

Leveraging In-network Caching for Efficient Content Delivery in

Content-centric Network

Diliang He, Wei K. Chai and George Pavlou

Department of Electronic & Electrical Engineering, University College London, WC1E 7JE, Torrington Place, London, UK

Abstract: The recent proposal on content-centric network advocates the use of in-network caching

to enhance content delivery in the Internet. In this paper, we proposed an in-network caching

algorithm based on the concept of ego network betweenness centrality and compared its

performance with Van Jacobson’s networking named content caching technique.

1. Introduction.

Content-centric network (CCN) is a new networking concept focusing on content dispersion rather than end-to-

end resource sharing. In CCN, content names are decoupled from their host addresses, effectively separating the

role of identifier and locator as opposed to the current IP addresses which are used for both purposes. Naming

content directly enables the exploitation of in-network caching since the content can now be accessed in an

application-independent manner.

The most influential proposal for content-centric network is [1] where it was proposed that content chunk be

cached in each and every router it traverses along the delivery path with each router applying the least recently

used (LRU) cache eviction policy. Such caching strategy ensures quick diffusion of content across the network.

In this paper, we argue that such caching strategy is not optimal and study an alternative caching strategy for

enhancing the overall content delivery performance. We propose a caching algorithm inspired by the concept of

centrality in the social network analysis area [2] where only selected nodes in the content delivery path cache the

content chunk with the rationale that some nodes have higher probability of getting a cache hit compared to

others and by strategically caching the content at “better” nodes, we can decrease the cache eviction rate and

increase the cache hit. We show by simulation that our proposed algorithm indeed perform better than [1] under

different scenarios.

2. A Cache Point Selection Strategy

The current host-centric Internet requires all content requests to be resolved to the location of host servers before

content can be delivered while in CCN (e.g., [[1], [3]]), content are labelled and identified by their own content

names without needing to know the host machine. Thus, in CCN, a content request can be satisfied by any

matching content regardless of its location (i.e., a cached content can serve a request). In [1], this feature of CCN

is exploited by caching every content chunk that passes a router with the assumption that routers are equipped

with (large) cache stores. With this approach, content would disperse into cache store in a fast way and the cache

stores would update frequently following the LRU policy. For the rest of the paper, we refer this as CCN-LRU as

the benchmark for performance comparison.

We propose a new caching algorithm based on the concept of betweenness centrality [2] which measures the

number of times a specific node occurs on the shortest paths between all pairs of nodes in a network topology.

The idea is that if a node lies in the path of many shortest paths, then it is more likely to get a cache hit.

For a topology G=(V, E) with V vertices and E edges, the betweenness centrality, of node v is computed

as follows using Eq. (1).

 ∑

 . (1)

where is the number of shortest paths from s to t and is the number of shortest paths from s to t that

pass through a node v.

Each node in a topology thus has its own betweenness centrality value. When a content client initiates a content

delivery, the initiation message (e.g., GET) will record the node with the highest centrality value. When the

content is delivered, it will be cached at the recorded node along the delivery path. If more than one node has the

same highest centrality value, then the node closest to the content client is chosen. The same LRU cache eviction

policy is assumed at each node. Hereafter, this caching strategy is referred to as Betweenness-LRU.

We show a preliminary comparison of the two caching strategies in Figure 1 in a 13-node string topology where

all content requests originate from one end while all content are hosted at the other. We simulate a total of

50,000 content requests for 100 different content with content requests generated based on Zipf-distribution. The

cache store size of each node is 10% of the total number of content. We measure the performance by the running

average of the ratio on hops saved from each request with in-network caching i.e.,

. (2)

Number of hops without cache equals the hops needed for content to be sent from initial server to the client if a

matching cache is available. If no matching cache is found along the delivery path, then the ratio equals one (i.e.,

no gain). Number of hops with cache equals the hops needed for content to be sent from the nearest cache store

to the client. Higher gain is signified by smaller ratio. This preliminary result shows that while CCN-LRU save

approximately 40% (i.e., on average if the distance from content client to server is 10 hops, the request can find a

cache hit at 6
th

 hop along the delivery path) of the number of hops for content delivery, our approach can reach a

gain of 60%. From our results, we also note that Betweenness-LRU not only saved hops, but also saved server hit

from content server. On average only 14164 requests reached the server in Betweenness-LRU, while 28733

requests reached the content server in CCN-LRU.

Figure 1: Comparison of CCN-LRU and Betweenness-LRU in string topology

In the real world, it is usually not practical to assume each node capable of computing its betweenness centrality

since it requires the knowledge of the shortest paths between all pairs of nodes. Such computation is simply not

scalable. We then further develop an approximation of our caching strategy based on the ego network

betweenness concept [4].

Ego network consists of a central node together with the nodes (one hop neighbors) they are connected to and all

the links among those nodes. The advantage of ego network is the ease for central node to collect data from the

neighbors compared to collecting the data of whole network and it is simple to calculate the betweenness

centrality of the central node within its ego network. This kind of centrality is called ego network betweenness

centrality. Although ego network betweenness only reflects the importance of a node within its ego network, its

scalability and ease of implementation makes it a good alternative for betweenness in large networks. The

caching algorithm using ego network betweenness centrality and LRU cache eviction policy is referred to

EgoBetweenness-LRU hereafter.

3. Evaluation and Simulation Study

3.1 Hop gain ratio in 5-tier binary tree topology

We evaluate the performance of the three caching algorithms: CCN-LRU, Betweenness-LRU, EgoBetweenness-

LRU based on a 5-tier binary tree topology shown in Figure 2 with two peered tier-1 ASes (i.e., AS 1 and AS 2).

The spread factor of the binary tree is two and totally there are 62 autonomous systems (ASes) in the topology.

We simulate 240,000 requests initiated from random clients for 300 different content with content requests based

on Zipf-distribution. Unless otherwise specified, the cache store size is 10% of the total content population.

Figure 2:5-tier binary tree topology

Figure 3: Performance of the three caching strategies

in 5-tier binary tree topology

Figure 4: Performance of the three caching strategies

at different cache sizes

From Figure 3 we could see the hop gain ratio of CCN-LRU drops faster than other two caching strategies and

this phenomenon could be explained by CCN-LRU’s all cache property. Although with this property clients in

CCN-LRU could benefit from cached content at early stage, the final result shows CCN-LRU saved only 50% of

the number of hops while our Betweenness-LRU saved 58% and EgoBetweenness-LRU saved 57%. This is

because CCN-LRU caches content in every content store along the delivery path and this causes the content

stores to update too frequently. EgoBetweenness-LRU has similar performance with Betweenness-LRU, but due

to its approximation the performance is slightly worse.

3.2 The effect of cache store size

We evaluate the three caching strategies with different cache sizes based on the 5-tier binary tree topology. The

cache size ranges from 0% to 100% of the total content population. We generate 240,000 requests while other

configurations stay the same as 3.1

Figure 4 shows CCN-LRU performs no better than Betweenness-LRU and EgoBetweenness-LRU at all cache

sizes. The performance gap between CCN-LRU and our algorithms is bigger when the cache store size is small

and the performance of all algorithms converges when the cache size is set to be large enough to cache the whole

population of the content. This is only academic since at 100%, every content is eventually cached everywhere.

3.3 The performance with varying content popularity distribution

In this section, we investigate the effect of content popularity distribution on the caching gain.

Throughout our simulation, all our content requests follow Zipf-distribution. The equation of Zipf-distribution is

as follow:

∑

 . (3)

where k represents the most popular content and the possibility for a request for the content is

 . The

sum of the possibility of all content equals one. We vary the popularity factor, and from Figure 5, find similar

observations as before, i.e., both our algorithms achieve similar gains and better than CCN-LRU. .

Figure 5: Performance of the three caching strategies

with different popularity factor

Figure 6: Performance of the three strategies under

flash crowd scenario

3.4 Performance under flash crowd scenario.

Popular content stand to gain the most in CCN [5]. In this section, we artificially induce a flash crowd scenario

by generating all requests for one specific content only (the 5
th

 most popular content as an arbitrary example).

We repeat the simulation in 3.2 until the hop gain ratio become steady before initiating the flash crowd. We only

track the performance of the 5
th

 most popular content in this part.

In Figure 6 Betweeneess-LRU and EgoBetweenness-LRU saves 82% of the hops while CCN-LRU only saves 73%

before flash crowd scenario. Comparing the overall gain in 3.1, popular content benefit more from caching. Also

we notice the performance gap between our approaches and CCN-LRU is 9% for the 5
th

 most popular content

while the overall performance gap is 8% in 3.1. Thus our approaches provide even more gain for popular content

than CCN-LRU.

3.5 Performance of CCN-LRU and EgoBetweenness-LRU in a real network topology

Then we use the topology of real network to see how EgoBetweenness-LRU and CCN-LRU perform

(Betweenness-LRU is not included here for its non-scalability reason). We extracted a 3-tier branch topology

from the CAIDA dataset [6] with AT&T as the root of the branch and a total of 6804 ASes in the topology.

(a) (b)

Figure 7: Performance of two strategies in real network topology

From Figure 7(a), we see initially CCN-LRU’s hop gain ratio drops more rapidly but the cache gain of

EgoBetweenness-LRU exceeds CCN-LRU after 300000 requests and continues to drop. Unfortunately due to the

size of the network, the difference of the two strategies shown in Figure 7(b) is quite small (only 2%). However,

we note that the hop gain ratio of EgoBetweenness-LRU is still dropping while the hop gain ratio of CCN-LRU is

already steady.

4. Conclusions

We proposed a caching strategy based on the betweenness centrality concept (i.e., Betweenness-LRU) and an

approximation of it (EgoBetweenness-LRU) for scalable and distributed realization and compare their

performance against Van Jacobson’s proposal [1] (CCN-LRU) on different topologies (string, binary tree and

real domain-level topology), cache store sizes, and popularity factors. Although CCN-LRU has the highest

content dispersion speed, its caching gain is worse than our two approaches under all scenarios. Our simulation

results of Betweenness-LRU suggest that it has the best hop gain ratio among them but its non-scalability and

complexity restricts the implementation. Our results show that EgoBetweenness-LRU approximates closely the

Betweenness-LRU and thus present itself as the more practical candidate for real networks deployment.

References

[1] V. Jacobson, D. K. Smetters, James D. Thornton, Michael Plass, Nick Briggs, Rebecca L. Braynard,

“Networking Named Content,” ACM CoNEXT 09, 2009, pp.1-12.

[2] L. R. Izquierdo, Robert A. Hanneman, “Introduction to the Formal Analysis of Social Networks Using

Mathematica”, University of California, Riverside.

[3] W. K. Chai, N. Wang, I. Psaras, G. Pavlou, C. Wang, G. G. de Blas, F. J. Salguero, L. Liang, S. Spirou, A.

Beben and E. Hadjioannou, “CURLING: Content-Ubiquitous Resolution and Delivery Infrastructure for

Next Generation Services”, IEEE Communications Magazine, Special Issue on Future Media Internet,

March, 2011

[4] M.Everett, S. P. Borgatti, “Ego network betweenness”, Social Networks, 27(2005) pp. 31-38.

[5] I. Psaras, R. G. Clegg, R. Landa, W. K. Chai, G. Pavlou, “Modelling and Evaluation of CCN-Caching

Trees”, Proc. IFIP Networking 2011, Valencia, Spain, pp. 9-13, May 2011

[6] CAIDA Dataset for AS relationships; http://www.caida.org/research/topology/#Datasets.

