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Abstract: This paper describes a numerical Bayesian technique for computing the two-dimensional
radar cross section (RCS) of a vehicle given a radar image of the vehicle. A Markov chain Monte Carlo
technique known as the Metropolis-Hastings algorithm is used to generate a set of statistical samples
that characterise the probability distribution of the RCS. Given a model for the sensor measurement
process, the method may be applied to any type of radar image such as those produced by a synthetic
aperture radar (SAR), inverse SAR (ISAR) or a real beam imaging radar. In principle the resolution
of the recovered RCS may be higher than that of the initial image, which indicates a super-resolution
ability. Properties of samples generated by the radar image of an idealised military vehicle are analysed
and the proposed algorithm is shown to have potential to work under realistic scenarios.

1 Introduction

In the digital age there are a wide variety of sensor technologies available to image military vehicles. Radar has
many advantages over other technologies due to its ability to operate day or night and in all weather conditions.
However, there are several types of radar such as synthetic aperture radar (SAR), inverse SAR (ISAR) and real
beam imaging radar and the logistics of comparing information from these various radar sensors is non-trivial.

Images gathered from each of these sensors will in general have differing resolutions and could be collected
with different signal-to-noise ratios, making it difficult to compare images. Consider two ways of attempting a
comparison between sensor images. The first is to convert both images to a representation of the vehicle by its
two-dimensional plan view radar cross section (RCS). The advantage of this representation is that it is independent
of the imaging platform. The second method takes the RCS extracted from one image and using knowledge of the
imaging process of the other sensor converts this RCS into a radar image of the appropriate type. If an automatic
target recognition (ATR) algorithm has been trained previously on a certain type of radar image the second method
has the advantage that all target images could be converted to this image type and run through the algorithm.

The problem of RCS estimation is an inverse one. When the imaging process is well understood it is relatively
simple to apply an imaging operator to the RCS of a vehicle to obtain the equivalent radar image. However,
obtaining the RCS, given an image, is not trivial and there may be many possible RCS realisations that give rise
to the same image. A Bayesian approach to the inversion process provides a principled way to recover the two-
dimensional RCS. Bayesian methods are probabilistic, able to cope with the possibility of multiple solutions and
can readily incorporate other available information as prior knowledge.

The rest of the paper is organised as follows. Section 2 outlines the model used to describe the imaging process.
Section 3 describes the algorithm to perform Bayesian image restoration. Results are presented in section 4 and
conclusions are drawn in section 5.

2 Imaging Model

Due to the nature of the radar scattering process a target will reflect energy by differing amounts depending on the
geometry of the imaging platform and the target. Each type of target is assumed to have a two-dimensional plan
view RCS, which is therefore a function of imaging geometry. The Bayesian image restoration technique could in
theory also be applied to a three-dimensional representation using interferometric techniques, for example. How-
ever, this significantly increases the computational burden so this paper addresses the two-dimensional problem
only.

High resolution radar imagery can be difficult to interpret since military vehicles tend to have complex surfaces with
many scattering positions. In addition, the image produced by a radar has a resolution dependent on the bandwidth
and beamwidth of the transceiver and antenna and there may be many scatterers contributing to a particular pixel
in the image.

The radar image may be thought of as being produced by a point spread function applied to each scatterer and
sampled at the image resolution with the addition of thermal noise (although other models are possible). If certain



parameters of the radar such as power, frequency and temperature are known then the noise power can be calcu-
lated. Each type of radar has its own point spread function. For example, real beam radar images have a high range
resolution but a low cross-range resolution so the point spread function is long in the cross-range direction and thin
in the range direction.

Due to the random nature of noise the final image «x is only probabilistically dependent on the RCS ¢. On the
assumption of independent Gaussian noise with a variance 12, the likelihood of the image conditional on the RCS
is
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where n is the number of pixels in the image and f(psf, o) is some arbitrary function that produces a noiseless
image given the point spread function psf and the RCS ¢. This function could be implemented using a computer
model that accurately reflects the image formation process. Such computer models were not readily available at
the time of writing so the results in this paper use a simple linear system f(psf,o) = psf * o, with x denoting
convolution. However, it is important to note that the numerical Bayesian technique described in the next section is
fully able to cope with non-linear and non-Gaussian systems by replacing equation (1) with the appropriate form.

So far it has been assumed that the two-dimensional RCS and the radar image have the same resolution. This need
not be the case and it is desirable, especially for low resolution images, to increase the resolution. This is performed
by evaluating the function f(psf, o) at the required high resolution. The high resolution image is then re-sampled
to the actual image resolution before the addition of noise. This super-resolution technique is possible within the
Bayesian framework of the next section but it does introduce non-linearities and is not considered further in this
paper. An alternative super-resolution technique may be found in [1].

3 Bayesian Image Restoration

The Bayesian image restoration approach to RCS estimation is a probabilistic way of modelling uncertainty in the
RCS. It is possible that different combinations of RCS could give rise to the same image due to the combination
of several scatterers in a single pixel and the addition of noise. This uncertainty is described by a probability
distribution p(c|x) of the RCS conditional on the image under consideration. Bayes’ theorem gives the distribution
as
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In some simple situations it may be possible to calculate the distribution directly. However, in general this will not
be the case as the form of the point spread function could be non-trivial and indeed non-linear. For the general
case a numerical technique such as Markov chain Monte Carlo is required. One specific algorithm that has gained
popularity in the statistical community is the Metropolis-Hastings algorithm [2].

The Metropolis-Hastings algorithm is a method for generating samples of a probability distribution. For the case
considered here the samples represent the probability distribution p(c|x) of the RCS of the object of interest. One
advantage of the algorithm is that it is only necessary to know the shape of the distribution hence there is no need
to calculate the normalising factor p(z). The likelihood of the image, given the RCS, was shown in equation (1).
With choice of a suitable prior p(o) for the RCS the quantity of interest is then
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At the ith iteration a proposed new sample is generated from a proposal distribution ¢(c**t|o?). The proposal
distribution may take a wide variety of forms each having its own advantages and disadvantages - see [2] for
details. The proposed sample is accepted with a probability a(o?,o*+1), where
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In other words, at each step a new sample is generated; if it is more likely! than the current one it is always accepted
but less likely ones are also accepted with a certain probability. This avoids the problem of getting trapped in local
maxima and is analogous to simulated annealing [3]. If the proposed sample is rejected then the current sample is
used in the next iteration step. Initial samples generated during the so-called burn-in period depend on the starting
position and must be discarded. The remaining samples are distributed from p(o|z) as required.

I Taking “likely” to mean the product of the target distribution and the proposal distribution.



Figure 1: Two-dimensional RCS of a military vehicle Figure 2: Image of the military vehicle
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Figure 3: Series of RCS samples

4 Results

The Metropolis-Hastings algorithm described in the previous section was applied to synthetic data. The data
consisted of an idealised military vehicle with a two-dimensional RCS shown in figure 1. A simple point spread
function was used to filter the RCS and independent identically distributed Gaussian noise was added. The resulting
image is shown in figure 2, where blurring due to the point spread function is particularly apparent. A uniform
prior distribution for the RCS was used and the proposal distribution was a Gaussian random walk centred on the
current sample with a width selected to achieve a 60% acceptance rate.

The series of samples of a single element of the RCS produced by the Metropolis-Hastings algorithm is shown
in figure 3. The first 10,000 samples from the burn-in period were discarded and the remaining 100,000 are
shown. The true RCS value in arbitrary units is 2 and it can be seen from the figure that most of the samples are
close to this value. A notable feature of interest in the figure is that the samples are correlated. This could be
important when estimating statistics of the samples because for the statistics to be reliable a reasonable number of
independent samples are required. A different proposal distribution may produce samples with a lower correlation
than the random walk [2], which could imply a necessity for fewer dependent samples than those produced here.
The auto-correlation function of the graph in figure 3 was formed and the correlation decay time was estimated
from the derivative of this function at the origin. The decay time was found to be 1720, which means there are
approximately 58 independent samples. The same calculation for other elements produced similar results and this
is considered a reasonable number of samples to estimate statistics of interest.

The mean RCS sample is shown in figure 4. The overall structure is very similar to the true RCS shown in figure
1 and it is easy to pick out the shape of the target. This mean RCS sample could be passed on to later stages of an
automatic target recognition program but in keeping with the Bayesian philosophy it would be better to pass on all
the samples and let any later processing stages use the full probability distribution characterised by the samples.

As an aside, it is of interest to see the best RCS sample produced by the Metropolis-Hastings algorithm in terms
of the Euclidean distance between the sample and the true underlying RCS. This is shown in figure 5, where the
shape of the target is clearer than the mean RCS shown in figure 4.



Figure 4: Mean RCS Sample Figure 5: “Best” RCS Sample

5 Conclusion

An algorithm for estimating the two-dimensional plan view radar cross section (RCS) of a vehicle from a radar
image has been implemented. The algorithm is based on a numerical Bayesian technique and produces a series of
samples that characterise the probability distribution of the RCS. A simple problem involving synthetic data was
considered where an idealised military vehicle was imaged using a linear system with additive Gaussian noise.
Summary statistics of the RCS distribution were calculated and the mean image was found qualitatively to match
well with the true underlying RCS. The complete ability of the algorithm has not fully been tested since there are
no assumptions that preclude the use of non-linear and non-Gaussian systems. It is expected the algorithm will
perform equally well under these conditions. The possibility of using this algorithm for super-resolution has also
been raised but its potential performance has not yet been assessed. Future research should concentrate on these
issues and also test the technique on real data.
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