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Abstract – This paper presents a neural approach for learning relationships between perceptual 
classifications and real world actions in sensor networks. The mapping is constructed online using 
short-term non-specific feedback from the environment. The presented architecture combines an 
online adaptable classifier with a novel neural mapping function. Simulations demonstrate learning 
to be fast and stable, and the network to be topologically and synaptically adaptable in response to 
changing feedback. Results obtained from our experiments demonstrate the possibility of effective 
online learning using non-specific indicators. 
 

1. INTRODUCTION 
 

The paper presents a neural approach for learning relationships between perceptual classifications and real world 
actions. These neural mappings are useful for sensor networks where meaningful and adaptable mappings are 
required between sensors and actuators; for example in home automation networks. Here we present an 
approach capable of providing performance guided learning and autonomous adaptation for sensor based 
inference. Due to the close analogies between robot sensor configurations and actual sensor networks, and due 
the immense amount of research done in robotics for similar problems, we use robotics as a source of insights, 
and further as a model for presenting and testing the proposed approach. 
 
Mobile robot control is a problem explored by many researchers over time. Robot controllers in early days were 
mostly designed using the Sense-Model-Plan-Act (SMPA) as described by Brooks in [1]. Although quite useful, 
SMPA encompassed several weaknesses which led to the investigation of other inference models. The main 
problem with SMPA is its approach of selecting and planning actions based on an internal model of the real 
world. This meant that accurate actions can be chosen only if the internal model represented the external 
environment accurately. This proves to be quite difficult considering the complexity and the dynamic behaviour 
of the real world. As a result, a more dynamic and reactive mechanism for action selection was introduced. This 
is known as Behaviour Based Robotics [1, 2]. In this approach, the world is considered to be its own model, and 
actions are selected by continually referring to sensors, and thereby building a dynamic perception of the 
environment. Computationally this is much simpler, and does not require any internal models, but interestingly 
this introduces us to the problem of mapping different perceptions into actions. Different approaches to solve 
this problem have been explored. Behavioural modules have been built using fuzzy logic controllers, potential 
field techniques, back propagation networks, self-organising maps and associative memory networks. As 
outlined by Dubrawski [3] most have their own limitations. Compared to these techniques Reinforcement 
Learning (RL) [2] is relatively novel, and although still in its early stages, it has already proved itself to be quite 
useful for designing controllers [2, 4, 5]. The main advantage with RL is its ability to discover near optimum 
solutions based on external feedback. Thus, in contrast to some earlier techniques, RL can be used to develop 
solutions for problems which are not clearly defined. 
 
Many approaches have been investigated on using RL for robot control [2, 4, 5]. Specific attempts to combine a 
topologically altering neural classifier with RL were made by Andres Perez [5]. He explores the RL based 
algorithm SARSA [5], built in combination with a Flexible Adaptable Size Topology (FAST) [6]. RL is used to 
update a table of Q values which allows the selection of the best action for a given state. The problem with this 
approach is its relatively long convergence time in high dimensional output spaces, and its limitations in 
generalisation.  In contrast, we investigate a different approach to use feedback to resolve a simple neural 
mapping function between perceptions and actions (Figure 1). The perceptions are defined by a topologically 
adaptable classifier. The classifier receives sensor readings, and according to their features classifies them in to 
dynamic perceptual categories. Categories are considered dynamic as they are created and destroyed as required. 
The sensitivity of each category can be controlled by parameters allowing the network to support parametric 
control over generalisation. Each of these categories directly map into a neuron in the dynamic input field of the 
mapping network. This input layer is dynamic as it allows input neurons to be added and deleted, and to do so 
with minimal impact on previously learnt knowledge. This dynamic topology enables the architecture to support 
an undefined number of internal perceptions, and corresponding mappings to actions. As the topology of the 
network is configurable according to performance, it is able to autonomously and dynamically discover near 
optimum topologies for changing environments and requirements. 



2. THE PROPOSED ARCHITECTURE 
 
The proposed architecture consists of two main components (Figure 1); the perceptual classifier and the neural 
mapping function. Considering the current existence of several topologically adaptable classifiers; for example 
ART and FAST, this paper concentrates more on the task of constructing the neural mapping function. The 
classifier used for our experiments is an enhanced version of the FuzzyART [7] network. FuzzyART is a latter 
version of the Adaptive Resonance Theory (ART) introduced by Stephen Grossberg [9]. The reason for selecting 
FuzzyART is its simplicity over other ART networks supporting analogue classification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Layers C1 and C2 of the proposed architecture (Figure 1) compose the FuzzyART classifier. Weights between 
C1 and C2 are bidirectional. The FuzzyART classifier uses a normalisation mechanism known as complement 
coding to avoid category proliferation. We use the Snap-Drift [8] algorithm as the learning mechanism for the 
classifier. This helps to ensure better network stability. The FuzzyART network uses Winner Take All (WTA) 
activation at the C2 layer. This allows the network to preserve knowledge while allowing its internal 
configuration to be dynamic. If new input patterns are distinctly different from existing clusters, the network 
adds a new neuron at C2, and trains this to recognise the new pattern. This results in topological changes at C2.  
 
Layers M1 and M2 define the neural mapping function. M1 neurons receive inputs from the C2 neurons. 
Mappings from C2 to M1 are one to one; these neural pathways do not accompany weights. M1 layer is a 
dynamic neuron field with a changing topology. Changes are triggered by reconfiguration at the C2 field. M1 
topology adaptations are communicated by an executive process external to the network. When a new neuron j is 
added to M1, its weight vector Wj is initialised by the executive process. The initialisation values are selected by 
copying weight values from an existing M1 neuron. The selected M1 neuron for this purpose is the M1 
counterpart of the C2 neuron to which the said input generated the highest activation. This process is performed 
to ensure that a sensible generalisation is possible for inputs which are novel to the system. Random 1s and 0s 
are used to initialise weights for the first M1 neuron.  Feedback received from the environment is short-term and 
non-specific. Short-term, meaning feedback is received on the basis of each action, and non-specific, meaning 
feedback does not carry any localised meaning relating to output patterns, nor to individual output neurons; it 
simply resembles the overall performance of the system.  

 
3. EXPERIMENTS AND SIMULATIONS 

 
Experiments were targeted to investigate network convergent rate, network accuracy, and network sensitivity to 
changing feedback patterns. For this we evaluate the network using several experiments: (i) simulations to 
investigate network ability to reach a convergent state; (ii) simulations to investigate network sensitivity to 
complex and non-complex feedback; (iii) simulations to analyse topological changes of the network; (iv) 
simulations to analyses network responses to changing environments. These simulations were performed using 
simulated data. Data was generated to simulate readings from a 2x4 Passive Infrared Sensor array.  All inputs 
were continuous between 1 and 0.  
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Figure 1: Proposed Architecture featuring the perceptual classifier, and the neural mapping function 
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The experiments model a navigation task for a mobile robot. The purpose of the network was to dynamically 
cluster inputs, and to then map each cluster to an appropriate 10 bit output pattern. The output pattern indicates 
suggested actuator activations. The clusters are dynamically formed by grouping geographically similar inputs; 
for example, IR patterns suggesting obstacles on the left might form one cluster, and IR patterns suggesting 
obstacles on the right might form another; this is sensible for navigation tasks. For each such cluster, we 
randomly generated a desired output pattern. These patterns are used as stereotypes to provide non-specific 
feedback (P) to the network. Depending on the feedback, size of individual clusters might be adjusted; this could 
lead to the generation of further clusters. The task of the network is to fine-tune clustering, and to autonomously 
train itself to maximise the match between its outputs and the desired output patterns. Figure 2 illustrates a set of 
selected results. Performance indicated below indicates typical accuracy and consistency of the network in 
mapping a given 8bit IR input pattern to a desired 10bit output pattern (actuator activation). 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first experiment investigates the ability of the network to converge. As Figure 2 (A) illustrate, the network 
reaches a state of convergence in approximately 150 epochs. Because the network is continually learning, in this 
experiment we consider average performance of 80% to be a convergent state, and further consider the network 
to be stable if performance remains above this. 

 
In the second experiment we investigate the networks response to complex and non-complex feedback. Feedback 
is considered complex when it is increasingly dependent on the complete output pattern rather than on separate 
segments of the output. These patterns are harder to discover using non-specific feedback. Based on results 
observed in our experiments, we can conclude that the network is able to converge under both complex and non-
complex feedback, but as expected, it is faster under non-complex feedback (in this case approximately 50 
epochs vs. 120 epochs).  

 (A) Network performance over a period of 600 epochs. 
Epoch Size = 25 inputs.  

 (C) Internal neuron count over a period of 600 epochs. 
       Epoch Size = 25 inputs 

 (B) A closer view of the first 170 inputs of graph (A). 
       170 epochs with epoch size set to 1. 

 (D) Network performance over a period of 1200 epochs. 
       The feedback indicator is changed at 600 epochs. 

Figure 2 (A.B.C.D): Illustrates selected results from our experiments. The dotted lines represent the maximum and minimum values
recorded at each epoch. The graphs represent the average values at each epoch. Values are calculated over 5 to 10 runs of each
simulation.  Each experiment was performed with 75%-100% complex feedback and random noise. 1400 input patterns were used.



The third experiment analyses the topological response of the network to changing performance. As Figure 2 (C) 
illustrates, network topology starts to stabilise as network performance starts to increase. This is the desired 
behaviour.  This allows us to draw the conclusion that the network is able to discover suitable internal 
configurations based on non-specific feedback. An additional aspect here is that results illustrated are based on a 
network which performs additive adaptation. In the future we plan to develop a mechanism of adding as well as 
removing internal neurons for better adaptability. 

 
In our fourth experiment we investigate the adaptability of the network. Here we allow the network to freely 
operate for 600 epochs; as Figure 2 (D) illustrates, at this stage the network is at a convergent and a stable state. 
At 600 epochs we changed the performance indicator of the network and allow it to run an additional 600 
epochs. As in Figure 2 (D), soon as the performance indicator is changed, network performance drops, and in 
response the network starts a process of learning until it again reaches a convergent stable state at approximately 
750 epochs. 

 
Our initial results indicate the plausibility of the proposed network and its associated architecture. Initial studies 
indicate its ability to perform online adaptive learning using non-specific feedback. The network is able to reach 
stable convergent states relatively fast [Figure 2 (A), (B)]. From our findings, we hope to extend our work to 
perform more intensive tests using robot simulators, and based on these results to implement the architecture on 
a real robot using parallel hardware architecture which can be generalised well towards sensor networks. 
 

4. CONCLUSION AND FURTHER WORK 
 
Work outlined in this paper explores a performance guided, internally self organising neural network with a 
dynamic topology. The dynamic nature of the network allows it to be adaptable and support controlled 
generalisation. The presented mapping algorithm is able to converge relatively fast as it prioritises search for 
non-complex patterns over complex patterns. The proposed architecture is tested using specific test simulations. 
Results of these simulations illustrate the ability of synaptic learning and network topology changes using non-
specific feedback. This approach is ideal for pure behavioural systems, but is not sufficient when short-term 
planning is required. As a result, in addition to performing further testing on the current architecture, we also 
hope to investigate the possibility of mappings perceptions into actions distributed spatially as well as 
temporally, and further to explore possibilities for faster learning using complex feedback. 
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