
A conceptual model for context-sensitive interactions based on primitive
contexts

Andreas Pappas†‡, Stephen Hailes† and Raffaele Giaffreda‡
† University College London ‡ BT Exact

Abstract: This paper describes a conceptual model for reasoning about context. The concepts
introduced here may be applied in designing context-aware services and modelling context-
sensitive interactions between context-aware systems. We introduce the concept of “primitive
context” as the basic context abstraction. The concept of “primitive context” effectively captures
the notion of “context” and provides a basis for formalising and reasoning about context in a
consistent and conceptually simple way. A primitive context reflects an adaptation capability of a
system. Each primitive context is associated with an ontology that describes the capabilities,
relations and information valid for that particular context.

1. Introduction
Today’s networks are characterised by their highly dynamic nature most evidently exhibited through device
mobility. Apart from mobility, many network parameters and resources such as QoS and bandwidth as well as
other information sources vary through space and time. In order to cope with such variability, services provided
on these networks should be able to adapt to changes in their operating environment. Context-aware computing
aims to deliver this functionality. Context-aware services are services that exploit knowledge from diverse
sources and adapt their operation to this knowledge.

In this paper we describe a novel design model for context-aware applications and services. The same concepts
may be applied in modelling context-sensitive interactions between context-aware systems. We introduce the
concept of “primitive context” as the basic context abstraction. The concept of “primitive context” effectively
captures the notion of “context” and provides a basis for formalising and reasoning about context in a consistent
and conceptually simple way. Each primitive context is associated with an ontology that describes the
capabilities, relations and information valid for that particular context.

Our aim is to reduce the complexity and inconsistency associated with the design of context-aware services by
introducing a useful and straightforward way of reasoning about context. The “primitive context” abstraction
seems to provide such a facility. The model, being conceptual, is independent of any specific development
environment and we believe that it will be able to form the basis for a well-structured development process that
will effectively and efficiently capture the requirements and deliver the required functionality of a system.
Additionally, this concept facilitates the modelling of context-sensitive interactions between different systems as
it exposes, at any time, only the aspects of the system that are relevant to the interaction and hides any
unnecessary complexity.

In order to achieve this, we will build on existing technologies that can provide the functionality desired in a
context-aware system. These include ontology-based knowledge representation, service-oriented architectures,
existing context-aware solutions and knowledge acquisition technologies.

The rest of this paper is organised as follows: Section two provides an overview of context-aware design and
methodologies, section three presents a scenario that is used to illustrate our concepts while section four
introduces the concept of “primitive context” and further definitions and conventions used in our model and
describes the design and operation of systems based on our model. Section five concludes the paper and states
future plans.

2. Background
A major obstacle to widespread deployment of sophisticated context-aware services has been the lack of
consistency in their design process. This has lead to the development of services that only work within their
development environment and cannot interact with each other. The problem arises partly due to the complexity
and the great diversity of context-sensitive services and the lack of consistency and standardisation in their
design and operation. Furthermore issues relating to knowledge acquisition, categorisation, processing,
interpretation, aggregation, storage and dissemination (what we may collectively refer to as “knowledge
management”) are yet not very well understood. Although significant progress has been achieved in all of these
fields, there still exists no consistent formal or informal approach for designing context-aware services and

context-sensitive interactions are still treated in a proprietary way that suits the needs of the service/application
developers.

The Context Toolkit [2] provides a useful environment for the development of context-aware applications by
using widgets that encapsulate sensors and may be organised in a hierarchical architecture thereby inherently
supporting basic features of context-aware applications such as information aggregation. It also hides the
operation of sensors by providing an interface to which an application can subscribe. However, it does not go as
far as to provide a formal treatment of context as we aim to achieve with our solution. It is nevertheless suitable
for building a service-oriented architecture through it’s subscription model and will most likely provide the
underlying platform on which our model will be implemented.

Egospaces [3] builds on a context abstraction defined as a “view”. The “view” of an agent includes any
environmental or operational data that may be of interest to the agent at any given time. An agent may have
different views defined and may switch between views according to its operational requirements. A view is
essentially a restriction placed upon the entire environment in which the agent resides. It is therefore similar to
our approach in the sense that it aims to provide context abstractions that facilitate system design by imposing
restrictions upon the environment.

Ontologies have increasingly appeared in context management due to their powerful descriptive capabilities and
their re-usability [5] that make them ideal candidates for describing and communicating system properties and
relations, i.e. knowledge. Several ontology description languages exist, the most advanced of them being the
Web Ontology Language (OWL) [4] developed by the W3C. We aim to use ontologies as specifications for our
primitive contexts.

3. A Scenario
In order to clearly illustrate the ideas presented here, we make use of a typical example scenario of the
ubiquitous computing vision that could benefit from these ideas.

A visitor is being driven around a city centre while using his PDA to execute money transactions through his
bank’s online e-banking application. At the same time he is listening to a streaming newscast through his PDA.
Network connectivity for his PDA is provided by a dense mesh of overlay networks including bluetooth, WLAN
and 3G.

In terms of ubiquitous computing, there are three main considerations in this scenario: providing connectivity for
the PDA, providing security for the e-banking application and providing enough bandwidth for the streaming
audio application. If mobility, security or bandwidth parameters change, then action should be taken in order to
adapt to the new environment. These actions should be automatically triggered and the new environment should
automatically become known to parties interacting within this environment.

4. The Model
In this section we first introduce some key concepts of our model along with their definitions and examples of
their application to the scenario presented above.

A primitive context is a context specification that describes a discrete adaptation capability of a system within
the operating environment. For example, in the scenario presented in section three, a primitive context is that of
being a “mobile_user”, “fixed_user” or “secure_user”. Each primitive context is described
by an ontology instance. The ontology describes the capabilities, relations and other information that are valid
within that primitive context.

A primitive context is said to be an active primitive context when it describes the current situation that a system
is in, i.e. it is a primitive context that is valid at some instance. A primitive context is activated when some
condition becomes true. In our scenario, when the user is roaming while using the e-banking application and
listening to streaming audio, the active contexts are: “mobile_user”, “high_security” and
“medium_bandwidth” that reflect the basic capabilities that are required and that the operating environment
should support.

The current context of an entity refers to some function of all active primitive contexts. The current context
describes the state of a system at any time. However, conflicts may arise between two or more primitive contexts
when they become active. For example the “mobile_user” and “high_bandwidth” primitive contexts
may not gracefully coexist in certain conditions. Therefore, the function that generates the current context should
be designed in a way that eliminates conflicts and complies with precedence rules that may be set either by the
application developer or the user in the form of preferences.

4.1. Design

In order to build a context-aware system based on primitive contexts we should firstly decide upon the discrete
adaptation capabilities or “degrees of freedom” of the system, i.e. whether we wish the system to adapt to
changes in mobility, security, location, temperature etc. For each adaptation capability we decide on the
granularity of the adaptation depending on the degree of flexibility we desire. The primitive contexts reflect
these discrete adaptation capabilities.

In our scenario we may define three independent lines of adaptation: mobility, security and bandwidth. In terms
of mobility, the granularity of the adaptation we require may be “highly_mobile”, “mobile” and
“fixed” depending on the capabilities of the PDA. The e-banking application requires a very secure
environment and therefore we could only define two primitive contexts for security: “high_security” and
“low_security”, while the streaming application may be able to adjust to various bandwidths through
proprietary adaptation algorithms and therefore a number of primitive contexts may be associated with
bandwidth, e.g. very-high, high, medium, low.

Mobility Security Bandwidth

High Mobility Strong Encryption High

Mobile No Encryption Medium

Fixed Low

 Offline

Table 1 Primitive contexts for example scenario

It is apparent that the more flexible the system is, the more primitive contexts are required in order to provide
this flexibility but with a cost on complexity. The purpose of a primitive context is, however, to encapsulate a
mode or state of the system that would otherwise be represented by a large number of information. It may be
easier to think of it as an object-oriented approach to context-aware design and programming, where states or
situations are represented, accessed and acted upon as if they were objects.

Each primitive context is associated with some actions, services, preferences and devices that must or can be
used within that context. These properties are fully described in an ontology associated with each primitive
context. In our scenario, for example, the primitive context “high_security” may be associated with strong
authentication services and may only be used in networks that provide high security such as 3G as specified in
the ontology that describes the “high_security” primitive context. Once this primitive context is activated,
the behaviour of the system is dictated by the ontology instance that describes it. Therefore it will be restricted to
the capabilities that emerge from the ontology, such as connectivity to only secure, 3G networks.

Primitive contexts that refer to a single adaptation capability of the system (e.g. mobility) may be associated with
the same ontology specification. I.e. “highly mobile”, “mobile” and “fixed” refer to the ability of the
system to adapt to different degrees of mobility and therefore can be described by a single ontology specification
while the ontology instances vary in each case.

4.2. Context Activation

Each “primitive context” is associated with a number of context-information items that are monitored through
sensors. A primitive context is activated when a set of conditions on the monitored parameters are met. The term
“sensors” here refers to both hardware sensors that capture environmental data as well as logical sensors that
capture digital information from logical sources such as databases. A primitive context is triggered (activated) by
events captured through one or more sensors. In the scenario we have been using, the primitive context
“high_security” will be triggered once the e-banking application is started. This behaviour is automated
by pre-associating the e-banking application with “high_security” primitive context. Once this primitive context
is activated, the PDA will try to connect to a secure network and the user may be required to enter additional
authentication information. We emphasise that all these actions are specified in the ontology, therefore the
ontology should be quite detailed. Additionally, since an ontology imposes a set of restrictions on the operation
of the system many system capabilities may have to be restricted. For example, if the PDA was connected to a
WLAN before the e-banking application was started and the “high_bandwidth” primitive context was active, the
new context dictates that only 3G networks are accepted therefore the WLAN connection may be dropped and
the “high_bandwidth” primitive context should be de-activated. This may then cause a significant degradation on

the streaming session’s quality. It is in events as this that the conflict resolution mechanism mentioned above
should take over in order to resolve precedence and preferences.

4.3. Interaction

When two systems interact, their interaction is determined by the current context of each system. And since the
current context of a system is described by a dynamic or transient ontology, the interaction between two different
systems is also determined through these ontologies. As in context activation, interaction between systems
should also be subject to conflict resolution and/or a negotiation phase in which details of the interaction (such as
protocols, services, resource allocation) are determined. To illustrate this, consider the case in which the PDA in
our scenario has a variety of different networks on which to connect. These networks are also associated with
ontologies reflecting their specification, services, protocols, state, rules etc. Therefore the PDA will select which
network to connect on depending on its current context (e.g. secure) and the availability of options. To do this it
will query all available networks on their security provisions (described in an ontology) and if one can match the
set requirements it will be selected or a new round of querying will start if there are many candidates. The point
here is to match as many requirements as possible for both systems. At the same time, however, the network may
deny connectivity to any node that does not comply with its specification. E.g. PDAs may not be allowed to
connect to a private LAN because they may be considered insecure.

5. Conclusions and Future Work
We believe that the concept of “primitive context”, as presented in this paper, provides a suitable and effective
context abstraction for reasoning about context-sensitive systems. Based on this concept we presented a design
methodology that is based on standardised tools (e.g. ontologies) and is therefore independent of any specific
development environment. These properties of our model have the potential to significantly reduce the
complexity evident in the design of context-aware services and applications and to improve the interoperability
of independently developed context-aware services.

We aim to implement a prototype of this model based the Context Toolkit [2] as the underlying context
acquisition platform and define ontologies using OWL [4]. Additionally we aim to deliver a theoretical analysis
of the model in order to determine its benefits as a context-modelling approach.

References.
[1] R. Guha, Contexts: A Formalisation and Some Applications, PhD Thesis, Stanford University, 1991

[2] A. Dey and G. Abowd, The Context Toolkit: Aiding the Development of Context-Aware Applications,
Proceedings of the Workshop on Software Engineering for Wearable and Pervasive Computing, Ireland, 2000

[3] C. Julien and G.C. Roman, Egocentric context-aware programming in ad hoc mobile
environments, Proceedings of the Tenth {ACM} {SIGSOFT} Symposium on the Foundations of Software
Engineering, New York, 2002

[4] S. Bechhofer, F. Van Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P. Patel-Schneider and L.A. Stein,
OWL Web Ontology Language Reference, W3C Recommendation, http://www.w3.org/TR/owl-ref/, 2004

[5] X.H. Wang, D.Q. Zhang, T. Gu and H.K. Pung, Ontology Based Context Modeling and Reasoning using
OWL, PerCom Workshops 2004, 18:22

