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Abstract  

This study develops an Environment AwaRe Sampling algorithm (EARS) for 
environment management applications.  EARS is novel because it was developed for near 
real time, low data rate environmental applications where it adaptively controls the 
sampling frequency by monitoring the error derived from an autoregressive model.  The 
approach relies on models located in each sensor to predict local parameters.  The error is 
intermittently checked against actual readings and used to adjust the sampling frequency.  

1. Introduction  

Timely detection of events such as flooding is important to maximise production in 
farming environments. In precision agriculture, such knowledge is necessary for 
understanding microclimatic conditions in specialised crops.  In such crops, level-driven 
event measurements in real time are useful for minimising loss from environmental 
conditions.  For example in [1] King et al assert that potatoes, a water sensitive crop, need 
high (between 70-90%) soil moisture for optimum growth.  Such levels are attained by 
using 30-35% of available soil moisture storage capacity, thus indicating a need for near 
real-time monitoring. 
 
Wireless sensor networks are practical and cost effective solutions for near real time 
monitoring. A network contains battery powered communication nodes which are 
scattered in a remote field. The hardware of each node includes a microprocessor, data 
storage, sensors, an analogue-to-digital converter, a radio (transceiver), controllers and an 
energy source. Data are communicated from a source node to neighbouring nodes in a 
multi-hop fashion until they reach a given destination. Smart sensors, in spite of 
application specific differences, share limitations in transmission power and the radio 
bandwidth. 
 
Deployments of sensor networks have varied from habitat to environmental and 
agricultural monitoring applications.  Data collection from these remote environments 
imposes constraints on sensor node services and operations.  Therefore any reduction in 
communication between sensor nodes at the expense of increased processing is desirable 
because communication is the most energy intensive operation. 
 
This study proposes EARS, a sampling control algorithm for environmental applications. 
More specifically an adaptive autoregressive (AR) model is formulated that limits the 
amount of data required for processing and possibly communication thus extending 
battery life.  
 
The remainder of this paper is organised as follows.  In section 2 the related work is 
discussed.  Section 3 shows an overview of the algorithm and section 4 presents some 
results.  Finally section 5 makes concluding remarks and recommendations for future 
work. 
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2. Background and Context 

Current adaptations of sensor networks have approached this sampling problem by using 
the sensor network as an event driven database that can be queried by a user. In such a 
scenario, collected data may be communicated when measurements exceed certain user 
defined limits .  This is exemplified in work done by Rachel Cardell et al [2] where the 
architecture for an event driven monitoring network is presented. Cardell argues that the 
reactivity features reduce the amount of useless data by collecting more readings only 
when rain fall and soil moisture measurements change.  However threshold detection 
based methods are highly sensitive to the particular component parameters within each 
node.  Werner et al developed an exponentially weighted moving average (EWMA) 
detector to counteract sensitivity issues [3].  Detection is triggered when the ratio between 
a long and short term average is above some pre-specified threshold thus causing nodes to 
sample data continuously.  
 
The work of Tulone et al raised the issue of reducing the communication burden using 
forecasting models[4].  More precisely, they developed a probability query adaptable 
system which used a combination of AR models located on each sensor to predict local 
readings.  Model updates were sent to a sink whenever measured readings were outside 
specified bounds.  In contrast, Jinboa et al proposed a scheme which dynamically 
adjusted the sampling frequency using a linear regression model [5]. The authors also 
highlighted a data compression algorithm which was incorporated into each sensor node 
to reduce the communication burden.  
 
EARS is concerned with identifying the required sampling rate for control and good 
performance in a near real time environmental application.  It “listens” to the prediction 
error then dynamically adjusts the sampling frequency. The algorithm is closest to work 
done by Tulone et al because it also uses an AR forecasting model located on each sensor.  
However EARS minimises the sampling frequency and communication burden at the 
expense of increased inaccuracy and processing.    
 
Soil moisture was selected as the input parameter because it is a useful indicator of the 
soil condition under which crops are grown.  Therefore information on the moisture level 
is a requisite in most environmental monitoring applications involving crop production. 
The next section discusses the novel scheme used in EARS for adapting the sampling 
frequency based on soil moisture readings. 

3. EARS Overview 

The soil moisture readings were assumed to be a discrete time signal )(ns .  Therefore in 

the notation used below )(ns at time unit  it =  to Qit +=  were denoted by 

)(,),( Qisis +L .  The second order AR coefficients are calculated from the calibration 
data in the sensor queue (see the shaded region in Figure 1).  During initialisation, the 
error threshold E, the maximum allowable number of reported outliers max_outliercount 
and the size of the prediction window w are defined.  The algorithm is started when Q soil 
moisture readings, each separated by sampling interval τ, are loaded into a first in first out 
(fifo) queue on the sensor.  
 
Next the sensor moves into the learning and monitoring phase where each of the soil 
moisture readings are replaced by a zero centred function using equation (1): 

µ−= )()(
~

nSnS      (1) 

where µ is the non-zero mean of the queue. 
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Figure 1 Calibration data in )(ns are used to calculate the AR coefficients and hence the 

predicted samples, )(nxp . Validation data are the real soil moisture measurements 

 
The predicted samples can thus be expressed as: 

)2(~)1(~)( 21 ssnX p ααµ ++=     (2) 

1α  and 2α  are calculated from an approximate second order AR process: 
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)(kxxρ  the autocorrelation of x  at lag k from which the predicted readings 

)(),( wixix pp +L  were calculated (see Figure 1).  The error is derived from the 

difference between predicted samples and the actual measurements using the equation 
below: 

)()( isixe pi −=       (5) 

Based on the calculated error e and the number of outliers outliercount, the algorithm has 
four possible outcomes (see Figure 2): 

 
 
Figure 2 outliercount is compared against max_outliercount  and e is compared against 
E.  The results of the comparison place the algorithm in one of four possible quadrants 
which control the output of the sampling frequency.  This is novel because it overcomes 
both the problem of inefficiency in over-sampling and inaccuracy in under-sampling. 

(3) 

(4) 
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4. Results 

Assuming the number of samples was a proxy for the transmission rate and hence 
communication energy, performance merits of the algorithm was evaluated by the 
response to the question: if EARS and a periodic sample and hold strategy used the same 
number of samples or sampling rate, did EARS produce a closer fit to the actual data? 
The simulation results in Figure 3 confirms that the answer is positive since it indicates 
that EARS has a lower rms error than periodic sampling if the same number of prediction 
samples are used.  For example over the duration of a week, EARS requires about 1500 
samples for an rms error below 0.36 compared with over 4000 samples in the periodic 
case.  Therefore less than half the energy is used for EARS at the same total error. 
    

 
Figure 3 Simulation results showing the variation in the root mean square error against 
the number of samples.  EARS results were obtained by varying w.  Conversely the 
periodic sample and hold method was obtained varying τ. 

5. Conclusions and Future Work 

This study has developed an Environment AwaRe Sampling frequency control algorithm 
(EARS). Preliminary results have demonstrated that EARS decreases the sampling 
frequency required for reporting events when compared with fixed periodic sampling 
rates.  Future considerations include enabling automated parameter selection and 
examining implementations in a spatio-temporal domain for thousands of sensor nodes. 
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