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Abstract

The use of self-localizing, nodes in wireless networks is becoming necessary for modern military and civilian applications.
A scenario of particular interest is short to medium range localization in GPS-denied environments and various techniques have
been proposed to tackle the problem. This paper proposes an NLoS mitigation method to be used in conjunction with Bayesian
self-localization techniques in Ultra-Wide Band (UWB) wireless networks. The method extracts useful information from NLoS
measurements, which is especially useful, in situations with a lot of multipath noise and little LoS direct communication between
nodes.

I. INTRODUCTION

Location awareness has become an important feature in both civilian and military modern wireless networks. As a result the
ability for mobile ad-hoc devices to self-localize in arbitrary and potentially hostile environments is currently a hot research
topic. The current de facto technology for localization is the Global Positioning System (GPS), unfortunately requires direct
LoS transmission between devices and the satellites it uses, which limits its ability in closed environments, like heavily canopied
forests, caves, urban canyons, underground and the inside of buildings. An alternative suitable for the GPS-denied environments
is the use of Ultra-Wide Band (UWB) wireless networks, e.g. [1]. By taking advantage of the fine delay resolution properties
of UWB signals, reliable and precise distance measurements can be derived, even in dense multipath environments,[2]. With
the use of UWB signals the positioning problem can thus be defined as follows. A wireless networks consists of a number of
nodes. Some of the nodes, called anchors, have precise estimates of their position. The rest of the nodes, called agents, are then
trying to self-localize using information provided by the anchors. Cooperative Localization makes use of two distinct types of
information. The first is metrics derived the physical properties of the signals transmitted between nodes and anchors. The fine
delay resolution of UWB makes Time of Arrival (TOA) the most suitable choice [3]. The second type of information is the
message of the transmission itself. Inside it, nodes share information of their position estimate. This way the information from
the anchors diffuses from node to node all over the network, allowing more agents to self-localize. Various algorithms have
been proposed which tackle the problem. Algorithms can be categorized as centralized, e.g. [4], and distributed, e.g. [5]. In the
latter case, a number of algorithms that use Bayesian techniques, e.g. [6],[7] agents have been investigated. The UWB indoor
channel has also been widely investigated, e.g. [8],[9]. Despite the many existing algorithms, the issues of NLOS propagation
have not been yet well addressed, even though in the aforementioned scenarios large NLoS propagation can degrade localization
accuracy significantly. An NLoS mitigation algorithm has been proposed in [6] but is based on a iterative deterministic method.
In this paper, we address the issue of NLoS mitigation, when using a bayesian framework in cooperative localization. In section
2 we formulate the problem and provide the foundations of the bayesian approach to the localization problem. In section 3
we describe the proposed NLoS mitigation method. Simulation results are provided in section 4. Finally in section 5, some
conclusions are derived.

II. PROBLEM FORMULATION

Consider a 2D square network with an area size of (X × Y )m2, consisting of M ≥ 2 anchors with known locations and
N >> M agents, whose aim is to self-localize. The true location of the nodes are denoted by Θ = [θ1 . . . θM+N ], where
θi = [xi, yi]

T is the coordinate of node i ∈ {N +M}, and (·)T is the matrix transpose operation. Let Rmax be the maximum
range of communication between two nodes. Then two nodes i and j will be neighbours if ‖ θi− θj ‖≤ Rmax and all nodes j
within range belong in the neighbourhood Si of node i. Two neighbouring nodes will communicate and obtain a noisy range
estimate rij of their true distance. We assume that range estimates are symmetric, i.e. rij = rji∀i, j. Agents are trying to make
an estimate θ̂i = [x̂i, ŷi]∀i ∈ N , of their true location θi,∀i ∈ N .

This work was supported by the EPSRC [Grant Number EP/H011536/1].



1

4
2

3

5

6

Fig. 1. An example of a network where circles are agents, squares are anchors
and branches (or edges) correspond to communication between them.
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Fig. 2. A factor graph example of the network in Figure 1.

We represent this as a graphical model. The wireless nodes are represented by the set V of vertices of the graphical model.
If they are within communication range then there is an edge eji ∈ E , connecting nodes i and j. The set of all nodes j with
edges eji to node i is the neighborhood Si. A simple network example with nodes and anchors can be seen in Figure 1.

The belief probability density function (pdf) node i possesses regarding its state is denoted as pi(θi). At each timeslot nodes
broadcast their belief to their neighbors and vice versa. The prior belief for agents can be a non informative uniform pdf over
the grid, while for anchors their pdfs are reduced to dirac delta functions pinpointing to their exact coordinates. From the
signal received each node can measure a corresponding distance estimate. For example node i receiving a message from node
j will calculate a noisy distance estimate:

rji = ‖xi − xj‖+ vji, (1)

where vji is a random noise factor and follows a Gaussian N (µij , s
2
ij) with variance s2ij = Ke‖xi−xj‖βij and mean µij = 0

for LoS and µij = bij in the case of NLoS as proposed in [10]. It has been shown in [11] that the NLoS bias bij is much larger
than s2ij and is uniformly distributed between [bmin, bmax]. Ke is a proportionality constant capturing the combined physical
layer and receiver effect, and βij denotes the path loss exponent. The derivation of Ke can be found in [2]. We define the
mean network- average (RMS) localization error, in order to compare different localization scenarios and methods, as follows:

Ω =

√√√√(1/n)

N∑
i=1

E{(x̂i − xi)2 + (ŷi − yi)2} (2)

Let p(rji|θi, θj) be the likelihood of measuring rji given the believed states pi(θi) and pj(θj) of nodes i and j, respectively.
The joint pdf describing this probabilistic model is given by

p(Θ,R) = p(R|Θ)p(Θ) =
∏
i,j∈E

p(rji|θi, θj)
∏
θi∈V

pi(θi). (3)

The joint pdf (3) can be represented using the factor graph shown in Figure 2, with the local factors being:

fi(θi) = pi(θi), (4)
gj,i(θj , θi) = p(rj,i|θi, θj). (5)

For each node there is a variable node, representing the node’s position. We connect it to a factor node fi corresponding
to its prior state belief, and also to gj,i factor nodes for each neighbor it has. Our objective is for each node i to calculate
the maximum posterior (MAP) of p(θi|ri). This can be done by using a message passing algorithm in the factor graph of
(3). Due to the noisy measurements of rji the message passing algorithm will have to be iterated a number of times until all
nodes have converged to a solution. At each iteration we define the estimated state belief of node i as pti(θi), where t is the
iteration/timeslot index. Using Baysian theory, we have

pt(θi|ri) ∝ pt−1i (θi)
∏
j∈Si

pt(rji|θi) ∝ pt−1i (θi)
∏
j∈Si

∫
pt(rji|θi, θj)pt−1j (θj)dθj . (6)

All the above pdfs can be locally estimated at node i except the belief pdfs of its neighbors pj(θj). At each timeslot node
i receives pj(θj),∀j ∈ Si and measures a distance metric rji for each j. Based on these node i calculates the message:

mj→i = pj(θi) =

∫
pt(rij |θi, θj)pt−1j (θj)dθj = gj,i × fj × θj︸ ︷︷ ︸

factor graph nodes

. (7)



The message mj→i can be thought of as the belief pdf of the state of node i based on the information provided by node j.
Then, it combines its own belief with the belief calculated from all its neighbors in order to update its state estimate. As such,
using (7), (6) can be rewritten as

pt(θi|ri) ∝ f t−1i

∏
j∈Si

mt
j→i. (8)

This continues until all nodes have self localized. This message passing analysis leads naturally to a distributed cooperative
system because each node only requires to do local calculations concerning its corresponding neighborhood.

III. PROPOSED NLOS MITIGATION METHOD

A. Non Parametric Belief Propagation
We cannot tackle the localization problem by solving (7) and (8) analytically because of the large computational cost

involved. We assume that a non parametric belief propagation (NPBP) approximation technique is used. For more information
the reader is referred to [12], [13], [14]. In summary, each message is represented by a sample based density estimate as a
mixture of Gaussians. This means that by using L weighted samples we can approximate pi(θi) as

pi(θi) '
L∑
l=1

wiN (θi;µ
l
i,Σi), (9)

where N (θ;µ,Σ) denotes a normalized Gaussian density with mean µ and covariance Σ evaluated at θ. Similarly, we can
approximate the message (7):

mj→i(θi) = pj(θi) '
L∑
l=1

wjiN (θi;µ
l
ji,Σji). (10)

The NPBP method can be summed up in the following steps:
1) Draw samples of the marginal estimate pdfs;
2) Use samples to approximate the outgoing message;
3) use MAP to estimate the agent location.

The bayesian technique even thought quite powerful, has not been investigated in the case of high NLoS communication. In
this scenario, performance degradation may be high, so in the next section we develop a NLoS mitigation technique extending
the bayesian approach, to tackle this. Even thought we consider the use of NPBP, any other message passing technique could
be used, such as particle filtering methods [15], [16], or Monte-Carlo methods [17].

B. NLoS Mitigation
We assume that there is some a priori knowledge of the NLoS condition of the environment in the scenario. That means that

we have some rought information of the positive bias and the channel characteristics. Various measurement campaigns have
been made for UWB channel data in typical indoors environments. e.g. [8],[18],[19]. By using hypothesis testing based on
the the multipath channel statistics such as the kurtosis, the mean excess delay spread and the root mean square delay spread,
as proposed in [6], it is possible to distinguish up to 90% LoS/NLoS realizations in most channel models. Using this NLoS
identification scheme, we determine whether a range estimate is NLoS or LoS. If it is LoS it is used in the calculation of (8).
If it is NLoS we further examine whether the current solution is within the current ranging circle or not. If the current solution
lies outside, the message is used normally. If not then it will not contribute more to the convergence of a solution and thus it
is dropped. We can analyze the neighborhood of node i Si as follows:

Si = SLi ∪ SNi (11)

where SLi and SNi are the sets of the LoS and NLoS neighbors of node i respectively. The set of nodes who will contribute
to (8),i.e. the useful collection of neighbors, will be the following:

SCi = SLi ∪
{
j | j ∈ SNi , ‖ θ̂i − θ̂j ‖≥ rij

}
(12)

As the messages received from the neighbors are actually approximations of the pdf‘s and especially in the early iterations
of the algorithm there will be a large number of equiprobable points the use of θ̂i and θ̂j eliminates a huge number of possible
states of nodes i and j respectively. In order to overcome this we propose the following. Sample K samples from pi(θi) and
pj(θj) in order to get two sets of states θKi and θKj , for each node. Then form two convex set for the respective samples and
choose the two samples which are further away as position estimates for nodes i and j. This can be easily achieved by using
the maxdist algorithm, developed in [20]. The maxdist algorithm uses a rotating calipers technique to estimate the maximum
distance between two convex hulls. Simply the algorithm takes advantage of the knowledge that the NLoS bias is much larger
than the noise variance. With that in mind the distance measurement is compared with the maximum belief distance of the
two nodes. If the belief distance is smaller than the measured distance, then the algorithm considers it is better not to use it as
there is unknown positive bias and the constraint in (12) is already satisfied. This way only NLoS measurements which will
contribute constructively are used.



IV. SIMULATION RESULTS

In this section we present simulation results, i.e. the RMS error defined in (2), of the proposed NLoS mitigation techniques.
The results are then compared to the ones found in [6]. The results are averaged after 20 monte carlo simulations in the following
scenario. We consider a grid 100×100m2 with Rmax = 15m. There are 200 agents and 20 anchors. The proportionality factor
Ke = 0.000625. The path loss exponint is βLoS = 2 for the LoS estimate and βNLoS = 3 for the NLoS estimate. The NLoS
bias is chosen uniformly from [26%Rmax, 53%Rmax]. for the sake of comparison a pure LoS scenario is also considered
that clearly shows the superiority of the bayesian approach compared to the non-bayesian IPPM method proposed in [6]. The
results are summarized in table I. NPBP uses no NLoS mitigation while NLoS NPBP does.

% of NLoS nodes NPBP Ω NLoS NPBP Ω IPPM method Ω from [6]
0% 0.1m 0.1m 1.8m
20% 1.9m 1.3m 2.2m
40% 2.8m 2.0m 3.5m
60% 4.3m 3.12m 4.8m
80% 4.5m 3.6m 4.9m

TABLE I
COMPARISON OF Ω FOR VARIOUS NLOS SCENARIOS

The first thing to notice is that in the 0% NLoS scenario the bayesian approach vastly outperforms the deterministic IPPM
method. Secondly even though there is deterioration as the NLoS % increases the mitigation algorithm improves consistently
the localization accuracy, even in the case of very high NLoS.

V. CONCLUSIONS

We proposed a NLoS mitigation method based on the assumption of NLoS identification by hypothesis testing in UWB
signals. The method extends the bayesian framework to the localization problem for the NLoS case and helps even in the case
of very large NLoS node percentage.
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