
Exploring TCP-friendly Realtime Streaming on Multiple Paths

Christopher Pluntke and Miguel Rio
{c.pluntke, m.rio}@ee.ucl.ac.uk

Abstract

We explore the question how to design and control a realtime streaming protocol on multiple paths with
deadline constraints using forward error correction to compensate for packet loss. Sending rates on each interface
are TCP friendly to make it fair to competing TCP traffic even if some of the paths share common bottleneck
links in the network that are not directly observable. At the same time the protocol beneficially leverages the
diversity of its paths to improve the user experience. The system architecture we propose is able to deliver higher
goodput to the end user than current single path solutions and outperforms the current standard rate controller
for TCP friendliness on multiple paths.

1 Introduction
Live streaming HD traffic usually involves a satellite truck that has to be out in the field close to the source of
the transmission. Recently, mobile transmitters in a backpack that use multiple UMTS connections to deliver HD
traffic have been introduced and shown to be able to competitive in terms of quality while enabling transmission in
highly mobile scenarios and hard to access locations [1]. In our experiments with 3G data connections, we found
that in many cases the packet drop probability was low and the per-packet latency was highly variable: it varied
from one packet to the next, as well as over longer timescales. Figure 2(a) shows a measurement trace of ping
RTTs taken while travelling by train to illustrate the short and long timescale variations.

For real-time video, a high latency packet is as good as lost, and so the main challenge in constructing a
real-time mobile video service is to cope with variable latency. Since different 3G providers use different access
networks, the RTTs observed on multiple 3G interfaces connecting to the same server are usually diverse such
that high RTTs are not observed on all interfaces at the same time. This motivates the use of a multipath system
with load balancing between different interfaces. We found however that existing solutions for data transport, both
single-path and multi-path [2, 4, 5], do not cope well when packet latencies vary over multiple timescales. In this
paper we describe our solutions.

2 Design Problems and Solutions
The main performance measure for realtime streaming is receiver goodput that meets the deadline while guar-
anteeing a maximum amount of total loss. In this section we give an overview of our system architecture that
optimises this performance measure and describe the problems that drove us towards the final design.

2.1 System Architecture
The final system architecture is illustrated in Figure 1. A streaming source sends data packets with a preset
delivery deadline to a selection of access servers using multiple outgoing interfaces. Each server can be contacted
by multiple interfaces at the same time. We use UDP as underlying transport layer protocol. Since UDP does not
guarantee delivery of all its data packets and also does not give any delay guarantees, we have to protect the system
against lossy channels and channels with high and variable delay. By sending redundant information, lost or late
data packets can be recovered from the extra data. This is called forward error correction (FEC). In this paper, we
assume an error correcting code that works on blocks of packets, a so-called block code. A FEC encoder for a
(n,m)-block code takes n source packets as input and converts them into m coded packets which are transmitted.
If any n packets out of m arrive, the code is able to reconstruct the original n data packets. The first question that
has to be addressed is how to set the group size m and the redundancy m− n of the block code.

1



Figure 1: System architecture

We decided to use a FEC encoder and decoder between the sender and each access-server, so each access
server can reconstruct the source packets individually and give feedback to the sender. An access server can be
a dedicated content delivery network (CDN) server or a user in a peer-to-peer live streaming network which then
takes care of the final dissemination of the data to the end users. The access servers give feedback to the sender
about the slack time, i.e. the time difference between the arrival of the decoded packet at the receiver and the latest
possible arrival imposed by the deadline, and lost packets.

It might seem that using per-interface FEC instead of per-access-server is a more straightforward way to design
the system, but this forces the access servers to exchange further data amongst each other to get all data sent from
one interface in order to be able to reconstruct the original packets. Not only does this complicate the system,
it also introduces more delay and complicates feedback. Hence, in our architecture, we assume that the access
servers are able to deliver the decoded data stream reliably to the end user.

2.2 Forward error correction protects against small scale variation of the channel.
In [2], the authors propose EMS, a realtime streaming system on multiple paths. In EMS, redundancy adaptation
is done by monitoring information loss and delay-induced losses due to missed deadlines at the receiver and
feeding the information back to the sender using a linear control loop with 5% step size. Group size is adjusted
by monitoring minimum slack time for all packets over a 30 second time window. The group size is then changed
depending on the amount of slack that the latest packet had in the monitoring window.

In contrast to this approach, we propose group size and FEC overhead adaptation with per-packet feedback
and smooth step sizes based on probabilistic estimation. This enables the system to react to rapidly changing
conditions as they are expected in wireless systems. Each multipath flow keeps track of mean and variance of
data that cannot be reconstructed by the receiving FEC decoder the so-called information loss. Hence, we have
to make sure that the probability of losing more packets than the amount of redundancy allows is smaller than
a preset error probability. We achieve this by fitting a normal random variable to the observed information loss
using its observed mean and variance in smoothed estimations and then deriving an approximation for the needed
redundancy.

Group size adaptation is done on a per-packet basis based on observed slack time. Initially, a slow-start phase
increases the group size by 1 packet every time a packet has been successfully received without missed deadlines.
This quickly increases the group size to roughly its steady-state value. As soon as the first loss is observed,
the group size is set back to the last value before the loss and is updated from then on with every successfully
reconstructed packet that is reported by the feedback channel. FEC groups that remain incomplete at the receiver
due to too much packet loss time out and send feedback after a fixed timeout deadline. On receiving feedback, the

2



0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0

time[s]

R
T

T
[m

s]

(a) RTT measurement trace of ping packets

0 100 200 300 400 500

0
50

10
0

15
0

20
0

25
0

time [s]

ra
te

 [p
ac

ke
ts

/s
]

goodput
timeouts

grouploss
sending rate

(b) Receiver goodput and loss

0 100 200 300 400 500

0
10

20
30

40

time [s]

F
E

C
 r

ed
un

da
nc

y 
[%

]

(c) FEC redundancy

0 100 200 300 400 500

30
35

40
45

50

time [s]

F
E

C
 g

ro
up

 s
iz

e 
[p

ac
ke

ts
]

(d) FEC group size adaptation

Figure 2: A measurement trace of RTT variability (a) and a simulation run starting with the standard MPTCP rate
controller and switching to an optimised controller at t=250s (b-d).

group size is increased linearily if slack time is positive and reduced multiplicatively if slack time is negative.

2.3 Load balancing adapts to long term variations of the channel
Long term changes in mean drop rate and RTT cannot be efficiently handled by FEC since this would involve too
much overhead in terms of redundancy. Instead, load balancing traffic away from high RTT and high loss rate
interfaces can better address long term changes. However, a load balancer cannot just assign any rate to any flow,
it has to take a notion of fairness into account to prevent hurting competing flows of other users too much. The
fairness properties of TCP traffic are usually used as a guideline for congestion control of streaming protocols.
TCP traffic adapts its sending rate according to the path characteristics. This feedback enables multiple TCP flows
to share bottleneck links fairly without direct knowledge about if and where bottlenecks are present. Since most
of Internet traffic is TCP, some kind of rate control is desirable for UDP traffic as well since overly aggressive
UDP flows can send with much higher rate than TCP causing competing TCP flows to overly reduce their rates.
EMS [2] does not consider TCP-friendliness, but we see it as one of the main features that enable deployability.
In general, TCP adapts its sending rate, xTCP , depending on roundtrip time, RTT, and loss rate, p, according
to the following formula: xTCP =

√
2

RTT
√
p . The standard way to make a UDP flow TCP friendly is to measure

loss rate and RTT of the path and then adapt the sending rate to the rate TCP would get. This approach is called
equation-based rate control and it has been intensely studied for single path connections in [3].

A TCP controller for multiple paths, multipath TCP (MPTCP), has been introduced in [6]. It accomplishes

3



cooperation between separate flows in the network such that if all flows are MPTCP, the global resource usage
of the network is optimal. In addition, it addresses the problem of unfairness if all subflows of one end-to-end
multipath flow share common bottleneck links along the way. Therefore, the coupled rate controller of MPTCP
makes sure that an end-to-end flow is not more aggressive than standard TCP even in case of shared bottleneck
links. Applying the standard approach for achieving TCP-friendliness in this setting again means to measure
roundtrip time, RTTr, and loss rate, pr for path r, and adapt the subflow rates to the rate, xr, that MPTCP would
get: xr =

√
2a 1/pr

RTTr

√∑
s

1
ps

with a =
∑

r xrRTTr
maxrxr/RTTr

(
∑

r xr)2
.

We now argue that using the standard approach for TCP-friendliness with the MPTCP controller can lead to
suboptimal results in terms of goodput. In general, there are two problems: Firstly, the MPTCP controller does
not take RTTs into account when choosing its rates, so the FEC controller might have to use high redundancy to
protect against timeouts: As an example for this behaviour, let’s assume that the source uses three interfaces and
there is only one access server in the network. The deadline constraint is set to 300ms. RTTs are assumed to be
i.i.d. exponentially distributed with a given mean per subflow and losses are independent. Let the mean RTTs and
loss rates be as follows: (p1 = 10%, RTT1 = 10ms), (p2 = 2%, RTT2 = 90ms), (p3 = 1%, RTT3 = 290ms).
The resulting rates that the MPTCP controller gives are: x1 = 88.2 [packets/s], x2 = 88.2 [packets/s], x3 =
47.1 [packets/s]. Running a simulation of the entire system with these rates leads to a receiver goodput of 133
[packets/s] using FEC redundancy of 40%.

On the other hand, sending only on path 1 is also TCP-friendly. TCP-friendliness demands that path 1 sends
with at most x1 = 223.6 [packets/s]. With this choice of rates, the receiver goodput is 173 [packets/s] while
FEC redundancy stays at 22%. This is an increase in goodput of 30% in comparison to the MPTCP controller.
Figure 2 shows traces of a simulation run started with the MPTCP controller. At t=250s, we switched to the the
alternative controller that sends everything on the first path to make the difference clear. The obvious solution to
treat timeouts as loss and let the MPTCP controller handle the load balancing also does not work well. The main
problem is that if many packets time out, the MPTCP controller is overly friendly and reduces its rate too much.

Our solution is based on solving an optimisation problem to optimise the subflow rates. The objective func-
tion is maximise total goodput subject to constraints on the permissible rates of the subflows to guarantee TCP
friendliness. We are currently still exploring this solution and further alternatives.

3 Conclusion
We introduced a new architecture for realtime live-streaming on multiple paths that is friendly to competing TCP
traffic. We identified the main problems that inspired our choices. Statistical estimation enabled us to derive a
simple algorithm for update of FEC redundancy and basic control is used to update group sizes. We showed that
using standard equation-based rate control to adapt subflow rates might lead to high throughput but suboptimal
receiver goodput and we proposed that modifying the rate controller while staying TCP friendly can lead to higher
goodput.

References
[1] www.liveu.tv.

[2] A. L. Chow, H. Yang, C. H. Xia, M. Kim, Z. Liu, and H. Lei. EMS: Encoded Multipath Streaming for
Real-time Live Streaming Applications. In Proceedings of ICNP, 2009.

[3] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based Congestion Control for Unicast Applications.
In Proceedings of SIGCOMM, pages 43–56, New York, NY, USA, 2000. ACM.

[4] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar. Architectural Guidelines for Multipath TCP Devel-
opment. Internet-Draft draft-ietf-mptcp-architecture-05, Internet Engineering Task Force, Jan. 2011. Work in
Progress.

[5] C. Raiciu, M. Handley, and D. Wischik. Coupled Congestion Control for Multipath Transport Protocols.
Internet-Draft draft-ietf-mptcp-congestion-01, Internet Engineering Task Force, Jan. 2011. Work in Progress.

[6] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design, implementation and evaluation of congestion
control for multipath TCP. In Proceedings of NSDI, 2011.

4


