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Abstract

Not all luminescence generated by a scintillator is detected. Photons incident
upon the planar surface between the scintillator and the detector beyond the criti-
cal angle are trapped by total internal reflection. One method to improve photon
extraction by designing a one-dimensional dielectric structure on this surface is
explored.

1 Introduction
Scintillators are media which convert gamma rays into visible or ultraviolet light by
photoluminescence. For this light to be detected it must leave the scintillator and arrive
at a detector, typically a photomultiplier tube or avalanche photodiode. At the bound-
ary between the two, a significant source of light loss is reflection due to the refractive
index difference between the two media[1]. Significantly the scintillator has a higher
refractive index than the attached detector resulting in total reflection beyond a critical
angle defined by Snell’s law. If a greater proportion of the generated light could arrive
at the detector improvements in timing and energy resolution could be achieved. In
this work one method to accomplish this is attempted. Layers of dielectric material
placed between the scintillator and the detector will alter the reflection and refraction
properties of the surface. By appropriate selection of refractive indices and layer com-
position, the surface can be rendered transparent to a wide range of frequencies and
incident angles.

2 Theory
2.1 Boundary between media

Light incident upon a boundary between two dielectric media will experience reflec-
tion and refraction. The properties of these three components can be considered using
Maxwell’s equations. Incident photons are treated as polarised waves of the form
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where E
(i)
0 is the total amplitude of the incident wave; ~r is the position vector; ~s is the

direction of propagation; | ~ATM | and | ~ATE | are the proportions of orthogonal polarisa-
tions ‘Transverse Magnetic’ and ‘Transverse Electric’ respectively. The superscript (i)
refers to incident wave. For non-conducting media the transmitted, (t), and reflected,
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(r), waves have the same form as equation 1. Therefore the reflection and transmission
amplitude coefficients are defined as
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Transverse electric are similarly defined. For appropriate selection of boundary
conditions the Fresnel equations are derived[2]. Note that whilst light propagating
through a lossless medium will not experience any attenuation, and thus have a re-
flectivity of zero, it will experience a phase change determined by the layer thickness.
Reflectance is defined as R = |r|2. By energy conservation therefore transmittance is
defined as T = 1−R.

2.2 Transfer-Matrix Method

For simple structures such as the Fabry-Perot etalon the transmittance and reflectance
can be calculated by a geometric summation of propagating terms. For more complex
structures this quickly becomes an unwieldy technique[3]. In this work we use the
Transfer-Matrix method. In this, each component of a structure is represented by a
matrix. Each matrix acts as black box to compare electric field amplitudes before and
after a component. The key benefit of such a system is the ability to combine matrices
by multiplication, to generate arbitrarily complex structures[4].

The transfer matrix for a lossless system can be defined as
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where t and r are the transmission and reflection amplitude coefficients respectively.
Structures can be defined as series of propagation and boundary matrices. Furthermore
equation 3 also applies to any combination of transfer matrices, allowing extraction of
the reflectance and transmittance of any structure.

3 Structures
3.1 Fabry-Perot Interferometer

A simple structure we can consider is the Fabry-Perot interferometer. This is com-
posed of a finite slab of material n1 in a medium of n2 which can be considered as
three components; two boundaries and one propagating region. The transfer matrix for
the interferometer is defined as M = M21M11M12 where the subscripts refer to the
refractive indices n1 and n2.

3.2 Dielectric Bragg Grating

Figure 1: Finite repetition of two
equal thickness dielectric layers n1

and n2.

The dielectric Bragg grating, as shown in figure
1, is composed of alternating layers of dielectric
of equal thickness. The resulting reflectance with
wavenumber for normal incidence can be seen in
figure 2.

The transfer matrix for the grating is found by
combining the four components defining a single
period of the structure and raising the calculated
transfer matrix to the power of the number of pe-
riods used. This is written as

M = (M11M12M22M21)
N (4)



where N is the number of periods and subscripts refer to refractive indices.

Figure 2: Reflectance with wavenumber for a dielectric Bragg grating with n1 = 1.5 and
n2 = 3.5 at normal incidence is considered. Both TE and TM modes are identical for nor-
mal incidence.

4 Application
4.1 Unmatched Medium

Figure 3: Reflectance maps for transverse electric (TE) and transverse magnetic (TM) polarisa-
tions with respect to wavenumber and incident angle. As shown beyond the crtical angle defined
by the unmatched media, no light is transmitted. At normal incidence all four maps match.

To apply the transfer matrix method to reality, the top and bottom surfaces of any
dielectric structure must take into account the surrounding media. This is so reflection
and refraction that would occur in a real example is taken into account. For the dielec-
tric Bragg grating discussed in section 3.2, this results in the reflectance maps shown
in figure 3. A matched medium is one where the refractive indices at the surfaces of
the dielectric structure match those of the surrounding material. In the unmatched case,
light is totally reflected beyond a critical angle defined by the structure. In the case we
consider these are the scintillator and a layer of grease. The transfer matrix is therefore

M = MScin
[
MphC

]
MGrease (5)

where MphC is the transfer matrix of the photonic crystal used. In the case of figure 2
this is the dielectric Bragg grating.



4.2 Useful Solutions

Using a structure composed of various refractive indices, layer thicknesses and periods,
many possible regions of transmittance and reflectance could be possible. Specifically
a structure which would allow total transmittance over all angles and a fixed range of
wavelengths would be ideal for improving the photon extraction efficiency of a scin-
tillation detector. To this end we consider an optimisation routine for minimising the
reflectance for a specific area of a reflectance map such as those shown in figure 2.

An arbitrary structure is composed of alternating layers of propagation and bound-
ary. For a significant number of components the number of parameters for a brute force
solution quickly becomes unmanageable. Therefore we define the refractive index and
thickness of layers in terms of a polynomial such that:

n(x) = A1 +B1x+ C1x
2 +D1x

3 + . . . (6)
d(x) = A2 +B2x+ C2x

2 +D2x
3 + . . . (7)

where x is the distance from the scintillator surface. Limits are placed upon the con-
stants limiting range of solutions and physical limits such as n(x) 6= 0 and d > 0. A
structure is defined in terms of number of layers, total thickness and periodicity using
equations to define parameters for the transfer matrices.

5 Discussion
The current work produces several useful results, however the complexity of the system
being modelled is unrealistically simple. Firstly, the transfer matrices are currently
assumed to be lossless. To overcome this requires redefinition of the transfer matrices
using the solution for electromagnetic waves in a conducting medium[5]. Secondly
the refractive index is currently constant and not frequency dependent. Furthermore
no weighting is currently performed to match the actual incidence angle profile for the
scintillator. Inclusion of both these would improve the accuracy of the transfer matrix
method.

6 Summary
Improving light extraction from a scintillator is key to improving the timing and energy
resolution. One method to accomplish this by creating a one-dimensional dielectric
structure between the scintillator and detector is discussed.

Acknowledgements
Thanks to my supervisor Dr Ioannis Papakonstantinou and to the CDT for a wonderful
first year.

References
[1] Matthias Kronberger, Etiennette Auffray, and Paul Lecoq. Improving light extrac-

tion from heavy inorganic scintillators by photonic crystals. 2008 IEEE Nuclear
Science Symposium Conference Record, 57(5):3914–3919, October 2008.

[2] J.D. Jackson. Classical electrodynamics. 1999.

[3] Pedro Pereyra and Arturo Robledo-Martinez. On the equivalence of the summation
and transfer-matrix methods in wave propagation through multilayers of lossless
and lossy media. European Journal of Physics, 30(2):393–401, March 2009.

[4] David J. Griffiths and Carl a. Steinke. Waves in locally periodic media. American
Journal of Physics, 69(2):137, 2001.



[5] JA Stratton. Electromagnetic theory. Book, 51(1312):1–54, 1941.


	Introduction
	Theory
	Boundary between media
	Transfer-Matrix Method

	Structures
	Fabry-Perot Interferometer
	Dielectric Bragg Grating

	Application
	Unmatched Medium
	Useful Solutions

	Discussion
	Summary

