
Active Networks Authentication
Lawrence Cheng, Chris Todd, Alex Galis

Electrical Engineering Department, University College London, Torrington Place, London, WC1E 7JE, UK.

Abstract: This paper suggests that due to the dynamic nature of active networking, active network authentication should
be both end-to-end and hop-to-hop based. This paper outlines the drawbacks suffered by existing active network
authentication technique such as Secure Active Node Transfer System (SANTS) [2] in terms of scalability, efficiency and
security. This paper then describes a generic solution in which Safe and Nimble Active Packets (SNAP) [8] is used as the
underlying active packet language.

1. Introduction to Active Network Authentication Challenges
Authentication in active networks faces a different set of challenges from authentication in
conventional networks. In conventional networks, authentication is usually end-to-end based: an end
client wishing to be authenticated by a server located at the other end of the network (and vies versa).
In active networks, end-to-end authentication is needed as well as hop-to-hop authentication [1][2].
The latter refers to: each recipient (of an active packet) should authenticate the received active packet
based on where the packet has been modified. The need to enforce hop-to-hop authentication is due to
the dynamic nature of active networks.

Unlike conventional passive networks , active networks are dynamic. Active packets that carry
executable code are injected by active service providers (ASP) on behalf of their clients. The
embedded code in active packets is executed in the execution environments (EEs) on the desired
active nodes for the purpose of service control. The desired active nodes are known as the
intermediate active nodes: these nodes are managed by the ASPs and are located in-between the end
client and the service provider (SP), the latter offers privileged services to the end clients. It should be
note that the results of code execution are push back onto the active packets before the packets are
forwarded to their next hop. Thus, unlike conventional packets, the contents of active packets may
vary as they traverse through the network. In order to ensure that intermediate active nodes do not
process contaminated active packets, active packets must therefore be authenticated in an end-to-end
and hop-to-hop manner.

2. Existing Solutions
Hicks developed a Packet Language for Active Networks (PLAN) [3]. He addressed the need of
enforcing hop-to-hop authentication in active networks and made a proposal on using cryptographic
techniques to protect the authenticity of PLAN packets. However, asymmetric authentication would
require each intermediate active node to be equipped with a distinctive private key for digitally signing
active packets. Each intermediate node then signs the modified part on the packet as the packet
traverses. Digital signing each of the modifications on each traversing packet at each intermediate
node would generate an undesirable performance overhead. Also, signing a packet at an intermediate
node may overwrite previous signatures. In contrast, symmetric authentication requires a pre-shared
key among intermediate nodes. The shared private key is used at each intermediate node to protect the
authenticity, confidentiality and integrity of inter-node communication. We will discuss shortly how
we may solve our authentication problem with symmetric authentication.

Murphy had proposed Secure Active Node Transfer System (SANTS) [2][4]. ANTS (Active Node
Transfer System) packets are split into static and dynamic parts. Static parts will be digitally signed by
the source whereas the dynamic parts of an ANTS packet will be protected by hop protection e.g.
HMAC-SHA1. The split ANTS packet is encapsulated in a modified version of Active Network
Encapsulation Protocol (ANEP) 1 prior transmission. At each modifying node, the codes embedded on
a packet will be executed; the respective credential reference (of that modifying node) will be kept on
the packet. A SANTS packet therefore keeps a list of credential references as it traverses through the

1 The Payload field of ANEP is split into Static and Dynamic Payload in SANTS.

active network. On arrival, these references are extracted and are compared to the corresponding
certificates that are stored in DNSSEC [5][6].

Active packet splitting is a known solution to the depicted active network authentication problem in
this paper. However, SANTS may suffer from: 1) scalability: SANTS uses a modified version of
ANEP for packet encapsulation. Special ANEP-SANTS packet dispatcher must be equipped at each
intermediate active node in order to intercept ANEP-SANTS packets. 2) Efficiency: ANTS packets
must be split before ANEP encapsulation may be applied. However, ANTS packets have a data -code
inter-mixed structure. The lack of a clear distinction between data and code in ANTS packets implies
that at each intermediate node, the contents of an ANTS packet must be individually analysed, and
then the node must decide which parts of the packet is static and which part is dynamic. This may
generate an undesirable performance overhead on the network. It should note that this efficiency
problem is related to the choice of the underlying active packet language rather than of the design of
SANTS. 3) Security: SANTS enforces hop-to-hop authentication by using DNSSEC for keeping
certificates. This paper suggests that using DNSSEC to distribute public keys may expose the active
networking system to certain risks, namely: security and efficiency. Massey outlined the security risks
when using DNSSEC to distribute public keys in [7]. Under the DNSSEC approach, a DNS zone
administrator should generate a unique set of key pair. The administrator uses his private key to sign
authoritative DNS data as well as the certificates that it holds on behalf of the intermediate active
nodes; whereas his public key is kept as a KEY record and is distributed to all resolvers upon request.
When making a DNS query, a resolver will receive a) the requested DNS information, b) a digital
signature (e.g. a SIG record). The resolver will then use the KEY record (distributed from the zone
administrator) to validate the received SIG record. But how can the resolver validate the KEY record
at the first place?

In general, public key (and certificate) validation can be enforced through a third-party e.g. a
certificate authority (CA). Massey suggests that this would not be a solution for DNSSEC as DNS is
the most fundamental service on the Internet, using external public key database would either 1)
recreate the functionality of DNS or , 2) relying on (insecure) DNS to provide fundamental
(information to reach the desire CA) [7]. SANTS may also suffer further in terms of efficiency if
DNSSEC is in place. Under the approach of SANTS, when an active packet reaches its destination,
each of the credential references on the packet will be extracted, and then the intermediate node will
have to make out-of-band certificate queries for each of these credential references in order to validate
the packet. Such arrangement will generate an undesirable performance overhead on the network as an
out-of-band mechanism is in place to enforce credential check for each credential reference on each
packet at its destination.

Given these problems, this paper suggests that an active network authentication system should contain:
1) a standardised encapsulation protocol that would eliminate the scalability problem in SANTS; 2) an
active packet language that has a clear distinction between its data and code structure for efficient
packet splitting; 3) an efficient in-band validation mechanism for enforcing hop-to-hop authentication.

3. Authentication in FAIN Active SNMP EE

In the Future Active IP Networks (FAIN) project [9], Safe and Nimble Active Packets (SNAP) was
used as the underlying active packet protocol in the Active SNMP EE. The developers of SNAP
claims SNAP to be an efficient programming language (SNAP latencies are no more 10% slower than
IP’s [8]) that provides active packets at high level of safety [8]. The discussion on SNAP in FAIN is
beyond the scope of this paper, relevant information can be found at [9][15]. Essentially, SNAP active
packet programs carry a series of byte code instructions , a stack and a heap. The embedded
instructions are executed in the Active SNMP EE for the purpose of service control on FAIN active
nodes. Example instructions are: forw (move on if not at destination), here (push current node address
onto the stack), and getsrc (get source field) etc. These instructions are static: once they are generated
by the source (i.e. the ASP), they will not be modified whilst the packet is in-transit. On the other
hand, SNAP packet programs keep variable data on its stack and its heap. This paper proposes to use
SNAP as the underlying active packet language as it has a distinctive packet structure that separates its
static and dynamic data. Noted that, however, SNAP is designed to be a light weight active packet

language, thus there is no authentication facility provided for within SNAP at all: the SNAP
developers claim that the first line of defence of SNAP is that: SNAP must not be used to exert control
over a node [8]. This is certainly a drawback to an active packet that meant to be practical. We will
show in later section how we may overcome this drawback of SNAP in our approach.

A c t i v e S N M P E E

A S P E

S N A P A c t i v a t o r

S N A P I n t e r p r e t e r

A S P E _ E

N o d e T r a p H a n d l e r

S N M PT r a p
D i s p a t c h e r

T r a p
R e c e i v e r

D i f f s e r v C o n t r o l l e r

A S P E _ D

S N A P A n a l y s e r

C o m m .
M a n a g e r

D i g e s t e r

D e M U X

S N A P
A s s e m b l e r

S N A P
R e g i s t e r

(M I B)

H a r d w a r e / S o f t w a r e
R o u t e r

SEC

Figure 1 – The FAIN active node architecture

Figure 1 shows various components of the FAIN active node. It should be note that node integrity
protection is enforced through the Security Manager (SEC). Node integrity is protected by strong
policy-based authorisation. Relevant details can be found at [1]. We will discuss later on how we may
determine a contaminated node should this strong authorisation fails. A SNAP active packet is injected
by SNAP Activator. To avoid the scalability problem in SANTS, we used the standard ANEP format.
The DeMultiplexer (DeMUX) on FAIN active nodes is able to process any types of active packets that
are encapsulated in the standard ANEP format. In this way we can achieve an architectural-
independent solution. Different contents of SNAP active packets are then encapsulated into respective
field of ANEP by ANEP-SNAP Packet Engine (ASPE). The static SNAP contents will be
encapsulated in ANEP Payload, the entire of the SNAP packet (which includes the dynamic data) will
be encapsulated into ANEP Option. The result is known as an ANEP-SNAP packet. Note that we
eliminate the scalability problem in SANTS by using the standard ANEP format.

Figure 2 – ANEP -SNAP packet format2 3

At the point of injection (i.e. at the ASP), the static contents of the ANEP-SNAP packet (the Payload)
will be digitally signed by the source. Whilst the packet is traversing through the network, hop-to-hop
protection is enforced. Intermediate nodes must establish a trusted form of relationship among
themselves through the creation of negotiated security associations (SA). We propose that symmetric
cryptography techniques such as IPSEC or SSL are ideal for identification between neighbouring
active nodes. Within a SA, neighbouring nodes can achieve peer authentication plus inter-node
integrity and confidentiality protection of active packets [1]. As mentioned earlier, we propose to use
an in-band mechanism for hop-to-hop authentication. A SNAP packet will be marked with the
network identifier e.g. IP address of the current node as it traverses through the network. Since some
network location identifiers e.g. datalink identifiers, Media Access Control (MAC) addresses are more

2 Several ANEP Options are used for keeping virtual environment (VE) ID, EE ID, SNAP packet… etc. Not all options are shown in Figure
2 for simplicity.
3 The Payload Length field keeps the length of the SNAP static content, the latter is needed by SNAP Activator in order to process SNAP
packets. This is because the ANEP Payload field may contain dummy bytes (to fulfil the 4 byte boundary).

unique, they may form better candidates than the others (e.g. IP addresses) as network-location
identifiers. The network-location-authentication approach discussed in this paper can make use of
either of them. To simplify the discussion, IP addresses are used as the network-location identifier in
this paper. This is essentially a form of the IP traceback technique [10][11][12][13][14]. Upon the
arrival of the packet at a recipient (i.e. an intermediate node / the final destination), the recipient will
be able to determine through which active nodes that the received packet has traversed. Network
location identifiers are generally insufficient for strong authentication. However, as SA is enforced for
inter-node communication, the network location identifiers on the packet are protected by the pre-
shared private key at each node.

SNAP provides an efficient way of marking packets with network location identifiers. SNAP provides
the push byte code instruction that pushes the current node address onto the stack of SNAP. We avoid
stack values being overwritten by subsequent nodes by keeping a record of the network resource
bound value on the packet. For example should the network resource bound value is set to be 6, the
zero to the third byte of the stack would be used to keep the IP address of the first intermediate node.
The next IP address will be marked on the fourth to the seventh byte etc. Note that this IP traceback
method does not protect node integrity, but provides an efficient way of determining on which active
nodes that an active packet has traversed. With the list of traversed nodes we can limit our scope when
determining spoofed nodes should the authorisation technique described in [1] fails to operate.

4. Conclusion

Due to the dynamic nature of active networking, this paper identified that it is necessary to enforce
both end-to-end and hop-to-hop authentication in active networks. Hop-to-hop authentication was
defined as: each recipient to authenticate the received active packets based on where the packets has
been modified, and should be applied to the dynamic data of active packets. End-to-end authentication
was defined as: the recipient to authenticate the received active packets based on the source’s digital
signature on the packets, and should be applied to the static data of active packets. This paper
identified the several drawbacks that were experienced in existing solutions, namely: scalability,
efficiency and security. This paper described a solution that: a) used the standard ANEP packet format
to avoid the scalability problem; b) used SNAP as the underlying active packet language to eliminate
the efficiency problem. SNAP clearly distinguished its static and dynamic contents to be its byte codes
and its stack respectively, which enabled us to perform a clean separation of active packets; c)
enforced hop protection to protect the integrity and confidentiality of the entire ANEP-SNAP packet,
hop authentication was achieved via an in-band mechanism that follows the concept of IP traceback.

Acknowledgments
Part of this paper describes the work undertaken by the authors in the context of the FAIN–IST 10561 project, a 3 years project
during 2000-2003. The IST programme is partially funded by the Commission of the European Union (EU). The authors would like
to acknowledge all FAIN partners.

References
[1] FAIN Internal Report R25.2 “SNAP, ANEP, and Security”, Nov 2002 http://www.ist-fain.org
[2] S. Murphy, “Strong Security for Active Networks”, IEEE OpenArch 2001
[3] M. Hicks, “A Secure PLAN”, IWAN 1999, July 1999, vol.1653
[4] D. J. Wetherall, “ANTS: a toolkit for building and dynamically deploying network protocols”, OpenArch 1998, San Francisco,
CA, April 1998, pp.117-129, IEEE.
[5] D. Eastlake, “RFC 2535 – Domain Name System Security Extensions”, March 1999.
[6] D. Eastlake, “RFC 2538 – Storing Certificates in the Domain Name System”, March 1999.
[7] D. Massey, Ed. Lewis, O. Gudmundson, R. Mundy, A. Mankin, “Public Key Validation for the DNS Security Extension”, IEEE
2001.
[8] SNAP (Safe and Nimble Active Packets) , http://www.cis.upenn.edu/~dsl/SNAP/
[9] FAIN (Future Active IP Networks), http://www.ist-fain.org
[10] S. Savage, D. Wetherall, “Network Support for IP Traceback”, IEEE/ACM Transactions on Volume 9 Issue 3, 2001, pp.226 –
237.
[11] T. Baba, S. Matsuda, “Tracing Network Attacks to their Sources”, IEEE Internet Computing, March/April 2002 (Vol. 6, No. 2),
pp.20-26.
[12] R. Stone, “ CenterTrack: An IP Overlay Network for Tracking DoS Floods”, 2000 USENIX Security Symp., 2000, pp. 199-212.
[13] S. M. Bellovin, “ICMP Traceback Messages”, Internet Draft: draft -bellovin-itrace-00.txt, 2000.
[14] D. X. Song, A. Perrig, “Advanced and Authenticated Marking Schemes for IP Traceback”, INFOCOM 2001, Vol. 2, pp. 878-
886.
[15] W. Eaves, L. Cheng, A. Galis, “SNAP Based Resource Control for Active Networks”, GLOBECOM 2002.

