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Abstract:  This paper presents a sensing scheduler that learns about the environment monitored 
and adjusts its sensing behaviour according to the variation in the environment.  The aim is to 
preserve energy by minimising sensing events in normal situation, but response quickly and 
reliably when a rare-event happens.  Temporally, the scheduler uses statistical long-term and 
short-term averages to tune its sensing frequency.  Spatial neighbour coordination is incorporated 
to enhance information dissemination across the network and minimise detection delay.   

1. Introduction 
Data handling in distributed wireless sensor network for environmental monitoring has attracted a lot 
of attention in recent years. The challenge is that sensor networks are often distributed systems with 
limited resources including processing power, memory, and stringent power consumption requirement 
[1][2][3][4].  The works presented in this paper focus on the design of a sensing scheduler, which 
alternate the sensing behaviour according to some statistical properties measured in the environment in 
order to achieve power efficiency.   A common type of sensor network application is rare-event 
detection.  They have a similar characteristic that in majority of time the sensor networks are 
monitoring some normal conditions, which is not of interest of the users.  When a rare event occurs, 
the sensor network is required to response to the event promptly and reliably and notifies the users.  
Examples of such applications are bridge collision monitoring, flooding detection, landslide warning 
system and forest fire detection [2].   Sensing of a rare-event is the trigger for further actions including 
reporting and network management in the sensor network and hence, we consider the work in this 
paper as a first step to develop a network management algorithm that fulfils the requirements of rare-
event detection in sensor networks.  

Traditionally, temporal samples are taken in regular intervals governed by the Nyquist frequency to 
avoid aliasing.  In the cases when more than one frequencies are of interest and they are wide apart in 
temporal scale, such as wave and tidal periods in Oceanography analysis [8][9], burst sampling 
technique may be adopted as a mean to conserve power.  Regular or burst sampling techniques are 
designed for recording periodic events and may not be suitable for rare-event detection.  It is nor 
efficient in terms of power consumption that sampling frequency can be much reduced when there is 
no event.  On the other hand if sampling frequency is set to very low interesting events may be missed.    

Currently, most sensing schedulers being researched for sensor networks consider mainly redundancy 
in radio and sensing coverage and optimise network life by putting the covered nodes to sleep 
[6][7][8].  The problem is approached in a spatial aspect and temporal efficiency is not tackled.   
Moreover, sensing coverage can only be defined for a certain type of sensors, for example, cameras, 
ultrasound, etc, and is not applicable to point detection sensors for measurements such as temperature 
and pressure.      

We propose a sensing schedule that response to some statistical values measured from the 
environment, such that sampling is sparse when the environment does not vary much, and increases 
according to the variation in the environment.  We also incorporate neighbour coordination to combat 
the problem of event-detection delay due to the sparse random sampling in normal condition.         

2. Temporal Design 
The scheduler is based on a simple 2-states model as shown in Figure 1.  ps and pi are the probability 
of the scheduler to change from one state to the other.  At sense-state, the scheduler takes a sample1 

                                                      
1 A sample is an illustrative use of the scheduler.  Sense-state can be adapted to other temporal data collection methods, such as averaging 
of samples to minimise environmental noise and maximise power efficiency of the ADCs.     



from the environment and updates ps and pi with the current 
sample.  The state-transitions are random probabilities, 
however, the probabilities are based-on a statistical property 
called exponential weighted moving average (EWMA) 
denoted in Eq.1.  This quantity is used in volcanic eruptions 
monitoring proposed by Werner-Allen et al [5].   
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EWMA is a way of preserving memory when calculating 
expected values.  α determines the weights of the current 
sample and the last average when calculating the new average.  Current values are weighted more than 
historical values.    

We define a long-term average Elong and a short-term average Eshort which uses the same equation Eq.1 
with 1<< shortlong αα  and we defined a quantity pt as a normalised ratio of the two averages: 
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The temporal components of ps and pi are: 
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Without k1, sp̂  is simply pt and ip̂  is the 
reverse of pt, which means that sampling 
probability increases with the difference 
of long-term average and short-term 
average.  k1 is an integrity threshold that 
make sure sampling probability does not 
fall to zero when the average difference 
is very small.  When the environment is 
stable, the sensor nodes are 
asynchronously sampling at a random 
rate close to k1 both temporally and 
spatially.   One can visualise a problem 
when k1 is very small, there would be 
long delay for the detection of an event.   
The experiment set in Figure 2 
demonstrates how k1 affects the time for 
network to be aware of a change occurs 
to the whole network.  Time taken for a full awareness of the change in the network is an exponential 
relationship to k1.   

On the other hand, a small k1sets a small ‘peeping’ rate when nothing interesting is happening in the 
environment, meaning a higher energy efficiency in long term.        

3. Spatial Coordination 
A small k1 setting can enhance energy saving in the network; however, the sensing rate is so slow after 
the settling period that it would take a long time for the sensor nodes to pick up on the events happen 
in the environment.  Therefore, we introduce neighbour coordination to tackle the problem of 
detection delay.  The basic idea is that when a single node senses some change in the network, it alerts 
its neighbours with its discovery.  We include a spatial component, distance id  to the equation in 
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Figure 1: A simple 2-states model for the 
sensing scheduler 
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Figure 2: Relation of k1 and network awareness (log scale).  αlong = 0.01, 

αshort = 0.05.  Environment changes from 0 to 50 at time 200. 



determining ps and pi.  Distance of this node i and it neighbours j is defined in Eq. 4 and is the 
summation of the absolute differences of tp .  
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Finally, Eq. 5 for ps and pi are such that probability of sensing is high when either id or tp  are high; 
probability of idling is low when both tp  and id  are low.  
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In the model developed, we used a push-approach to the information dissemination problem among 
neighbours.  A sensor node sends a report to its neighbours when its pt is above a defined threshold 
( Tpt > ), which indicates a significant change in the environment measured.  Currently, ps and pi are 
updated at every time step, i.e., even at idle state because the messages received from a node’s 
neighbour may change the sensing schedule of a node.  To minimise the communication expenses, a 
node which has broadcasted its pt to its neighbour will wait M time steps before considering re-
broadcasting its pt information.   T is set to 0.8 and M is set to 10 in the experiment in this paper.   

4. Experiments and Results  
As a demonstration of the scheduler ability to adapt to the environmental changes, we have built a two 
dimensional 100x100 torus which contains 100 nodes.  The background value changes from a constant 
of 0 to 50 at time 50.  To simplify the scenario, there is no randomness built into the background 
environment.  
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Figure 3: Percentage of sampling nodes over time.  Ranges 
denote the radio range that a node would be considered as a 

neighbour to another node. 
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Figure 4: Environmental RMS over time. 

 

Figure 3 is the result of the sampling situation in the network over time.  From time 50 onwards, the 
sensor nodes in the network gradually realise there is a change to the environment and increase their 
sampling probability accordingly until their long-term average has adjusted to the new value.  The 
percentage of node sampling in the network eventually settles to a value close to k1, which is set to 
0.01 in this experiment.      Figure 4 shows the environmental RMS, which is defined as: 
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In both figures, we compare the results of using just temporal statistics with the addition of neighbour 
coordination.  A large neighbour range means a node has more neighbours on average.   We can see 
that the RMS converges much quicker to zero when neighbour range is 20, meaning a much faster 
response of the network to the environmental changes.  Information disseminates much more 
efficiently across the network.   Also in Figure 3, the percentage of sampling nodes rises much faster 
with a larger neighbour range and converge quicker to k1.   

5. Conclusion and Discussion 
We have explored a simple, distributed, and self-organised solution to sensing scheduler that can learn 
about the environment and adjust its sampling behaviour to the changes, such that when there is not 
much variations in the environment the percentage of sampling nodes in the network converge to a 
value close to k1 as defined in Eq. 3.   We have also incorporated neighbour coordination to enhance 
information dissemination across the network and hence, minimise detection delays.   The solution is 
scalable that it is not affected by the addition and removal of sensor nodes in the network.  

The works presented in this paper serve as a first steps to the design of a network management 
algorithm.  The concept of altering sensing behaviour based on the data measured can be an efficient 
way of conserving energy.  There are a lot of areas to be explored in our future research.  

 In the model, we assume that the information sent by a neighbour is immediately received and 
processed.  This is much deviated from a real network that transmission delays exists dependent 
on the Media Access Control (MAC) protocol and radio can be turned off to preserve energy.  An 
efficient MAC protocol in line with the scheduler design is required to complete the research in 
the sensing scheduler.   

 The equations and models in this paper are based on a single sensory parameter.  We could modify 
them to fuse data obtained from multi-sensors to improve detection accuracy.    

 Reporting of a rare-event is another interesting area to research on.  This would include the 
definition of a rare-event and a routing algorithm for sending information back to the user.  
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