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Abstract:  This paper presents a novel distributed approach to resource reservation and allocation 
in Grid Networking. It looks at the drawbacks of current centralised schemes and shows why a 
distributed scheme is preferred. It presents some results of a simulation of such a system using 
OPNET and discusses further work that will be undertaken on the basis of these results. 

 
1 Introduction 
 
Grid networking [1,2,3] is a major expansion of the current ideas of computer internetworking. It envisages a 
user being able to call on computing resources from across the global network to complete a required operation. 
In order to do this it is necessary to be able to reserve these resources and control their scheduling. The great 
majority of current work in this area of Grid is looking at ways of adapting systems used for resource reservation 
in parallel computing. A good example of such a system is the Globus Architecture for Reservation and 
Allocation (GARA)[4]. There are a number of well-known problems with such centralised systems. This paper 
presents an alternative approach using a distributed resource reservation scheme. 
 
2 Existing Resource Management Schemes 
 
Several resource management schemes already exist for Grid networks. Generally these schemes are based on 
extensions to resource managers for parallel distributed computer systems. A good example of such a scheme is 
that used by the Globus Alliance[5]. They have been developing Grid applications for several years. They have 
produced a number of systems that are widely used in existing Grid projects. The Globus Architecture for 
Reservation and Allocation[4] is one of these systems. It is based on another system known as the Globus 
Resource Allocation Manager (GRAM)[6]. This is designed for resource management in real-time meta-
computing environments. 

2.1 Globus Architecture for Reservation and Allocation (GARA) 

The GRAM architecture[6] is only capable of managing resource in a real-time meta-computing environment. 
The majority of Grid services are likely to require some form of advance resource reservation. With this in mind, 
the Globus Alliance[5] proposed the Globus Architecture for Reservation and Allocation[4]. GARA is based 
heavily on GRAM. It utilises 3 key components – the resource broker, the co-allocation agent and the co- 
reservation agent. 
Co-Allocation Agent – this takes resource requests destined for multiple sites and breaks them into their 
constituent requests. It then passes these requests to the appropriate resource managers. It also monitors the 
progress of all the requests. 

 
 

Figure 1 GARA architecture [4] 

2.2 Resource Specification Language 

The resource specification language[7] and the more recent Extended RSL[8] utilise a syntax based on that used 
for filter specifications in the LDAP (lightweight Directory Access Protocol)[9] and hence, the MDS 
(Metacomputing Directory Service)[10] protocols. It is a highly flexible language that can be used to describe 
resources accurately and simply. Complex specifications can be assembled from simpler constituent parts by 

Co-Reservation Agent creates advance reservations for
resources. It does this by exhaustively searching the set
of available future resources. It then passes the advance
reservations to the appropriate local resource manager,
and creates the appropriate reservation handles and
passes these back to the Application. The Application
then sends these to the Co-Allocation Agent.  
Resource Broker – this takes high-level, complex RSL
[7,8] requests from the application and converts them
(through a process known as Specialisation) into
simpler resource requests. The broker then consults the
information service to see what resources are available
and sends appropriate resource requests to the co-
allocation manager.  



using the Conjunction (&), Disjunction (|) or combine (+) operators. It can also take other operators (<, <=, =, 
>=, >, !=) and a series of parameters (such as time required/available, executable to be run, any arguments, any 
environment variables, etc). For example, the following specification: 

&(executable=prog) (|(&(count=5)(mem>=64))(&(count=10)(mem>=32)))  

requests 5 nodes with at least 64 MB memory or 10 nodes with at least 32 MB. In this request, executable and 
count are scheduler attribute names, while memory is an MDS attribute name. 
 
3 Drawbacks of Centralised Schemes Compared to  Distributed Schemes 
 
The GARA[4] system works by utilising a number of centralised elements (the broker, the co-allocator, the co-
reservation agent and the information service). Such centralised systems are fine where the network is relatively 
small, stable and reliable. However they have several drawbacks: 

Centralised systems can be very sensitive to link or node failure: If one of the nodes or links near the centre of 
the system fails there may be a disproportionate affect on the overall performance of the system. By contrast 
distributed schemes can cope with failure promptly and with limited effect on the overall system. 
Centralised systems are very susceptible to malicious attack: If there is a single central control then it becomes 
an obvious target for attack by malicious programs. By contrast in a distributed system there is no single target 
for such attacks. 
Centralised systems are slow to respond to changing state within the network: Because the control is 
centralised it needs to become aware of any change of state within the network before it can react to it. 
Distributed systems can react much faster to changes of state. 
Centralised systems create congestion in the centre of the network: Most control traffic in a centralised network 
is concentrated in the vicinity of the central control. In distributed networks the traffic is more evenly spread 
across the network. 
In centralised systems nodes will suffer from variable response times from the server: Nodes near the centre of 
the system will have a very rapid response time whereas distant nodes will take a long time to get a response 
from the central server. In a distributed system this is no longer a problem. 
 
4 Requirements for a Distributed System 
 
In order to design a distributed resource reservation and scheduling scheme it is first necessary to define what 
functionality the system must have and the operating constraints the system must meet. These include: 

• The system must be able to create and destroy resource reservations 
• It must be able to police the reservations 
• It should be able to cope smoothly with node or link failure 

In addition, since this is a distributed system the reservation tables will be held locally at each node, rather than 
in a central information service. Each node will have a different set of resources and some resources may 
become unavailable over time (for instance storage is a finite resource).  

4.1 Possible Systems 

Two possible approaches exist which satisfy the above conditions. These systems approach the problem from 
opposite sides. The first system is called the advertisement system. Nodes within the network have no 
knowledge of resource availability within the rest of the network. Requests are broadcast across the network in 
the hope of finding suitable resources. By contrast, in the Explicit Request System (which isn’t explored in this 
paper) each node has a global knowledge of resource availability and will use this to send a request to a specific 
node which has the resources available. 

4.2 Advertisement System 

As already stated, in the advertisement system nodes have no knowledge of global resource availability. When a 
node needs a resource that isn’t available locally it will broadcast an advert packet setting out what resource it 
wants and a time by which it needs that resource. It will then receive response from the rest of the network and 
will choose the most appropriate. The detailed behaviour is as follows: 

• The origin node will broadcast a request across the network. This request will include details of what 
resources are required, where the request originated, a unique identifier and a time-to-complete-by field.  

• When a downstream node receives the request it will check whether the time-to-complete has passed. If 
it has it will drop the request. It will also check the request index and if it has already parsed this request 
it will drop it. 



• If there is still time it will parse the request and check whether it is able to meet it.  
• If it is able to meet the request it will send back an acknowledgement to the origin and make a “soft” 

reservation for that resource.  
• If the node can’t meet the request it will broadcast it on all downstream links. 

 
If multiple nodes respond to the request then the origin will have to decide between them according to some 
heuristic. This could be as simple as accepting the first response it receives or could be more complex and take 
into account distance to node, bandwidth availability, etc. It will then contact the node that it chooses and 
confirm the reservation. 
 
5 Modelling the Advertisement System 
 
In order to test the behaviour of the advertisement system it has been modelled using the OPNET Modeller 
network simulation tool. In the initial model there is only a single resource available within the network. Each 
node within the network has a certain capacity to process this resource. Nodes generate requests for this resource 
according to a Poisson time distribution. The size of the request is negative exponentially distributed. 

 
Figure 3 the test network topology 

5.1 Simulation Results 

The following graphs show come from simulating a 4 x 4 mesh network. Each node has a capacity of 200 
units/s. These results are obtained by using an inter-request time of Poisson(1s). The load is varied by altering 
the mean size of the request 
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Figure 4 loss ratio v. load for mesh topology 

Initially the loss ratio is almost 0 until the load reaches 2000 units/s (approx 60% capacity) and then increases 
rapidly until the load reaches 3200 when the loss ratio is approx 0.5 as would be expected. Most of this initial 
loss is caused by the relatively small number of requests that don’t get processed within 5 hops and consequently 
get dropped. It is essential to ensure failed requests are cleared from the system rapidly. This ensures that the 
control channel is never congested. 
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Figure 5 loss ratio v. load constant request size 

In the graph on the left the mean request size has been kept
constant with the load being altered by varying the inter-
request time. As can be seen the loss is similar to that
shown in figure 3 but the loss starts to rise at a lower load.  
 
This is probably a function of the relatively large fixed
request size which means at low loads the loss of a single
request can have a disproportionate effect on the loss ratio. 

The current model is a full duplex mesh network. Each node can connect 
to up to 4 others and unconnected edge links are terminated with simple 
sink nodes (see figure 3).  
 
Requests are processed from a FIFO (first in first out) queue at each 
node. As a request travels through the network it records the route it
took. Replies to the request return down the same route. Requests are 
allowed to travel a maximum of 6 hops through the network to try and
reduce the amount of control traffic. If after 6 hops the request hasn’t 
been met it will be dropped. Results from simulating this network are 
shown in section 6.1. 



5.2 Measuring Delay 

Each link in the network has a fixed delay of 1ms (approximately equal to 200km of fibre). A number of delay 
statistics can be collected in the model. In the following graphs delay has been calculated by measuring the time 
between a request being transmitted and the time at which that request is assigned a slot to get processed. This 
delay is then averaged across the entire network. Requests that don’t receive a processing slot are ignored. 
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Figure 6 queuing delay for (a) constant inter-request time (b) constant request size  

As can be seen, in 5(a) the delay is constant whilst the load is less than 2000. Then as the load increases beyond 
this and more packets are lost the delay drops rapidly. This ties in with the loss graph in figure 5. In 5(b) the 
delay is initially very high. However this appears to be a function of the way OPNET handles interrupts. What is 
significant is that at loads above 2000 the delay is very similar in both cases. 
 
6 Future Work 
 
A number of extensions to the current model are being looked at: 

Complex Topologies: The effects of failing a single node within the mesh network model have been explored 
and as expected in a mesh network seem to have little effect on overall system. It is intended to model a more 
realistic network based on one of the trans-European research networks (such as GEANT [11]).  

Complex Queuing Schemes: Alternative queuing schemes will also be examined to see if they have any impact 
on the network behaviour. 

Multiple resource types: Real systems will have multiple resource types. Requests will be complex with more 
than one resource needed co-dependently. The model will be expanded to look at such systems. 

7 Conclusions 
 
The results shown here demonstrate that the simple distributed approach to resource reservation appears to work 
for systems that are moderately loaded. The delay between a request being made and it being assigned a slot to 
be processed is relatively short and in systems where the individual requests are not large the delay is fairly 
constant until the load exceeds about 60%. Clearly the current model needs to be expanded to more accurately 
reflect real-life Grid networking applications. It would also be useful to compare this approach with an 
alternative system such as an explicit request system where nodes have a knowledge of global resource 
availability that is updated periodically. 
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