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Abstract:  This paper describes the design of the necessary mechanisms of a new 
network primitive: n-casting, the transmission of a message to the closest n members of a 
given group. This primitive can be use for anycasting (n=1), p2p swarming, replicated 
databases querying and multicast among other applications. We describe a new 
hierarchical clustering method to allow nodes to have an image of the Internet which is 
accurate and requires little storage, a new data structure which compresses group 
membership with decreasing accuracy as n grows and a new protocol to exchange 
information. These mechanisms can allow implementation of n-casting at the application 
or network layer. 

 

1 Introduction. 
The anycast protocol [4] allows a packet to be routed to a single member of an anycast group 
determined by a network or application layer metric. Here we present n-casting, an application layer 
anycasting protocol that provides the ability to message n members (n ≥ 1) of an anycast group in 
order of geographical distance, allowing for a quality-of-service (QoS) orientated overlay.  

Anycast routing can be implemented at either network or application layers and has seen widespread 
deployment in the domain name system (DNS) [3]. Outside of DNS, Castro et al. [5] state that anycast 
is a “powerful building block” for peer-to-peer (P2P) networks. The ability to discover multiple group 
members allows overlay nodes to target nodes that are best placed, geographically, to answer queries. 

At the network layer, anycast’s inability to aggregate group addresses means there is significant 
resource demands on routers, a demand that can be mitigated by implementing anycast as an 
application layer protocol. Though work has been done [2] to improve the scalability of network layer 
anycast, at present application layer anycast appears more promising for applications such as P2P 
swarming, database querying and multicast. At the application layer constraints on resources such as 
memory is significantly lower, allowing for overlays with a large number of groups and high 
membership. 

Application layer anycast introduces the possibility of using non-network level metrics in order to 
decide the destination of the anycast packet. The need to consider other application level metrics was 
highlighted by Zegura et al. [6], when they proposed an anycast DNS service where nodes would 
query a metric database to provide a suitable node, much like unicast DNS. In experiments Zegura et 
al. found that the average response time of servers returned by anycast was significantly lower than 
random selection or the nearest. Not only was the response time lower but the variance was also lower, 
and in the case of random selection, by an order of magnitude. 

Carter et al. [7] describe Manycast, its multi-recipient anycast, as something that “fills the spectrum of 
network communication space between anycast and multicast”. The ability to send to multiple 
members of the group is particularly inviting as it allows multicast-esque abilities with the notion that 
a particular subset of nodes meeting a selection criteria will be contacted. For example, if a node wants 
to receive concurrent streams of the same video from similarly performing nodes in order to build up 
layers of the video, or to replicate data on servers with particular storage characteristics. 

The motivation to employ a hierarchical design due to the benefits in resilience and resource 
utilization. Ganesan et al. [10] present the notion of hierarchical DHTs which have greater fault 
isolation, better bandwidth utilisation, hierarchical storage and access control. Garces-Erice et al. [11] 
state that hierarchical DHTs can “significantly”  reduce the number of peer hops in a lookup and 
latency. 



By  providing  locality  aware  n‐casting  capabilities,  the  overlay  can  provide  applications  the 
ability to contact the k‐closest nodes for applications such as video broadcasting, file transfer or 
resource pooling.  

We propose the use of hierarchical clustering [1] and hash sketches to create a multi-tier overlay that 
will allow nodes to maintain knowledge of group membership in a resource efficient manner. 

2. Hierarchical Clustering 
Linkage is the term given to the heuristic used to aggregate clusters. The linkage determines the 
characteristics of clusters and has a significant bearing on the performance an overlay that uses 
hierarchical clustering. To that end there are three common types of linkage that needs to be 
considered, single, complete and average link clustering. 

In single link clustering clusters are aggregated based on the distance between the two closest nodes. 
Conversely, in complete-link clustering the clusters are merged based on the distance between the two 
furthest nodes in two clusters. With single-link clustering, the outliers in each cluster is not taken into 
account, meaning outliers can significantly alter the ‘quality’ of clustering, whereas complete-link, by 
acknowledging outliers, creates merges with the smallest possible diameter. Average-link clustering 
aggregates clusters by the mean distances within the cluster. There 

Using the Peerwise dataset [9] to generate a dendogram using the Open Source Clustering algorithm 
[12] highlighted the problems of using complete-link clustering. Due to outliers, complete-link 
clustering resulted in nodes being included in clusters that would be better served being part of 
separate clusters. Single-link clustering would leave outliers in separate clusters and would only 
aggregate at higher levels, a behaviour that could lead to a rich club of clusters. Average-link 
clustering would, as its name suggests, provide a mid-point and aggregate clusters that are far-away at 
lower tiers. 

3. Architecture 

 
Figure 1- Structure of a hierarchical n-casting overlay 

The clustering of nodes in Figure 1 is by their distance, which is represented by latency. The goal is to 
cluster nodes by geographical distance, meaning that nodes have extensive knowledge of 
geographically close nodes while retaining some knowledge of distant nodes. 

Figure 1 shows a two-tier n-casting overlay where the smaller circles, such as a1,b1 and c1,a1, 
represent a cluster in the lower tier and the larger circles, such as a1 and b1, represent the upper tier. A 
node within a cluster maintains connections to all other nodes in that cluster, and one connection to 
other clusters in that tier, for example nodes’ routing tables in cluster a1,b1 would contain all three 
nodes in a1,b1. Each node also maintains a connection with one node in a distant cluster, for instance 
in Figure 1 that would be c1,a1. 



When a node joins the overlay its proximity metric, which in our case would be latency, is used to 
place it in a cluster. Once part of the cluster, the node exchanges hash sketches, detailed in Section 4, 
to build up routing tables and group membership knowledge.  

To query a node in a different cluster; one that is not in a node’s routing table, the node first forwards 
the query to the node it knows is part of the higher tier cluster. The node in cluster a1,b1 forwards the 
query to a node in cluster f1,a1. The node in cluster f1,b2 then forwards the query to the node it has 
knowledge of in cluster f1,b1, where the node has knowledge of all nodes in the cluster f1,b1. 

4. Efficient storage of group membership 
N-casting introduces a new problem to anycast, the accurate knowledge of group membership. It is 
possible that as nodes report the membership of anycast groups, the receiving node attains duplicates 
and therefore has an ‘inflated’ view of group membership. While this problem exists is standard 
anycast, as the querying node is simply going to select a single host, rather than query N nodes. The 
result of this could be that a node sends out requests to N++  nodes when there are N nodes in a 
particular anycast group. 

 
Figure 2 - Group membership double counting and non-aggregation 

The issue of duplication shown on the left in Figure 2 can occur for two reasons, node d is unaware of 
membership data beyond one hop and that membership data is aggregated to reduce the size of nodes’ 
routing tables. Nodes are typically unaware of membership beyond the previous hop because should a 
node have to transfer the full history of membership on each hop, the size of data transferred would 
become prohibitive with overlay membership growth.  

Similarly, aggregation of groups is done for this reason as the number of groups increase without some 
means of data compression, the transfer of data, would grow exponentially with the number of groups, 
and result in a system that does not scale. 

In order to overcome this we propose the use of distributed hash sketches [8]. It is a data structure that 
provides of fixed size and one that does not double count. Distributed hash sketches meet both the size 
and duplicity requirements of our n-casting system. 

          
Equation 1 – uniform hashing function (left) & least significant bit transformation (right) 

The efficient use of hash sketches is based on the premise that objects from a multiset are mapped into 
integers using a uniform hashing function as presented in Equation 1. The resulting values are then 
mapped by a least significant bit function ρ() such that the transformation from h(x) can be ordered by 
the least significant bit. Using the least significant bit after ρ() allows us to use a cardinality estimator 
R(). 

            
Equation 2 - Cardinality estimator 

In Equation 2, C has an estimation error of 1.87 binary orders of magnitude, however this can be 
reduced if ρ() is run multiple times on h(x) taking the arithmetic mean.  

Hash sketches have the property that as the cardinality of multisets grows its accuracy reduces. While 
this may seem counterintuitive, for large sets it is not important for us to know the exact membership 
figure, just the upper bound to a certain degree of accuracy. As previously mentioned, accuracy can be 
improved if the ρ() function is repeated, increasing computational cost. 

h(x) : D → [0, 1, . . . , 2λ] ρ(x) : [0, 1, . . . , 2λ] → [0, 1, . . . , λ]

R(D) = maxx∈D ρ(h(x)) C = 2
R(D)



The design requirements put forward by an n-casting overlay is met by hash sketches that provides a 
data structure that is both scalable and maintains data integrity.  

5. Conclusions and current work 
Currently we are recording data that can be used to generate clusters that are representative of the 
Internet. Although we conducted preliminary clustering tests on the Peerwise data as mentioned in 
Section 2, the dataset has in the region of 1,200 nodes and we feel that a larger dataset is required to 
accurately represent real world conditions. 

We believe that the fundamentals of this n-casting system with its distance-aware hierarchical 
clustering and its efficient hash-sketch data structure will result in a scalable overlay that provides 
applications with the N-closest nodes in a reliable manner. 
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