
Optimal Two-Way Beamforming with Perfect CSI:
An SOCP Formulation

Haixia Chen, Kai-Kit Wong

Abstract

In this paper, we investigate a two-way relay channel where two single-antenna terminals exchange information with each
other via a multi-antenna relay terminal operating in half-duplex manner. Our aim is to optimize the two-way beamforming at the
relay terminal for minimizing the required relaying power subject to individual users’ signal-to-noise ratio (SNR) constraints by
exploiting perfect channel state information (CSI). We show that the optimal two-way beamforming solution can be obtained by
a second-order cone programming (SOCP) formulation.

I. INTRODUCTION

Two-way relay channel (TWRC) is a class of bidirectional channels that has received enormous attention recently, due to its
high spectral efficiency of exchanging information between two terminals with the aid of an intermediate relaying terminal. It
is also a successful example of using physical-layer network coding [1]–[3]. There have been recent attempts to address the
achievable rate region for the TWRC [4]–[12] where some also considered the design of multi-antenna relaying terminal.

In particular, Zhang et. al [12] provided a thorough design for two-way beamforming for the TWRC in which a single
multi-antenna relaying terminal forwards the array of received noisy signals from the senders to the destination terminals in
an amplify-and-forward (AF) fashion. However, the approach relies on a semi-definite programming (SDP) formulation with
rank relaxation and uses a linear program to find the best rank-one beamforming vector from the SDP. The optimal two-way
beamforming solution is therefore not guaranteed.

In this letter, we readdress the signal-to-noise ratio (SNR) balancing problem for the TWRC in [12]. Our main contribution
is a second-order cone-programming (SOCP) formulation, which we show can be used to obtain the exact optimal two-way
beamforming solution. Another advantage of the SOCP over the approach in [12] is that SOCP requires much less computational
complexity than SDP, let alone the additional complexity needed for the required linear programs.

II. TWRC MODEL AND PROBLEM FORMULATION

Consider the TWRC as shown in Fig. 1 in which we have two transceivers, labeled as S1 and S2, communicating with
each other via an M -antenna relaying terminal, labeled as R. It is assumed that there is no direct link between S1 and S2.
Denote the vector channels from S1 and S2 to R, respectively, as h and g, which represent the flat-fading complex channel
coefficients. Communications is achieved by two time slots.

During the first time slot, both S1 and S2 simultaneously transmit their messages to R. The signals received at R can be
represented in vector form as

x =
√
P1hs1 +

√
P2gs2 + v, (1)

where P1 and P2 are the respective transmit power of S1 and S2, s1 and s2 denote the symbols transmitted by S1 and S2,
respectively, and v ∈ CM is the complex noise vector at R with independent and identically distributed (i.i.d.) zero-mean

Fig. 1. The TWRC model.



entries and E[vv†] = σ2I where (·)† denotes the complex conjugate transposition. At the second time slot, R transforms x by
a complex weight matrix W ∈ CM×M to give Wx and forwards it back to the transceivers S1 and S2. As such, the signals
received at S1 and S2 are given by

y1 = hTWx + η1, (2)

y2 = gTWx + η2, (3)

in which (·)T denotes the transposition, η1 and η2 denote the respective noise at S1 and S2 and they are assumed to be
i.i.d. with zero mean and variance of σ2.

In TWRCs, s2 is intended for S1. As s1 is known for S1 and with perfect knowledge of channel state information (CSI),
the term carrying s1 can be removed from y1 to give

ỹ1 =
√
P2h

TWgs2 + hTWv + η1. (4)

Similarly for S2, we have
ỹ2 =

√
P1g

TWhs2 + gTWv + η2. (5)

As a result, the SNRs at the terminals S1 and S2 are given by

SNR at S1 ≡ γ1 =
P2|hTWg|2

σ2 (‖hTW‖2 + 1)
, (6)

SNR at S2 ≡ γ2 =
P1|gTWh|2

σ2 (‖gTW‖2 + 1)
, (7)

where ‖ · ‖ returns the Euclidean norm of a vector.
Our objective is to solve the SNR balancing problem which due to quasi-convexity can be tackled by a bisection search via

solving the following problem [13]

min
W

P1‖Wh‖2 + P2‖Wg‖2 + trace(WW†)σ2 (8a)

s.t.

{
γ1 ≥ Γ1,

γ2 ≥ Γ2,
(8b)

where Γ1 and Γ2 are the respective target SNRs at S1 and S2.

III. AN SOCP FORMULATION

In this section, we present an SOCP formulation to obtain the optimal solution to (8). To do so, we set A = [h g] ∈ CM×2

and as in [12] write the singular-value-decomposition (SVD) of A = UΣV†, where U = [U‖ U⊥] ∈ CM×M is a unitary
matrix with U‖ ∈ CM×2 and U⊥ ∈ CM×(M−2), V ∈ C2×2 is another unitary matrix and

Σ =


λ1 0
0 λ2
0 0
...

 ∈ CM×2, (9)

in which λ1 ≥ λ2 ≥ 0 are the singular values of A. As a result, W can be expressed as [12]

W = [(U‖)∗ (U⊥)∗]

[
B C
D E

]
[U‖ U⊥]†, (10)

where (·)∗ represent the complex conjugate operation, and B ∈ C2×2, C ∈ C2×(M−2), D ∈ C(M−2)×2 and E ∈ C(M−2)×(M−2)

are matrices of appropriate sizes.
Substituting this structure into the SNR constraints, it can be easily seen that γ1 and γ2 are not related to D and E and

furthermore for minimizing the relaying power, the matrices C, D and E should all be set to zeros. Hence,

W = (U‖)∗B(U‖)†. (11)

In what follows, (8) can be rewritten as

min
B

P1‖Bh1‖2 + P2‖Bg1‖2 + trace(BB†)σ2 (12a)

s.t.

{
P2|hT

1 Bg1|2 ≥ Γ1

[
σ2
(
‖hT

1 B‖2 + 1
)]
,

P1|gT
1 Bh1|2 ≥ Γ2

[
σ2
(
‖gT

1 B‖2 + 1
)]
,

(12b)



where h1 , (U‖)†h ∈ C2×1 and g1 , (U‖)†g ∈ C2×1.
Now, define w , vec(B) ∈ C4×1, which stacks all the elements of B to form a column vector, f1 , vec(h1g

T
1 ), f2 ,

vec(g1h
T
1 ), U1 , P1h1h

†
1 + P2g1g

†
1 + σ2I, U2 , [diag(UT

1 ,U
T
1 )]

1
2 , H ,

[
[h1]1 0 [h1]2 0

0 [h1]1 0 [h1]2

]
, and G ,[

[g1]1 0 [g1]2 0
0 [g1]1 0 [g1]2

]
, where the notation “[a]n” returns the nth entry of a (a similar notation is also used for

denoting the entry of a matrix). Thus, (8) becomes

P 7→


min
w
‖U2w‖2

s.t.

{
P2|fT1 w|2 ≥ Γ1

[
σ2
(
‖Hw‖2 + 1

)]
,

P1|fT2 w|2 ≥ Γ2

[
σ2
(
‖Gw‖2 + 1

)]
.

(13)

The rest of this section is devoted to show that (13) has an SOCP solution and such solution is optimal.
To do so, we consider the following SOCP problem:

PSOCP 7→


min
w
‖U2w‖2

s.t.


P2(fT1 w)2 ≥ Γ1

[
σ2
(
‖Hw‖2 + 1

)]
,

P1(fT2 w)2 ≥ Γ2

[
σ2
(
‖Gw‖2 + 1

)]
,

Im(fT1 w) = Im(fT2 w) = 0.

(14)

The additional constraints in (14) can be rewritten as

Re([W]1,2)− Re([W]2,1)

Im([W]1,2)− Im([W]2,1)
= −Re([h1]2[g1]1)− Re([h1]1[g1]2)

Im([h1]2[g1]1)− Im([h1]1[g1]2)
= a. (15)

To facilitate our analysis for the SOCP problem, we reexpress (14) into the form of real vectors and matrices by defining

w̃ = [Re(w)T Im(w)T ]T , (16)

F1 =

[
Re(f1) −Im(f1)
Im(f1) Re(f1)

]T [
Re(f1) −Im(f1)
Im(f1) Re(f1)

]
, (17)

F2 =

[
Re(f2) −Im(f2)
Im(f2) Re(f2)

]T [
Re(f2) −Im(f2)
Im(f2) Re(f2)

]
, (18)

H̃ =

[
Re(H) −Im(H)
Im(H) Re(H)

] [
Re(H) −Im(H)
Im(H) Re(H)

]T
, (19)

G̃ =

[
Re(G) −Im(G)
Im(G) Re(G)

] [
Re(G) −Im(G)
Im(G) Re(G)

]T
, (20)

Ũ2 =

[
Re(U2) −Im(U2)
Im(U2) Re(U2)

] [
Re(U2) −Im(U2)
Im(U2) Re(U2)

]T
. (21)

As a result, PSOCP becomes

PSOCP 7→



min
w

w̃T Ũ2w̃

s.t.


w̃T Ã1w̃ ≥ Γ1σ

2,

w̃T Ã2w̃ ≥ Γ2σ
2,

[w̃]2 − [w̃]3
[w̃]6 − [w̃]7

= a,

(22)

where Ã1 = P2F1 − Γ1σ
2H̃ and Ã2 = P1F2 − Γ2σ

2G̃.
Theorem 3.1: The problem P in (8) has an SOCP optimal solution which is the optimal solution to PSOCP in (14) or (22).

Proof: Given the optimal solution to P, say x, we create a vector, y, which differs only on the second, third, sixth and
seventh elements. We prove our result by showing that it is feasible to find a suitable y that satisfies the SOCP constraints in
(22) and achieves the same minimum objective value, i.e., Prove of exist of y: If the original optimal x and the SOCP optimal



y are getting the same value for the objective function. We have:

xT Ũ2x = yT Ũ2y (23)
xT Ã1x ≥ r1σ2,yT Ã1y ≥ r1σ2 (24)
xT Ã2x ≥ r1σ2,yT Ã2y ≥ r1σ2 (25)

y2 − y3

y6 − y7
= −R(h2g1)− R(h1g2)

I (h2g1)− I (h1g2)
= a (26)

Set:
y = x + y

′
,x = y + x

′
(27)

In which x
′

= −y
′

Take (27) into (23), setŨ2x = u1,Ã1x = a1,Ã2x = a2;q = [0,1,−1,0,0,−a,a,0]T,b = (x3 − x2) +
a(x6 − x7),we need to prove there exits y

′
that:

||Ũ2

1
2 y

′
+ Ũ2

− 1
2 u1||2 = uT

1 Ũ−12 u1

(28)

||Ã1

1
2 y

′
+ Ã1

− 1
2 a1||2 ≥ aT

1 Ã−11 a1 (29)

||Ã2

1
2 y

′
+ Ã2

− 1
2 a2||2 ≥ aT

2 Ã−12 a2 (30)

qy
′

= b (31)

Due to space limitation, detailed provident is ignored here but will exit in future paper.

IV. NUMERICAL RESULTS

Since the unsymmetrical matrix in our case, we use the number of variables to determine the general complexity. The worst
case about complexity of SDP and SOCP can be regard as O(N3.5) with N is the number of variables. (12) shows change
of MIMO antenna number has no influence on the simulation complexity. [12] always have 8 × 8 symmetric matrix which
including 36 unknown variables .In our optimization, we always have a 8 × 1 vector as veriable. So the complexity for our
solution is O(83.5), while which is O(363.5) for [12] . Besides, after SDP relaxation, [12] still need to take 1) Cholesky
decomposite X∗ =

∑r
i−1 xix

T
i for r is the rank of the SDP optimal beamforming matrix which can be computed in O(r3) and

2) a rank one solution approaching algorithm in which is linear programming which take computing complexity of O(Mk)
for some constant k with M is the number of variables.

V. CONCLUSION

This paper has introduced a SOCP methods for the relay beamforming matrix based SNR balancing optimization problem
in TWRC with one MIMO relay exist in the network . We proved the optimization problem has a set of optimal beamforming
solutions and at least one of them is our SOCP solution, which is also proved to have lower complexity compare to existing
solutions.
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