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Abstract: The effect of residual uncompensated cross-track platform acceleration on the point spread
function (PSF) of a synthetic-aperture radar (SAR) system is derived. This is compared to an ap-
proximate PSF model originally derived from an optics based argument, which previously has been
proposed to be used for the super-resolution of SAR imagery. The PSFs are used in a comparison of
three super-resolution algorithms based on a distributed scatterer model. It is shown that assuming no
cross-track acceleration is present is better than using the optics approximation and knowledge of the
correct cross-track acceleration gives the best performance.

1 Introduction

Super-resolution techniques attempt to increase the resolution of an imaging system beyond the theoretical physical
limit through the use of signal processing and some form of prior knowledge about the scene and the imaging point
spread function (PSF). A feature of super-resolution techniques is that the PSF must accurately be known for the
results to be reliable. Synthetic-aperture radar (SAR) systems – used for a variety of purposes including day and
night all-weather target recognition, terrain classification and remote sensing – coherently combine successive
radar pulses to obtain high-resolution two-dimensional imagery. In SAR systems the precise PSF is dependent
on the relative motion between the radar and the target so accurate knowledge of this motion is required before
super-resolution can be performed. Although motion compensation and autofocus techniques attempt to remove
the effects of unknown aircraft motion some residual errors may remain.

Blacknell performed a study [1] into the effects of using a stochastic description for the PSF based on a simulation
of an airborne SAR system. The results showed that there was no advantage to using the stochastic description over
a standard PSF model. These results were compared to another super-resolution study [2] that used a parametric
model for the PSF based on an optics argument. It was not possible to make a conclusive judgment as to which
technique is better due to the difference in the models used for simulation. The purpose of this paper is to derive
an appropriate parametric model for the PSF based on radar physics, compare this with the optics-based PSF and
determine if the two studies can be related more closely. Three super-resolution algorithms are compared using
the two PSFs and the effect of a perturbed PSF is measured in terms of the physically meaningful parameter of
cross-track acceleration. This is an improvement over previous work [3] where a simple Gaussian PSF was used.

The rest of the paper is organised as follows. Section 2 derives the PSF of a radar undergoing uniform motion
and also when residual cross-track acceleration is present after focussing techniques. This is compared to the PSF
derived from an optics based model that has previously been proposed to be used for the super-resolution of SAR
imagery. Section 3 introduces three super-resolution algorithms and shows results of these algorithms using the
PSFs derived earlier. Conclusions are drawn in section 4.

2 Point spread functions

2.1 Radar based PSF

The precise nature of the radar PSF is dependent on several aircraft and radar parameters. Where necessary,
reasonable values for the parameters have been assumed and correspond to those used in the work of Oliver [4], on
which this derivation is based. The relevant parameters are: minimum range R0 = 40 km, wavelength λ = 0.03 m,
antenna length d = 2 m, aircraft velocity vx = 200 ms−1 and synthetic-aperture time T = 3 s.

For a sideways looking radar undergoing constant cross-track acceleration ay the variation in phase with time is

φ(t) =
4π∆R

λ
= (β0 + δβ)t2, (1)
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x
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λ . The signal received by the radar for a point target is s(t) = exp(−iφ(t)) and



the matched filter output is given by the cross-correlation of this with a reference signal h∗(t) = exp(iβ0t
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For zero cross-track acceleration δβ=0 and this simplifies to the familiar sinc function g(t) = sinc(β0T t)×
exp(−iβ0t

2). When the cross-track acceleration is non-zero the integral in (4) can be Fourier transformed to
give
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If π
(β0+δβ)T � T

2 , which holds well for the parameters used here, then the sinc function may be approximated by

an expression proportional to the Dirac delta function δ
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The inverse Fourier transform of this function cannot be evaluated in terms of simple functions. However, the
analytical form when using integration limits ω = ±W/2 is given by Mathematica 4.0 [5] as
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where erfi(z) = erf(iz)/i and erf(z) = (2/
√

π)
∫ z

0 exp(−t2)dt. This can be substituted for the integral in (4) to
give the desired PSF as a function of time. To obtain the PSF in spatial co-ordinates t is replaced with x/vx.

2.2 Optics based PSF

In the paper by Luttrell [2] it is stated that a SAR system undergoing anomalous motion can in first order be
modelled as the defocussing of a simple linear imaging system. The point spread function is given as

g(x) =
1

2c

∫ +c

−c

exp(ikx + iθk2x2)dk. (9)

The paper goes on to make a linear approximation valid when |θc2x2| <∼ 1 to solve this analytically. It is stated that

for super-resolution within the main lobe |x| < π/c and it is required that |θ| <∼ 0.1. However, it should be noted
that in practice the image obtained from a radar will also contain energy in the side-lobes and either a much smaller
value of θ should be used, which would limit the range of motion that can be accomodated, or the approximation
would have to be be expanded to quadratic or higher orders of θ. If the approximation were expanded then Luttrell’s
autofocus/super-resolution algorithm would no longer apply because it depends on a PSF linear in θ. It is in fact
possible to evaluate the integral (9) in terms of special functions and is given by Mathematica as:
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2.3 PSF comparison

A comparison between the optics model and the radar cross-track acceleration model was made by setting inte-
gration limits such that the -3dB resolution with no distortion was 1m for both models, setting θ to various values
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Figure 1: Relationship between defocus parameters
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(a) θ = 0.02, δβ = 0.207s−2
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(b) θ = 0.10, δβ = 0.831s−2

Figure 2: Comparison of radar and optics PSFs for two levels of defocus

and then adjusting δβ until the two PSFs had the same first side-lobe level. The corresponding values of θ and δβ
are displayed in Figure 1 showing a mildly non-linear relationship between the two defocus parameters. From the
graph and using the assumed radar parameters, the residual cross-track acceleration corresponding to θ=0.1 (the
value used in [2], [6], [7] and [8]) is 4.0×10−3 ms−2.

Examples of the PSFs are shown in Figures 2a and 2b where θ=0.02 and 0.10 respectively. For θ=0.02 the level
of defocus is low and the two PSFs are similar both to each other and to a completely focussed sinc function (not
shown) for the first few side-lobes. However, at larger distances from the main lobe the PSFs start to diverge with
the optics PSF showing more distortion. For θ=0.10 the PSFs are substantially different. The optics PSF has a
much higher level of distortion and the first side-lobe is no longer the strongest. In comparison, the radar cross-
track acceleration PSF has deteriorated only slightly and is still similar to a sinc function. The resolution of the
two PSFs degraded by about 3.6% for θ = 0.10 and 5.0% for δβ = 0.831s−2.

3 Super-resolution results

Three standard super-resolution algorithms are tested here: inverse (INV), singular value decomposition (SVD)
and thresholded minimum mean square error (MMSE-T). An overview of these algorithms and others including
Bayesian super-resolution [6] is given in [8]. A super-resolution performance metric is the output signal-to-noise
ratio defined as SNRout = ||f ||2/||f̂ − f ||2, where f is the true high-resolution scene and f̂ is the estimated
scene using any particular algorithm. A Monte Carlo assessment has been carried out using measured SAR data.
A high-resolution target image of 27x33 pixels had its resolution degraded using the cross-track acceleration PSF
with δβ = 0.831s−2 and noise was added at an SNR of 30dB. Each super-resolution algorithm was then executed
using the correct cross-track acceleration PSF, the optical PSF with the correct first side-lobe level (θ = 0.10), and
a sinc PSF. This was repeated 100 times and the mean and standard deviations of the output SNR were measured.

Results of the assessment are shown in Table 1. The radar PSF gives the best performance for SVD and MMSE-T,
which are the most reliable algorithms. This is to be expected as cross-track acceleration is the correct model used
in the simulation. Using the optics PSF gives a worse performance than using a sinc function. This is because the
optics PSF is less similar to the sinc function than the radar PSF. Example imagery before and after super-resolution
using MMSE-T and the radar PSF is shown in Figure 3.

4 Conclusions

A radar and optics PSF have been compared using analytic expressions for the functions. The effect of using the
optics PSF during super-resolution when the actual PSF is due to cross-track acceleration was found to be worse
than using an idealised sinc function when no cross-track acceleration is present. Out of the algorithms tested
MMSE-T was the best using the output SNR metric, which confirms previous results [8]. The best super-resolution



Radar PSF Optics PSF Sinc PSF
Algorithm Mean S.D. Mean S.D. Mean S.D.

INV -11.83 1.16 -1.46 0.31 -4.16 1.10
SVD 8.85 0.08 2.14 0.03 8.10 0.11

MMSE-T 10.52 0.44 2.22 0.10 8.19 1.40

Table 1: Output SNR in dB

Figure 3: Original, blurred and super-resolved images

metric for an automatic target recognition (ATR) application would be overall classification performance, which
has been used in [7] and [9].

Finally it should be noted that effects other than anomalous motion between the radar and target may alter the
PSF. Phase noise or non-linearities due to imperfections of the radar receiver, quantisation noise and atmospheric
phase disturbances all increase side-lobe levels. Also, scattering centres whose properties vary with frequency
and imaging geometry result in non-ideal PSFs. These effects would further reduce the performance of standard
super-resolution algorithms.
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