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Abstract: This paper aims to outline some interesting properties of Nested Wigner 
Distributions.  A number of features of such functions that can be useful in radar signal 
analysis are demonstrated with suitably simulated examples. 
 

1. Introduction 
 
The Nested Wigner Distributions (NWD) is a multi-dimensional extension to the conventional Wigner 
Distributions in the sense that the distributions are obtained by nesting a WD operation inside another 
WD operation (possibly more than one times) [1][2].  This results in the generation of a new type of 
distributions, which inter-relate many useful physical quantities: time, frequency, time delay, and 
frequency lag (Doppler).  The order of the nest determines the dimension of the distribution, which 
increases with a factor of power of two with each order increment. 
 
Many application areas can be identified where multi-dimensional distributions have gained much 
importance.  WD has been applied to 2-D signals quite frequently in the past, in optics for example, 
where WD of a 2-D image results in a 4-D distribution [3] [4].  Following an analogy from this, it is 
well known that joint time-frequency analysis of radar signals generates a three-dimensional image 
cube that can be used for the removal of ambiguities related to complex-target maneuvers and structure 
[5] [6]. 
 
NWDs provide a unique method to inter-relate such dual (in the Fourier sense) variables.  In the 
following sections we will look into ways that these inter-relations and associated properties may be 
applied for processing and analyzing radar signals. 
 
2. Nested Wigner Distributions 
 
For a time-domain signal s(t) whose Fourier transform is S(ω), the WD is given by 
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(1) presents a joint time-frequency distribution, where τ is the time-lag.  The Ambiguity Function (AF) 
(which is a joint lag-Doppler distribution) is given by: 
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where, θ is the ‘Doppler’.  The Wigner distribution and the Ambiguity Function form a two-
dimensional Fourier transform pair.  In the same way that s(t) and S(ω) are a Fourier pair, and we call 
their Wigner  distribution a joint time-frequency distribution, it is natural to say that since Wigner 
distribution and Ambiguity function are 2-D Fourier pair, applying Wigner to itself will yield a joint 
Wigner-Ambiguity distribution.  As will be seen shortly, this is a distribution defined in a four-
dimensional space and inter-relates time, frequency, time-lag and Doppler.  The mathematical 
expression for 1st order NWD is thus given as 
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where ρ1 and ρ2 are first-order (physical) time and (physical) frequency lags respectively (assuming the 
original τ, θ are zero-order).  The same result can be obtained from a 2-D Ambiguity function: 
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Similar to the 2-D Wigner, NWD also shows some interesting properties, like symmetry, periodicity, 
inversions up to a constant and more noticeably ‘marginals’.  Here, we will show some cases of the 
marginal properties, which are subsequently used in our application examples.  2-D Wigner 
distributions satisfy two one-dimensional (time and frequency) marginals, but in the case of 4-D or 
higher dimensional Wigner distributions, one can obtain many multi-dimensional marginals along 
various running variables.  For nth-order NWD, the number of possible m-dimensional marginals is 
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1st-order NWD satisfies four 3-D, six 2-D and four 1-D marginals.  The 2-D marginals, one along time 
and frequency, and the other along lag and Doppler, give the squared-magnitude Wigner and 
Ambiguity functions respectively.  The 3-D marginals are obtained by integrating the distributions 
along one chosen dimension.  The following two are the most interesting ones for radar signal 
processing applications: 
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3. Joint Time-Frequency Analysis for Radar Signals 
 
Joint Time-Frequency (JTF) analysis has been very efficiently used by the radar signal processing 
community for some time now.  In this section we discuss some interesting properties of higher-order 
NWDs, their marginals and their potential for radar signal processing.  Radar transmits a series of pulse 
signals, and then gathers and analyses received data (reflected and/or noise) to retrieve as much 
information about potential target(s) as possible.  This function is based on the fact that the time-delay 
between the transmitted and reflected signals is related to range of the target, where the range is the 
distance from radar to target measured along the radar line of sight (LoS); and the increase (or 
decrease) in the frequency of the transmitted signal, called Doppler shift, gives information about target 
motion and maneuvering in the cross-range dimension.  This is the dimension transverse to the radar 
LoS.  The radar range profile is the distribution of target reflectivity along the radar LoS and the radar 
Doppler profile is the distribution along Doppler shifts.  Finally combining these two profiles, the lag-
Doppler plane ),( θτH (called the radar function) forms the radar image. 
 
For practical targets, the scattering characteristics are highly complex.  The resonance in hollow 
structures (eg: engine inlets) and material or structural dispersion as a function of frequency may give 
rise to extended (more widely spread) returns rather than sharp and impulsive in the range domain [7].  
Similarly, the Doppler profile may become blurred when the target exhibits complex maneuvers.  
Highly sophisticated signal processing techniques have been used to limit these difficulties with little 
improvement in image formation [5], but application of JTF processing has improved the situation 
considerably. 
 
JTF processing is applied to the range (time-lag) axis of the conventional range/cross-range (lag-
Doppler) image to gain an extra frequency dimension forming a 3-D cube.   
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This extra frequency axis helps in identifying scattering effects mentioned above.  Similarly, an 
application of JTF processing on the Doppler domain of the conventional 2-D image results in an extra 
time dimension, which helps in observing time-varying behavior of the moving targets. 
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It should be interesting to note that the first-order NWD is a joint function of time, frequency, lag and 
Doppler and it can easily be computed from the lag-Doppler plane as shown in (4).  The two of its 3-D 



marginals in equations (6) and (7) are exactly the same matrices that are used for these two purposes.  
Conventionally, scattering and target motion compensations are performed as separate processing 
stages (perhaps by separate modules) and the results are merged after the processing is completed.  
First-order NWD provides a unique method to achieve time-frequency distributions for both types of 
compensation in one combined computation.  Also, this can help relate the effects from scattering and 
motion, which may lead to better prediction of target maneuvers.  Figure 1 shows 3-D marginals 
obtained from first-order NWD of sinusoidally modulated and linear chirps. 
 
In the examples shown below (Figure 1), relationships between three important quantities (time, lag 
and Doppler) are shown graphically that can be achieved using the 3-D marginals obtained form 1st-
order NWDs.  In the first row of figures, a 3-D relationship surface is plotted for a sinusoidally 
modulated chirp.  The relationship variation between these quantities in terms of signal energy 
concentration, spread and density is obvious.  Figure 1(c) shows a 2-D slice taken from the 3-D volume 
at the location shown in Figure 1(b) that is parallel to the time-time-lag dimension.  The slice shows 
that at this particular Doppler shift, the energy of the distribution is concentrated on the lower time-lag 
values and middle time-values.  The energy distribution is not concentrated very well, rather spread 
forming a circular density function.  The energy distribution at various other locations can easily be 
guessed by imaging a cross-section in the above mentioned way. 
 
Inter-relations between quantities can be exploited more by taking more than one 2-D slices that are 
perpendicular to each other (Figure 2).  This approach helps in the integration of information obtained 
from individual 2-D planes.  Time (or frequency) varying behavior of energy distributions can be 
obtained easily by moving the 2-D plane intersection location as required. 
 
. 

 
 

  
Figure 1: 3-D Time-Lag-Doppler marginals obtained from 4-D space; (a,b,c) Sinusoidally modulated chirp; (c,d) Linear chirps 
 
First-order NWD can be exploited for obtaining “localized variance”.  This statistical relationship 
gives localized inter-dependence of two physical quantities.  This is useful in the sense that it gives 
time and/or spectral varying nature of covariance between two or more quantities.  When applied to 4-

(a) (b)
(c)

(d) (e)



D NWD results in a 2-D covariance distribution.  There can be various combinations, but the one given 
below gives the localized temporal-spectral covariance of lag and Doppler. 
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The localized spread of lag-Doppler plane is easily obtained through the conditional standard variations 
of τ and θ as follows.  Figure 2(a) shows the spreads obtained by the above-listed operations. 
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Figure 2: Localized Time-lag spread for (a) sinusoidally modulated chirp and (b) a linear chirp. 
 
4. Conclusions 
 
We discussed in this paper Nested Wigner Distributions that are a new multi-dimensional distribution 
and offers very interesting inter-relations as well as properties.  We presented these properties in the 
context of application to radar signal processing.  Also, it is shown through the example of a simple 
nature that marginals in different dimensions and directions offer greater flexibility in target scattering 
and complex motion compensations. 
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