
Throughput/Precision Computation Of Convolution In Programmable Processors

Mohammad Ashraful Anam and Yiannis Andreopoulos

Electrical and Electronic Engineering Department, University College London

Abstract: Convolution and cross-correlation are the basis of filtering and pattern or

template matching in digital signal processing (DSP). We propose a throughput scaling

technique for any one-dimensional convolution kernel in programmable processors by

adjusting the imprecision (distortion) of computation. Our approach is based on scalar

quantization, followed by a new form of tight packing in floating-point that allows for

concurrent calculation of multiple results. Indicative experimental results with a digital

music matching system demonstrate that the proposed approach offers up to 112%

increase in processing throughput against optimized convolution with no effect in the

accuracy of the application results.

1. Introduction

Processing and matching of digital input data in many diverse multimedia applications (e.g. template

or signal matching and speaker and music identification [1][2]) is based on digital convolution. Due to

its computational complexity, acceleration techniques for convolution and cross-correlation have been

studied for a long time [2]. Beyond the tradeoffs between frequency-domain and time-domain

convolution, research has investigated acceleration of convolution for specific application cases [3]-

[6]. All existing work aims for acceleration of processing by exploiting specific properties of the

application and do not explore generic throughput/distortion tradeoffs. Generic throughput/distortion

adaptation is currently only possible through custom hardware designs [7], but all existing approaches

provide for static definition of the input and kernel precision and no dynamic reconfiguration can be

performed adaptively.

This paper proposes such dynamic reconfiguration as an optional feature for 1D overlap-save

convolution realizations in programmable processors. Given the software nature of our approach, the

derived designs can be ported to any state-of-the-art signal processing library [8], any programmable

high-end DSP [9], and even to graphics processing unit (GPU) realizations [10]. Importantly, unlike

related research based on integer-to-integer processing and 2D convolution with ����� complexity

[4]-[6], this is the first work for non-integer approximate convolution that demonstrates significant

acceleration in practice, even when the convolution kernel has ����� or �����	�� complexity.

We first review the basics of overlap-save convolution and the proposed approximate computation

layer in Section 2. The proposed quantization (via companding and rounding), packing and unpacking

method is detailed in Section 3. Experimental results validating the obtained throughput scaling within

an error-tolerant multimedia application are given in Section 4 and our conclusions are in Section 5.

2. Overview of Approximate Convolution Realization

Consider the convolution of two 1D signals:

��
 � ��� � �� ��� ���
��� � � ����� � ������ !"#$% (1)

The signal with the smallest time-domain support is called kernel and the other signal is called input

[2]. Practical implementations of convolution of an &-sample input ��� with an �-sample kernel � will

subdivide the input into ' partially-overlapping blocks of ()*�+, samples each (vector �) prior to the

actual convolution. Each individual block � is convolved with the kernel and the resulting blocks (
)
are assembled together to give the result of the convolution,
��
. As shown in Figure 1, the data-

partitioning layer is conventionally positioned at an intermediate layer between the application and the

core of the convolution. Our proposal introduces a middle-layer (Tier 1.5 in Figure 1) that performs

companding and packing/unpacking within each signal block in order to control the processing

throughput and the induced distortion of the performed calculation. The advantage of Tier 1.5 is that

the system can select an appropriate acceleration mechanism adaptively, and the convolution core

remains untouched, thus allowing for the usage of any existing high-performance kernel in software or

hardware [7]-[10]. We illustrate this aspect by coupling our approach with the state-of-the-art Intel IPP

library [8].

Figure 1.Execution environment of convolution and position of the proposed throughput scaling layer.

3. Proposed Approach

For presentation simplicity, this section is focusing on odd-length kernels (� is odd). Each

convolution block is set to produce (results, with (- .� and (even. This leads to each

overlapping input block � consisting of ()*�+, � �(/ � / 0� samples. Blockwise processing of the

input signal ���allows for the adaptation of the quantization and packing during the execution.

Scalar Quantization and Packing

Initially, both the input signal and the kernel are companded and rounded to integers by12 � 345167 89 �34,86 (2) where :; � <=
>�>? and :@ � A=

>�>? are the chosen companding factors that map the dynamic

range of the input signal and kernel to sets B�CD7 E 7 CDF and B�GD7 E 7 GDF. While each of the ' signal

blocks � is companded by (2), the companding of the input kernel is performed only once at the

beginning of the convolution process. The maximum possible absolute value of
2 � �2 � �H is IJKL �3:;:@ �>�>M>�>M6 � N�CDGDO. In this work, depending on the user processing throughput and

distortion requirements, the selected packing per input block can be: (i) a novel symmetric packing

method proposed in this paper; (ii) the asymmetric packing method of [5][6]; (iii) full-precision

overlap-save convolution
 � � � �.

In the proposed symmetric packing, the rounded coefficients of each ()*�+,-sample input block and

the �-sample kernel are packed to create two blocks of
PQRSTUV samples and WXVY samples by:

�Z � �2% / [�2"���\� �Z��\� � �]�.�\� / [�]�.�\ / 0� (3)

�Z � �H % / [!"�H "���̂� �̂��̂� � �9�.�̂� / [!"�9�.�̂ / 0� (4)

where: _ ` �\ a bQRSTU
� 7 _ ` �̂ a c �d and [(_ a [a 0) is the utilized packing coefficient, which is

defined by tight packing theory [5][6] as [� �.IJKL�!".
Block Convolution

Once companding and packing has been completed, standard convolution takes place for the eth

packed signal block �Z, _ ` e a ', by using the packed data to produce the packed output (Tier 2 of

Figure 1). Under the symmetric packing, we have (��\�(5
Kf
 ` �\ a bQRSTUg !"
�):

Z � �Z � �Z � ��2% / [�2"� � h�H % / [!"�H "i � h�2% � �H % / �2" � �H "i / [j h�2" � �H %i / [!" j h�2% � �H "i (5)

where (5
Kf
 � k_lllll !"
�
7 m�nle � _7 m�nle o _p. Thus,
Z stemming from convolution with symmetric packing

contains three entangled outputs, the base output – multiplied by [% � 0, and two side outputs –

multiplied by [(side-[) and [!" (side-[!"). We can derive two convolution results via these three

outputs as detailed in the following subsection.

Unpacking and Inverse Companding

The results of the eth block �Z, _ ` e a ', are unpacked, inverse companded, and appropriately

combined to form the final results. Under convolution with symmetric packing the three terms are

unpacked by the following set of equations, which are repeated for each �\ , (5
Kf
 ` �\ a PQRSTUV , with

(5
Kf
 defined by (8). Initially, each sample is brought to the positive domain of floating point bylq��\� � �Z��\� / I5Krs7 where I5Krs t IJKL� [u"u$!" / q5v5[!" and q5v5 a system-dependent

parameter, which is derived in the experimental section. Then the terms entangled by [and by [!" are

extracted by:

Tier 1 Data Partitioning (e.g. overlap-save)

Tier 1.5 Quantization and Packing

Tier 2 Convolution (e.g. Intel IPP or other highly-optimized library)

Platform (multicore or manycore DSP processor)

Application (e.g. template matching/cross correlation)

T
h

ro
u

g
h

p
u

t

sc
a

li
n

g

D
is

to
rt

io
n

re
q

u
ir

e
m

e
n

ts
Tier 3

�5�ws!x � y IJKL[!"�q��\ � 0� � zq��\ � 0�{�7 m�nl�\ � (5
Kf
7 m�nl�\ o (5
Kf
 p (6)

�5�ws!x|} � z[q��\�{ (7)

These results are used in order to produce one of the outputs by:

�]�.�\� � z�5�ws!x|} / �5�ws!x � .IJKL{ (8)

The term �.IJKL in (8) brings the output �]�.�\� to its original range, since both �5�ws!x and �5�ws!x|}

were brought to the positive domain by adding I5Krs. Finally, the other output of the convolution is

derived by:

�]�.�\ / 0� � ~zq��\�{ � �[!"�5�ws!x|}� � IJKL� (9)

Inverse companding is applied to recover the final resultsl
 � �:;:@�!"
2.
The output from the first block (e � _) consists of ((/� � 0) samples and is placed directly in the

output (���
��� � �����. For e o _, (output samples are produced, which are placed in the output

by (��� _ ` � a (): ���
�� � 0 /(je /�� � ��� / .(5
Kf
 / .�.
Discussion

The following remarks identify the merits of the proposed companding and packing approach in

comparison to conventional processing.

Remark 1 (Streaming SIMD and Integer Processing): All pre and post-processing operations of this

paper have been implemented using streaming SIMD extensions (SSE4.1) for accelerated processing

and all state-of-the-art convolution cores make extensive usage of such accelerations [8]. □

Remark 2 (Throughput and Memory Aspects): Under an FFT-based implementation of convolution

[10] with input block size comprising �)*�+, samples, the expected floating-point operations (FLOP)

are �)*�+, � 0�()*�+, ��	�()*�+, / .()*�+,. Given that the proposed packing approach reduces the

block size by a factor of 2, the proposed approach is expected to reduce �)*�+, by a factor of two

(asymptotically), i.e. double the processing throughput (in FLOP/s). Under time-domain

implementation of convolution, the FLOP count is reduced (asymptotically) by a factor of four. □

4. Experimental Results

We implemented the proposed approach in an Intel i5 540M 2.5GHz processor (Windows 7 64bit SP1,

single threaded, Intel C/C++ compiler version 12, switches: /Ox /Ot /QxHost).

Throughput Test using the Intel Integrated Performance Primitives (IPP) 7.0

Figure 2. Throughput of convolution under different packing

methods (higher is better) with the underlying convolution

realization provided by Intel IPP routine ippsConv_64f() [8] for all

approaches.

Table 1. Min. and max.

percentile throughput increase

and average SNR measured for

each method in Figure 2.

Method
Min

(%)

Max

(%)

SNR

(dB)

Asymmetric �K5vJ � .
18 32 51.3

Asymmetric �K5vJ � �
-14 55 27.5

Symmetric 52 158 27.5

To examine the acceleration offered by the proposed approach, we created test input signals of � � �0�. j ."% samples to be convolved with filter kernels of � � �__ sample and varied block

size between (� B.7�7�70�7�.7��F j ."% samples. The input signal and kernel values were randomly

generated between ��0.��_70.��_� with double-precision floating-point accuracy. The Intel IPP

(routine ippsConv_64f() [8]) was used for all Tier-2 convolution (single-threaded execution). The

0

2

4

6

8

10

12

14

16

18

20

2K 4K 8K 16K 32K 64K

T
h

ro
u

g
h

p
u

t
(G

F
LO

P
/s

)

Companding and

symmetric packing

Companding and

asymmetric packing

with

Companding and

asymmetric packing

with

106%

27%

107%

158%

Full precision

(conventional

processing)

87%

55%

31%

results are given in Figure 2 in terms of GFLOP/s achieved by each case. A summary of the obtained

throughput increase and the resulting distortion against the full-precision calculation is given in Table

1. Even though the performance gains vary according to the size of the input block, the proposed

approach provides significant throughput increase even for the case of �������� complexity.

Error-tolerant Application: Music Matching System

A recently-proposed music matching system that identifies cover songs [1] was selected as a test case.

For each input song to be identified, the system works by extracting beat and tempo data and then

matching it to a pre-calculated beat and tempo database via cross correlation. Matlab code for this and

the sample data were collected from the authors’ site [1]. The only modification performed was the

replacement of the Matlab xcorr() function call with our packed convolution implementation. The

settings used for our experiments were: average beat rate 0._ beats-per-minute, chroma element

central frequency .__���0�[1]. Concerning our implementation, we set CD � GD � �. Table 2

demonstrates that these settings yielded the same matching accuracy for all methods (53.75% match),

while providing up to 112% increase in throughput in comparison to the full-precision (conventional)

Intel IPP implementation as shown in Figure 2.

Table 2.Matching accuracy vs. cross-correlation throughput for the music matching system of [1].

Method Matching Accuracy Throughput (GFLOP/s)

Full-precision Intel IPP 53.75% 2.12

Companding and asymmetric packing, �K5vJ � . 53.75% 4.43

Companding and asymmetric packing, �K5vJ � � 53.75% 4.37

Companding and symmetric packing 53.75% 4.50

5. Conclusion

We propose an operational approach that scales the throughput of generic convolution and cross-

correlation by reducing the precision of the results. This can be used in applications where higher

throughput is desired and certain imprecision can be tolerated (or is inherently present) due to noise in

the input data. The possibility of dynamic selection of the companding and packing parameters can

provide for software realizations that balance between throughput, memory and accuracy

requirements. The proposed method can be applied as an optional layer for any high-performance

convolution kernel as it operates externally to the kernel code. We validated this approach with the

state-of-the-art Intel IPP convolution kernel in a digital music matching application, where we

demonstrated significant gain in the cross-correlation throughput with no loss of accuracy.

References

[1] D. P. W. Ellis, et al, “Cross-correlation of beat-synchronous representation for music similarity,” Proc.

IEEE Internat. Conf. Acoust. Speech and Signal Process.,ICASSP2008, pp. 57-60, Apr. 2008.

[2] A. V. Oppheneim, R. Schafer, Digital signal processing, Prentice Hall, Englewood Cliffs, NJ 1975.

[3] N. Merhav and R. Kresch, “Approximate convolution using DCT coefficient multipliers,” IEEE Tran. On

Circuits and Systems for Video Technology, vol.8, no.4, pp. 378-385, Aug. 1998.

[4] L. Di Stefano and S. Mattoccia, “Fast template matching using bounded partial correlation,” J. Machine

Vision and Applications, vol. 13, no. 4, pp. 213-221, Feb. 2003.

[5] A. Kadyrov and M. Petrou, “The Invaders algorithm: Range of values modulation for accelerated

correlation,” IEEE Trans. on Pattern Anal., Machine Intell., vol. 28, no. 11, pp. 1882-1886, Nov. 2006.

[6] D. Anastasia and Y. Andreopoulos, “Linear image processing operations with operational tight packing,”

IEEE Signal Process. Letters, vol. 17, no. 4, pp. 375-378, Apr. 2010.

[7] S. Shanthala and S. Y. Kulkarni, “High speed and low power FPGA implementation of FIR filter for DSP

applications”, European Journal of Scientific Research, ISSN 1450-216X vol. 31, no. 1, pp. 19-28, 2009.

[8] S Taylor, Optimizing Applications for Multi-Core Processors, Using the Intel® Integrated Performance

Primitives, Intel Press, 2
nd

 Edition, Sep. 2007.

[9] Single and double precision convolution function, TMS320C67x DSP Library Programmer's Ref. Guide.

[10] F. Franchetti, M. Puschel, Y. Voronenko, S. Chellappa, J.M.F. Moura, "Discrete fourier transform on

multicore," IEEE Signal Processing Magazine, vol.26, no.6, pp.90-102, Nov. 2009.

[11] J.A. Lopez, G. Caffarena, C. Carreras and O. Nieto-Taladriz, "Fast and accurate computation of the

roundoff noise of linear time-invariant systems," IET Circuits, Devices & Systems, vol.2, no.4, pp. 393-

408, Aug. 2008.

