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Abstract

This study develops an Environment AwaRe Samplingordhm (EARS) for
environment management applications. EARS is nbeeause it was developed for near
real time, low data rate environmental applicatiovisere it adaptively controls the
sampling frequency by monitoring the error derivenm an autoregressive model. The
approach relies on models located in each sengwethct local parameters. The error is
intermittently checked against actual readingswsetl to adjust the sampling frequency.

1. Introduction

Timely detection of events such as flooding is im@at to maximise production in
farming environments. In precision agriculture, tsuknowledge is necessary for
understanding microclimatic conditions in specedisrops. In such crops, level-driven
event measurements in real time are useful for miging loss from environmental
conditions. For example in [1] King et al asshdttpotatoes, a water sensitive crop, need
high (between 70-90%) soil moisture for optimumvgita  Such levels are attained by
using 30-35% of available soil moisture storageac#p, thus indicating a need for near
real-time monitoring.

Wireless sensor networks are practical and cogicéfe solutions for near real time

monitoring. A network contains battery powered camination nodes which are

scattered in a remote field. The hardware of eamferincludes a microprocessor, data
storage, sensors, an analogue-to-digital convexteagio (transceiver), controllers and an
energy source. Data are communicated from a sowde to neighbouring nodes in a
multi-hop fashion until they reach a given desimat Smart sensors, in spite of
application specific differences, share limitatianstransmission power and the radio
bandwidth.

Deployments of sensor networks have varied fromithalio environmental and
agricultural monitoring applications. Data colieat from these remote environments
imposes constraints on sensor node services anmdtimoes. Therefore any reduction in
communication between sensor nodes at the expénsereased processing is desirable
because communication is the most energy intergeeation.

This study proposes EARS, a sampling control algorifor environmental applications.
More specifically an adaptive autoregressive (AR)dei is formulated that limits the
amount of data required for processing and possioljnmunication thus extending
battery life.

The remainder of this paper is organised as follows section 2 the related work is
discussed. Section 3 shows an overview of theri#ihgo and section 4 presents some
results. Finally section 5 makes concluding remaakd recommendations for future
work.



2. Background and Context

Current adaptations of sensor networks have appedbthis sampling problem by using
the sensor network as an event driven databasedhabe queried by a user. In such a
scenario, collected data may be communicated wheasutements exceed certain user
defined limits . This is exemplified in work dobg Rachel Cardell et al [2] where the
architecture for an event driven monitoring netwilpresented. Cardell argues that the
reactivity features reduce the amount of uselesa b collecting more readings only
when rain fall and soil moisture measurements changlowever threshold detection
based methods are highly sensitive to the particwdaponent parameters within each
node. Werner et al developed an exponentially tedy moving average (EWMA)
detectorto counteract sensitivity issues [3]. Detectiotriggered when the ratio between
a long and short term average is above some pigfiggethreshold thus causing nodes to
sample data continuously.

The work of Tulone et al raised the issue of redgdhe communication burden using

forecasting models[4]. More precisely, they depelb a probability query adaptable

system which used a combination of AR models latate each sensor to predict local
readings. Model updates were sent to a sink whaneeasured readings were outside
specified bounds. In contrast, Jinboa et al pregoa scheme which dynamically

adjusted the sampling frequency using a linearesgon model [5]. The authors also
highlighted a data compression algorithm which wa&srporated into each sensor node
to reduce the communication burden.

EARS is concerned with identifying the required plng rate for control and good
performance in a near real time environmental appibn. It “listens” to the prediction
error then dynamically adjusts the sampling freqyeihe algorithm is closest to work
done by Tulone et al because it also uses an Aétdsting model located on each sensor.
However EARS minimises the sampling frequency aadhraunication burden at the
expense of increased inaccuracy and processing.

Soil moisture was selected as the input parame&teause it is a useful indicator of the
soil condition under which crops are grown. Therefinformation on the moisture level
is a requisite in most environmental monitoring lagapions involving crop production.
The next section discusses the novel scheme usedRS for adapting the sampling
frequency based on soil moisture readings.

3. EARS Overview

The soil moisture readings were assumed to becaetiéstime signak(n) . Therefore in
the notation used belows(n)at time unit t=i to t=i+Q were denoted by
s(i),---,s(i + Q). The second order AR coefficients are calculdteth the calibration

data in the sensor queue (see the shaded regiBigune 1). During initialisation, the
error threshold, the maximum allowable number of reported outliees_outliercount
and the size of the prediction windeware defined. The algorithm is started wigzsoil
moisture readings, each separated by samplingvaiterare loaded into a first in first out
(fifo) queue on the sensor.

Next the sensor moves into the learning and mdnggshase where each of the soil
moisture readings are replaced by a zero centrettifun using equation (1):

S(n) = S(n) - 4 (1)

wherey is the non-zero mean of the queue.
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Figure 1 Calibration data irs(n) are used to calculate the AR coefficients and hémee
predicted samplesx,(n) . Validation data are the real soil moisture measients

The predicted samples can thus be expressed as:
X, () = u+a,s@)+a,5(2) @

a, anda, are calculated from an approximate second ordepriRess:

&, = P (1~ Py (D)1~ p,,° D) 3
&, = (0o (= P’ W) /L= p,° D) @)
P (K) the autocorrelation ofx at lag k from which the predicted readings

xp(i),.--xp(i +w) were calculated (see Figure 1). The error isveerifrom the

difference between predicted samples and the aotealsurements using the equation
below:

g =X, (1) —s(i) ()

Based on the calculated ermand the number of outliemitliercount, the algorithm has
four possible outcomes (see Figure 2):
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Figure 2 outliercount is compared againstax_outliercount ande is compared against
E. The results of the comparison place the algeriith one of four possible quadrants
which control the output of the sampling frequendhis is novel because it overcomes
both the problem of inefficiency in over-samplingdanaccuracy in under-sampling.



4. Results

Assuming the number of samples was a proxy for tthesmission rate and hence
communication energy, performance merits of theordlyn was evaluated by the
response to the question: if EARS and a periodigpéa and hold strategy used the same
number of samples or sampling rate, did EARS preducloser fit to the actual data?
The simulation results in Figure 3 confirms that #imswer is positive since it indicates
that EARS has a lower rms error than periodic samgpf the same number of prediction
samples are used. For example over the duratienvedek, EARS requires about 1500
samples for an rms error below 0.36 compared witgtr @000 samples in the periodic
case. Therefore less than half the energy is isdelARS at the same total error.
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Figure 3 Simulation results showing the variation in thetrcmean square error against
the number of samples. EARS results were obtamedaryingw. Conversely the
periodic sample and hold method was obtained vgnyin

5. Conclusions and Future Work

This study has developed an Environment AwaRe Samfilequency control algorithm
(EARS). Preliminary results have demonstrated tBARS decreases the sampling
frequency required for reporting events when comgbawith fixed periodic sampling
rates. Future considerations include enabling raated parameter selection and
examining implementations in a spatio-temporal darfiar thousands of sensor nodes.
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