be calculated on the basis of the comparison. If the error 
value is more than the predefined margin of error, then the node will collect the data at higher 
sampling rate, and if it is lower, the sampling rate will be decreased. This will be a step 
towards developing locally intelligent sensors capable of dynamic self-configuration.  

In designing the control mechanism in the sensors network a compromise needs to be reached 
between the three elements which will be called the complexity triangle. They are a) 
Complexity of the Control loop, b) Sampling rate and c) Complexity of the model. With an 
increased complexity in the control loop, a higher accuracy in the sampling rate required can 
be achieved. Similarly a more complex internal model would possibly help to increase the 
accuracy of the optimum sampling rate required for a relatively accurate representation of the 
environment. However, in a sensor extra complexity would mean, extra energy required for 
the computation. A balance needs to be achieved between knowing the best possible sampling 
rate and the complexity of the internal model and the control loop. The turbulent and dynamic 
environment that it is being measured makes it hard, if not impossible to use classical control 
systems to track sampling rates. The fixed point arithmetic devices will also struggle with 
floating point computation. Therefore it is more likely that adaptive control algorithms will be 
used.  

 

 

 

 

 

 

 

 

 

 

3. Experiments and Preliminary Results 

An agent-based simulator was used to test the proposals, and the following experiment was 
set up. An individual sensor was placed in an environment where the temperature is varying 
by a constant sinusoidal. In this case the physical phenomenon that the sensor was interested 
in tracking was temperature. The node has an internal model which is a straight line. The 

Figure 1. Control mechanism used internally within the nodes to control the sampling rate. 

+

Data Sampled 

Error (E) Control Loop 

Model 

Sampling Rate Increased 

Sampling Rate Decreased 



Acceptable Error Verses Rate

Cost-Line 2

Cost-Line 1

Cost-Line 3

Constant error

f=1/3

f=1/6

f=1/9

f=1/12
f=1/15

f=1/18

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Rate (Samples/Epoch)

%
E

rr
or

Figure 4. Error against sampling rate, for different sinusoidal frequencies, 

       f=frequency of the sinusoid. 

node measures the temperature of the environment every so many units of time (epochs). As 
soon as two values (measured from the environment) are available to the sensor, it uses the 
model equation, to calculate the temperature of the environment until the next time the sensor 
makes a reading from the environment. In which case the temperature at times t+1 and t 
follow the model equation, and the temperature at time t-1 gets deleted from the system. The 
equation for the model is the straight line equation, yp = ax + b, where yp is the predicted 
temperature and x is the time at which the temperature occurs. The temperature then gets 
compared to the actual temperature collected from the environment and error will be 
calculated by comparing the two values, E = yp - ya. The experiment was repeated several 
times with different sinusoidal frequencies and sampling rates. Figures 3 and 4 depict the 
results of one of these experiments in which case the period of the wave is 3 epochs and the 
sampling rate is every 2 epochs. 

 

 

 

 

 

 

 

 

 

 

 

The algorithm for calculating error was then developed further to get rid of the large 
anomalies observed in Figure 3, so that the general trend of the error could be seen. The same 
experiment was repeated for different sampling rates and sinusoidal frequencies. As it was 
predicted the error was behaving in a sinusoidal manner. The value of the error peaks for each 
frequency and sampling rates were plotted. The Figure 4 depicts the results of the 
experiments. It is apparent that for the same error to be achieved a higher sampling rate is 
required the higher the frequency of the sinusoid.  
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Figure 2. Temperature variations against time, Period =3 and 
Sampling rate = ½ (Sample/epoch) 

Figure 3. Error calculated between predicted and measured 
temperature, Period =3 and Sampling rate = ½ (Sample/epoch) 



In addition it can be seen that in some instances a large increase in the sampling rate, achieves 
a small improvement in error. Therefore it is important to consider the costs and importance 
of realising a smaller error. To better understand the relationship between cost and error 
Figure 5 was plotted using the crossing between the cost lines and the frequency lines on 
Figure 4.  A compromise between sampling rate and error needs to be achieved. Along Cost-
line 1 the sampling rate is higher than Cost-line 3, however the error is also substantially 
lower. Cost-line 2 is a compromise between sampling rate and required error.   

 

 

 

 

 

 

 
 

 

 

 

 

 

 

4. Conclusions and Future Work 
It is conclusive that a compromise between sampling rate which will influence the resource 
usage, and accuracy needs to be achieved. The degree of complexity of the model will also 
influence both the accuracy of the estimated model and resource usage. It is the intention of 
the writer to test more complicated environments which show some fractal behaviour against 
different prediction models. Addition of nodes and the result of information sharing between 
the nodes will also be tested.  
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Figure 5. The cost function graphs. 


