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Abstract: One has to weigh up between the error correction capability of a channel 
encoder and the data transfer efficiency. Clear choices are to be made in selecting 
the symbol sizes and the speed of the encoder. The hardware solutions coupled with 
the requirement determination can help reclaim vital resources on an FPGA real 
estate, improve data transfer efficiency and substantially enhance the speed. 

1 Introduction and the Channel Encoder Basics 
A typical communication channel is shown in Figure 1. The source encoder/decoder and 
encryption/decryption circuits are optional. There is a degree of control over the errors occurring 
in the hardware but the channel is exposed to all sorts of elements; it does require an error 
correction capability to maintain the reliability, efficiency and speed of the communication link. 
 

 
Figure 1: A typical channel encoder 

The Reed-Solomon codes achieve the largest possible code minimum distance for any linear code 
with the same input and output block length, therefore this method for channel encoding has been 
selected for the discussion. This code is also known as a systematic code because the data is left 
unaltered and parity symbols are appended to it (Figure 2). 

 
Figure 2: The coded message block where n = unaltered data symbols (k) + Parity symbols (2t) 

These are non binary codes; the symbols are made up of m-bit sequences where m is any positive 
integer having a value greater than 1.  R-S(n, k) codes on m bit symbols exist for all n and k for 
when 0 < k < n < 2m + 2, where k is the number of data symbols being encoded and n is the total 
number of code symbols in the encoded block[4]. 
                             (n, k) = (2m -1, 2m -1 -2t)    -------------------------------Equ1  

2 The Channel Encoder Performance optimization Techniques 
The optimization process needs a careful analysis of requirements and considerations to weigh up 
the factors which constitute the optimum design. In this dialogue, design for data transfer 
efficiency, the speed of the data transmission and the resources saving (i.e. on FPGA real estate) 
are considered and an optimized design example is provided for a satellite application. 



2.1 Design for Efficiency  
The channel efficiency is given by (2m-1-2t / 2m – 1) * 100 % where m = symbol length and t = 
correctable errors in the block. 

[In Figure 3; Z-axis = percentage efficiency, Y-axis = t (required correctable errors)] 

 
Figure 3: Channel Encoder Efficiency verses the Correctable Errors (t) for a given symbol value (m) 

As illustrated in Figure 3, the efficiency is inversely proportional to the t (the correctable errors) 
but the slope is shallow when the symbol length is high (i.e. m = 8 gives almost flat response 
because of the relative size of the block comparing with the correctable errors).   

2.2   Design for Speed 
A Reed-Solomon codeword is generated using a generator polynomial [(g(x)].  
The property of the generator polynomial [g(x)] is that it is an exact divisor for all valid code 
words and generally represented by Equ2. 
  g(x) = (x – �i)(x – � i+1)………(x – � i+2t) ----------------Equ2 [2], [1] 

 
where the order of the generator polynomial is equal to the number of error code symbols (n-k), 
for i = 0 the power of ‘�’ represents the ‘on’ bits in a symbol length ‘m’ . A parity code is 
generated when the message polynomial [m(x)] is divided by g(x) as shown in Equ3. 

  r(x) = m(x) mod g(x) (i.e. remainder)……………Equ3 
 

 Thus a codeword can be produced by shifting the message [m(x)] by (n-k) positions and 
appending it to the parity code as shown below. 

             u(x) = r(x) + x n-k m(x)----------------------------------------Equ4 [2] 
 

Equ4 is implemented by linear feedback shift registers as shown in Figure 4, for RS(7,3) and 
RS(15,13).  In the Reed Solomon encoder the bottle neck for the operational speed is the Galois 
Field Multipliers in the feedback loop of the LFSR. 



 
Figure 4: The Reed Solomon Encoder Implementaion Blocks and GF Multiplier Largest Coefficient 

Apart from GF (Galois Field) Multipliers, the rest can be easily implemented on FPGAs. Even 
the GF Multiplier can be converted to combinatorial logic by the Equ7.  

 c(x) � a(x) * b(x) mod p(x)--------------------------------Equ7 [3] 
 

where a(x) and b(x) are two input polynomials and p(x) is the primitive polynomial for symbol 
length ‘m’ [2]. Two worked out examples of GF multipliers combinatorial logic for symbol 
lengths of m = 3 and m = 4 are shown in Equ8 and Equ9 respectively. 
For m = 3: (a2 b0 + a1 b1 + a0 b2 + a2 b2) �2 + (a1 b0 + a0 b0 + a2 b2 + a2 b1 + a1 b2) �1 + (a2 
b1 + a1 b2 + a0 b0) �0 ----------------------------------------------------------Equ8 
 
For m = 4:  (a3 b0 + a2 b1 + a1 b2 + a0 b3 + a3 b3) �3 + (a2 b0 + a1 b1 + a0 b2 + a3 b3 + a3 b2 
+ a2 b3) �2 + (a1 b0 + a0 b1 + a3 b2 + a2 b3 + a3 b1 + a2 b2 + a1 b3) �1   + (a0 b0 + a3 b1 + a2 
b2 + a1 b3) �0  -------------------------------------------------------------------Equ9 
 
The underlined terms (blue) are the largest coefficients in the equations above and have been 
drawn as the combinatorial logic gate arrays in Figure 4, which consist of largest number of gates 
in between the input and output of the GF Multiplier. Thus the data propagation within the GF 
multiplier is given by:           
                                         tgd * (m+1) ----------------------------------------Equ10 
 
where, tgd (single gate time delay) � 500 ps (for FPGAs). For example if m = 4 then the max 
operational frequency of the GF multiplier = 1/500 ps * 5 = (1/(2.5)ns) = 400 MHz.  
Therefore the larger the symbol length, the slower the GF multiplier, hence the system speed. 

2.3   Design for Resources 
Referring to the LFSR blocks (Figure 4), the total estimated number of gates (XORs, ANDs) is as 
follows: External XORs  + External ANDs + GF Multiplier gates                                                 
= (2t-1) * m  +  m +  2 * t * m * (2m+1) = 4 * m* t *(m+1) --------------Equ11 
 
 where m = symbol length and t = correctable errors.  
The total number of flip flops = (2 * t * m) and the number of multiplexers (muxes)  =  m. 



As an example; for m = 8 and t = 8, the total number of gates = 2304, the total number of flip 
flops = 128, total number of muxes = 8 
Therefore symbol length ‘m’ and correctable errors‘t’ have impact on the resources. 
Note: the formulae above (Equ11) to work out the resources required are derived by numerical 
and observation techniques by the author. 

2.4   An Optimised Design for Efficiency, Resources and Speed 

 
Figure 5: An Optimised Encoder Design 

A RS (15, 13) hardware encoder has been implemented. This has been optimised to maximum 
speed possible (i.e. 400 M Symbols / second). The data bytes are split into Nibbles (N1, N2, 
N3….etc.) and interleaved as shown in Figure 5. A block of 13 nibbles of interleaved data is 
passed to each RS (15, 13) encoder, which adds two nibbles of error code to each block (i.e. C11, 
C12………C41, C42), thus making it a 15 Nibble block. One Nibble from each encoder is passed 
in parallel to a 16 bit register at each clock. The register output has a 16 bit word, ready for 
Rocket I/O to receive at the next clock. The Rocket I/O will transfer serial data at the rate of 200 
MHz X 16 bits = 3.2 G Bits/second at 87% efficiency (i.e. for t =1). 

3   Conclusion 
Pre-knowledge of environmental conditions determine the ultimate optimization requirements 
(i.e. the EMC environment at the factory floor, SEU levels in the space or general S/N ratio). A 
typical SEU rate for a radiation hardened device is 10-8 errors/bit-day in Geo-Orbit and 
unhardened devices typically several orders of magnitude higher [5] [6]. The error rate could be 
higher when exposed to burst of SEUs. The design proposed in para2.5 is capable of correcting 4 
bits (in same nibble) every 60 bits (15 nibbles) of data. Since the bit rate transfer will be 2.7 
Gbits/s, thus the total time to correct a nibble or single bit in a nibble = 370ps X 60 = 22.2ns 
Thus (1/[22.2ns]) � 45 Mbits/second. So even SEU corrupts 45 Mbits/second, which is very 
unlikely, this error correcting system should still restore the error free data. 
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