
Modified Tahoe TCP for Wireless Networks Using OPNET Simulator

M. N. Akhtar, M. A. O. Barry and H. S. Al -Raweshidy

Department of Electronic Engineering, University of Kent, U.K.

Email: {mna5, mb43, h.al-raweshidy}@kent.ac.uk

ABSTRACT

This paper describes a modification to the Transmission Control Protocol’s (TCP) Tahoe flavour for use in
Wireless networks. It shows that by slightly modifying the algorithm of the Tahoe TCP, it can be made to respond
better to wireless links, while maintaining its advantages on the wired networks at the same time. This is certainly a
very desirable feature as the conventional TCP in most cases contradicts to the demands of the wireless links of
the network.

1. INTRODUCTION

In theory, transport protocols should be independent of the technology of the underlying network layer. It
should not care whether IP is running over fibre or radio. But in reality, it does matter, since most TCP
implementations, that have been designed for wired networks, don’t cope very well on wireless networks.

TCP was designed with the notion in mind that wired networks are generally reliable and any segment loss in a
transmission is due to congestion in the network rather than an unreliable medium. This notion doesn’t hold in
wireless parts of the network. Wireless links are highly unreliable and they lose segments all the time due to a
number of factors. These include fading, interference, higher bit error rate and mobility related processes such as
handovers.

In this paper, we will first make a comparis on between Reno, Tahoe and SACK (Selective Acknowledgements)
TCP flavours in a wireless environment. Our experiments show that Tahoe copes well in a high segment loss
environment. So we will then suggest some modifications in the congestion control mechanism of the Tahoe flavour
of TCP and compare its results with the unmodified version.

Two algorithms , Slow Start and Congestion Avoidance, modify the performance of TCP’s sliding window to
solve some problems relating to congestion in the network. The idea of congestion control is for the sender to
determine the capacity that is available on the network. The sender, in standard TCP implementation, keeps two
state variables for congestion control: a slow-start/congestion window, cwnd, and a threshold size, ssthresh. These
variables are used to switch between the Slow Start and Congestion Avoidance algorithms.

Slow Start provides a way to control initial data flow at the beginning of a communication session and during
an error recovery. This is based on received acknowledgements.

Congestion Avoidance increases the cwnd additively, so that it grows by one segment for each round trip time.
These two algorithms are implemented together and work as if they were one. The combined effect of these two
algorithms on the congestion window is shown in Figure 1.

After this brief overview the rest of the paper is arranged as follows: Section 2 describes the simulation settings
used for the experiments. Section 3 shows the simulations done with three different flavours of TCP i.e., Reno,
Tahoe and SACK. In 4, we discuss the relative performance of these three types and 5 shows the modifications done
on Tahoe along with the results and recommendations for future study.

Figure 1: Congestion Window with
Slow Start and Congestion Avoidance Figure 2: Simulation Scenario

2. SIMULATION SETTINGS

Simulations were run with OPNET Modeler [1]. The simulated scenario is shown in Figure 2. It has two
stations: a client and a server connected by a 1.5 Mbps line. In between the two stations is a Packet Discarder which
discards packets going through it . The value of the number of packets to be discarded is set at the start of the
simulation. We have set the packet discarder to drop 4 packets in a 0.5 sec period, assuming that a handover, on an
average, lasts for 0.5 sec and there are 4 packet drops in a handover. We use the existing TCP model provided in
OPNET which has two process models: tcp_manager_v3 and its child process tcp_conn_v3. The scenario is set to
simulate a 1.6 MB file transfer from server to client using FTP. The main statistics gathered were the TCP
congestion window size for the server and the FTP download response time for the client.

3. NETWORK SIMULATIONS

3.1 Overview
Slow Start and Congestion avoidance algorithms provide features like flow control in error recovery

situations and adaptation to network conditions. However, when an error occurs, these algorithms respond
relatively slowly in recovering the network back to its original throughput. Fast Retransmit and Fast Recovery
are two other algorithms which help the network get back to its original throughput. These two algorithms are
briefly explained as follows.
3.1.1 Fast Retransmit

In case of a segment loss, an immediate acknowledgement is sent. This is also called a duplicate
acknowledgement. Fast Retransmit states that if 3 acknowledgments are received before the retransmission
timeout, the sender then has to retransmit the lost segment immediately. From this point in time until an
acknowledgement for new data arrives, every duplicate acknowledgement triggers a new data transmission.
Thereafter, the cwnd is set back to its initial value and Slow Start is initiated.
3.1.2 Fast Recovery

This algorithm is based on the notion that if duplicate acknowledgements are being received, then the
network is not fully congested. Thus there is no need to abruptly reduce the flow and initiating a Slow Start [2].
Hence, on receiving 3 duplicate acknowledgements, the cwnd is set to half of its previous size and Congestion
Avoidance, instead of Slow Start, is performed. The combinations of Fast Retransmit and Fast Recovery give
rise to the different flavours of TCP namely Reno, Tahoe and SACK.
3.2 Reno TCP

The flavour that uses both Fast Retransmit and Fast Recovery together is called Reno TCP [3]. Reno
performs well until only one segment is lost, but in a wireless scenario, there will be multiple segment drops in
a handover and also in the unreliable media. In case of multiple segment losses, the cwnd closes to half of its
previous size for each segment drop. Furthermore, the recovery is further delayed because only the Congestion
Avoidance algorithm is functioning without the added benefit of Slow Start . The comparison of Reno TCP with
1 and 4 segment drops is shown is Figure 3. We can observe that Reno takes a considerably more time to
recover when more than one segment is dropped.

Figure 3: Reno with one and four drops Figure 4: Tahoe with one and four drops Figure 5: SACK with one and four drops

3.3 Tahoe TCP

Fast Recovery algorithm does not allow the cwnd to open exponentially. Instead, it applies the much slower
Congestion Avoidance mechanism [3].Due to this; problems arise in Reno TCP when multiple segments are lost.

To avoid this problem, Tahoe TCP does not apply Fast Recovery. When this flavour is used, Fast
Retransmit is the only algorithm applied. As illustrated in Figure 4, there is very little difference between 1 and
4 segment drops in the Tahoe TCP environment.
3.4 SACK TCP

As with Reno, Selective ACK (SACK) TCP also uses Fast Retransmit and Fast Recovery. It also suffers
from the same problems with multiple losses . However, the advantage of SACK is that the receiver informs the
transmitter of the segments it successfully received. This is done so that retransmission only takes place for
those segments that have not been acknowledged. Thus the number of retransmitted segments in the network is
significantly reduced [3]. As shown in Figure 5, the difference between one and four dropped segments in case
of SACK TCP is not as significant, as in Reno TCP. This is because of the selective acknowledgements being
sent. The graphs of SACK and Tahoe in Figure 7 do not differ very much at this stage, but the difference
becomes more pronounced when there are more segments dropped as would be the case in wireless links.

4. COMPARISON OF THE THREE FLAVOURS

From Figure 6 it can be seen that SACK TCP performs better than Reno and Tahoe when there is only one
segment dropped. Reno and SACK outperform Tahoe because Tahoe goes into Slow Start after retransmitting the
lost segments and in the process, the cwnd closes all the way to its initial value. In case of Reno and SACK, the
cwnd is reduced to half of the value it had before the error.

Figure 6: Congestion Window
comparison with 1 segment drop: Reno,
Tahoe, SACK

Figure 7: Congestion Window
comparison with 4 segment drops:
Reno, Tahoe, SACK

Figure 8: Comparison of client FTP
download response time with 4 drops

Figures 7 and 8 show the comparison with 4 segment drops. It is clear that the performance of Tahoe is now

quite similar to that of SACK. The Tahoe sender recovers with a Fast Retransmit followed by Slow-Start regardless
of the number of segments dropped [4]. The Reno implementation without SACK gives optimal performance when
a single segment is dropped. With two segment drops we found that the sender goes through Fast Retransmit and
Fast Recovery two times in succession, which unnecessarily reduces the cwnd twice. As seen in Figure 7, for the
scenario with four segment drops, the Reno sender has to wait for a retransmit timer to recover.

As expected, the SACK TCP recovers from the four segment drop scenario without having to wait for a
retransmit timeout. As the errors keep on increasing as in the case of wireless links, the performance of SACK
deteriorates as compared to Tahoe. Simulations were run with 10 segment drops and it was found that Tahoe gave
the best performance. Since our scenario includes wireless links, there will be lots of segment drops due to
handovers as well as unreliable media, therefore from the comparison it has been deduced now that Tahoe will be
the best option.

5. MODIFIED TAHOE TCP

5.1 Concept
As wireless transmission links are very unreliable and are prone to higher segment loss mostly unrelated to

congestion. Therefore, resending lost segments without delay will facilitate faster recovery without
unnecessarily waiting for congestion avoidance procedures, [5]. For example, if 20% of all segments are lost,
then if the sender transmits 100 segments/sec, the throughput will be actually 80 segments/sec. Now if the
sender slows down to 50 segments/sec, the throughput will become 40 segments/sec.

This theory is contrary to the mechanis m used in wired networks where on losing a segment (mostly due to
congestion), the sender has to slow down. In wireless, on losing a segment, the sender has resend quickly. It
should be borne in mind that TCP is an end to end protocol and a connection will almost always be mixed (part

wired and part wireless). So, a balance has to be kept while making any modifications to suit the wireless links.
This balance is between segments dropped due to conventional congestion as opposed to wireless related
reasons like high bit e rror rate and mobility.
5.2 Modifications

Keeping the above considerations in mind, we have proposed some modifications to the Tahoe TCP model.
The reason for choosing Tahoe is so that we can take advantage of the exponential window opening algorithm
(Fast Retransmit) as well as eliminating Fast Recovery which slows down the cwnd recovery. The proposed
modifications are:
a. Reducing the number of duplicate acknowledgements required from 3 to 2 before a Fast Retransmit takes
place. This supports the theory of resending a lost segment without delay.
b. Raising the Slow Start initialisation point from 1 MSS to 3 MSS. This will prevent the cwnd from closing
all the way and will aid a fast recovery of the cwnd.
c. Raising the Slow Start threshold from half the previous cwnd size to ¾ of the previous cwnd. This is done
so that the process of slow start continues for a longer period and the cwnd gets back to its original size quickly.
5.3 Results
 With the above mentioned changes applied, simulations were run and the results recorded and compared.
As shown from Figures 9 and 10, the modified Tahoe TCP gives a reduced congestion window recovery time
and a reduced client FTP download response time . Figure 9 also shows that the cwnd not only drops to a higher
value than in the unmodified case but also continues the Slow Start process for a longer time. This has the dual
effect of keeping a larger window open and also continuing to open it at a faster rate for a longer time. Due to
this, the download response time has also decreased (Figure 10).

Figure 9: Congestion window comparison of modified
and unmodified Tahoe TCP

Figure 10: Comparison of client FTP download response
time: modified and unmodified Tahoe

6. CONCLUSION

It can be observed from the discussed 3 modifications that the whole idea behind this exercise was to bring
back the transmission rate to its original throughput after an error occurs and the TCP flow control mechanism
is applied. For example in modification (a), we could have reduced the number of duplicate acknowledgements
required to 1 instead of 2. But doing this would have rendered TCP useless in case of a congestion scenario on
wired networks. Similarly in modifications (b) and (c), any more changes that are biased towards wireless links
would have deteriorated the TCP performance on wired networks. For this reason, a balance between the two
links environments was maintained, so that TCP is workable under mixed network.

In this paper a comparison of different TCP flavours was made by running simulations and collecting
results. These showed that Tahoe works best under a wireless scenario. Then three modifications were made to
Tahoe TCP and it has been shown that the modified version performed better in wireless links.

7. REFERENCES

[1] http://www.opnet.com
[2] “TCP Slow Start, Congestion Avoidance, Fast Retransmit and Fast Recovery Algorithms”. Network

Working Group, RFC: 2001, W. Stevens, January 1997.
[3] “Simulation-based study of TCP flow control mechanisms using OPNET Modeler”. G. Corral, A. Zaballos.
[4] “Simulation Based Comparisons of Tahoe, Reno and SACK TCP”. K. Fall, S. Floyd, 1995.
[5] “Computer Networks”, The Transport Layer, Andrew S. Tanenbaum, 3rd Edition.

