

Edouard Oyallon, Laurent Sifre

École Normale Supérieure www.di.ens.fr/data

- Estimate a label y(x) of $x \in \mathbb{R}^d$ given examples $\{x_i, y_i\}_i$
- In high dimension ||x x'|| is not a good similarity measure
- Compute $\Phi x \in \mathbb{R}^D$ so that $\|\Phi x \Phi x'\|$ measures similarity then a linear classifier applied to Φx is highly effective.

$$x \longrightarrow \Phi \longrightarrow \Phi x \longrightarrow$$
 Supervised
Linear Classifier $\longrightarrow \tilde{y}(x)$

• How to define Φ ? Should we learn it ?

Millions to Billions of parameters Supervised learning of filter coefficients

Genericity: one network (Alex net) yields state of the art on very different image classification problems.

• No need to learn deep net for structured signals (images) just wavelet filters derived from geometry.

• Deep wavelet networks are signal coders.

• One can learn physical interactions: quantum chemistry.

Image Metrics

• Low-dimensional "geometric shapes"

Deformation metric: Grenander, Trouvé, Younes Deformation: $D_{\tau}x(u) = x(u - \tau(u))$ $\Delta(x, x') \sim \min_{\tau} \|D_{\tau}x - x'\| + \|\nabla \tau\|_{\infty} \|x\|$ Invariant to translations diffeomorphism amplitude

ENS

Image Metrics

• High dimensional textures: ergodic stationary processes

What metric on stationary processes ?

- Invariant to translations and stable to deformations

$$\Delta(x, x') \le \min_{\tau} \|D_{\tau}x - x'\| + \|\nabla\tau\|_{\infty} \|x\|$$

Reverse inequality is wrong

- $\Delta(x', x) = 0$ for realisations of a "same stationary process"

• High dimensional "structured" images

What metric on images ?

- Invariant to translations and stable to deformations
- What else ?

• Embedding: find an equivalent Euclidean metric

$$|\Phi x - \Phi x'|| \sim \Delta(x, x')$$

with
$$\Delta(x, x') \le \min_{\tau} \|D_{\tau}x - x'\| + \|\nabla \tau\|_{\infty} \|x\|$$

- Equivalent conditions on Φ :
 - Stable in L²: $D_{\tau} = Id \Rightarrow ||\Phi x \Phi x'|| \le C ||x x'||$
- Lipschitz stable to diffeomorphisms

 $x' = D_{\tau}x \implies \left\|\Phi D_{\tau}x - \Phi x\right\| \le C \left\|\nabla \tau\right\|_{\infty} \left\|x\right\|$

 \Rightarrow Invariance to translation

Failure of classical math invariants: Fourier, canonical...

Wavelet Transform of Images

• Complex wavelet: $\psi(t) = g(t) \exp i\xi t$, $t = (t_1, t_2)$ rotated and dilated: $\psi_{\lambda}(t) = 2^{-j} \psi(2^{-j}r_{\theta}t)$ with $\lambda = (2^j, \theta)$

• Wavelet transform: $Wx = \begin{pmatrix} x \star \phi_{2^J}(t) \\ x \star \psi_{\lambda}(t) \end{pmatrix}_{\lambda \leq 2^J}$

Preserves norm: $||Wx||^2 = ||x||^2$.

 2^{J}

Scale

Wavelet Translation Invariance

Modulus improves invariance: $|x \star \psi_{\lambda_1}(x) \star \psi_{\lambda_1}(x) \star \psi_{\lambda_1}(x) \star \psi_{\lambda_1}^a(x) | t \star \psi_{\lambda_1}^a(x) | t \star \psi_{\lambda_1}^b(x) |$

Second wavelet transform modulus

$$|W_2| |x \star \psi_{\lambda_1}| = \left(\begin{array}{c} |x \star \psi_{\lambda_1}| \star \phi_{2J}(t) \\ |x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}(t)| \end{array} \right)_{\lambda_2}$$

Wavelet Scattering Network

ENS

 $S_J x = |W_J| \dots |W_4| |W_3| |W_2| |W_1| x$

Scattering Neuronal Network

ENS

Scattering Neuronal Network

EN

Scattering Neuronal Network

ENS

Theorem: The total energy of coefficients converge to 0 as the depth (number of modulus) increases.

$$S_{J}x = \begin{pmatrix} x \star \phi_{2^{J}} \\ |x \star \psi_{\lambda_{1}}| \star \phi_{2^{J}} \\ ||x \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}| \star \phi_{2^{J}} \\ ||x \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{3}}| \star \phi_{2^{J}} \\ |||x \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{3}}| \star \phi_{2^{J}} \\ \dots \end{pmatrix}_{\lambda_{1},\lambda_{2},\lambda_{3},\dots}$$

Theorem: For appropriate wavelets, a scattering is contractive $||S_J x - S_J y|| \le ||x - y||$ (\mathbf{L}^2 stability) preserves norms $||S_J x|| = ||x||$ stable to deformations $D_{\tau} x(u) = x(u - \tau(u))$ $||S_J D_{\tau} x - S_J x|| \le C \left(||\nabla \tau||_{\infty} ||x|| + 2^{-J} ||\tau||_{\infty} \right)$

$$\underset{J \to \infty}{\Rightarrow} \|Sx - Sx'\| \le C \Big(\min_{\tau} \|x - D_{\tau}x'\| + \|\nabla\tau\|_{\infty} \|x\|\Big)$$

4819018894

0.2% errors $2^J = \text{image size}$

CUREt 61 classes Scattering Moments of Processes

The scattering transform of a stationary process X(t)

$$S_{J}X = \begin{pmatrix} X \star \phi_{2J} \\ |X \star \psi_{\lambda_{1}}| \star \phi_{2J} \\ ||X \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}| \star \phi_{2J} \\ |||X \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{3}}| \star \phi_{2J} \\ \dots \end{pmatrix}_{\lambda_{1},\lambda_{2},\lambda_{3},\dots}$$

is a low-variance estimator of the scattering moments of X(t)

$$\overline{S}X = \begin{pmatrix} E(X) \\ E(|X \star \psi_{\lambda_1}|) \\ E(||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|) \\ E(||X \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}|) \\ \dots \end{pmatrix}_{\lambda_1, \lambda_2, \lambda_3, \dots}$$

and $SX \xrightarrow{J \to \infty} \overline{S}X$ if X is ergodic.

• But does $\overline{S}X$ "characterize" X ?

Adapt Convolutions to Invariants Laurent Sifre

 $\begin{array}{c} \text{translation} & \text{translation} \\ x(t) & |W_1| & |x \star \psi_{j,\theta}(t)| = x_1(j,\theta,t) \to |W_2| \to |x_1(j,\theta,.) \star \psi_{j'}(t)| \end{array}$

 W_2 computes wavelet convolutions along (t_1, t_2)

Rotation-Translation Invariance

Laurent Sifre

 $\begin{array}{c} \text{translation} & \text{roto-translation} \\ x(t) \rightarrow & |W_1| \rightarrow |x \star \psi_{j,\theta}(t)| = x_1(j,\theta,t) \rightarrow & |W_2| \rightarrow |x_1 \star \overline{\psi}_{j',l'}(j,\theta,t)| \end{array}$

 W_2 computes wavelet convolutions along (t_1, t_2, θ)

Scalo-Roto-Translation Invariance

Laurent Sifre

 $\begin{array}{cc} \text{translation} & \text{scalo-roto-translation} \\ x(t) & |W_1| & |x \star \psi_{j,\theta}(t)| = x_1(j,\theta,t) \longrightarrow |W_2| & |x_1 \star \overline{\psi}_{j',l'}(j,\theta,t)| \end{array}$

 W_2 computes wavelet convolutions along (t_1, t_2, θ, j)

Rotation and Scaling Invariance

UIUC database: 25 classes

ENS

Laurent Sifre

Training	Translation	Transl + Rotation	+ Scaling
20	20~%	2%	0.6%

Complex Image Classification

CalTech 101 data-basis:

Edouard Oyallon

Arbre de Joshua

Ancre

Castore

 $2^{J} = 2^{5}$

$x \longrightarrow$	$S_J x$ Roto-Trans.		Linear Classif.]> į
---------------------	---------------------	--	-----------------	------

Classification Accuracy

Data Basis	2012	Deep-Net	Scat1	Scat2
CalTech-101	80%	85%	50%	80%
CalTech-256	50%	70%	30%	50%
CIFAR-10	80%	90%	55%	80%

Complex Image Classification

CalTech 101 data-basis:

Edouard Oyallon

Ancre

Metronome

Castore

 $2^J = 2^5$

$x \longrightarrow S_J x_{\text{Roto-Tra}}$.],	Linear Classif.	$] \longrightarrow y$
---	-----	-----------------	-----------------------

Classification Accuracy

Data Basis	2012	Deep-Net	Scat2
CalTech-101	80%	85%	80%
CalTech-256	50%	70%	50%
CIFAR-10	80%	90%	80%

• Given $S_J x$ we want to compute \tilde{x} such that:

$$S_{J}\tilde{x} = \begin{pmatrix} \tilde{x} \star \phi_{2J} \\ |\tilde{x} \star \psi_{\lambda_{1}}| \star \phi_{2J} \\ ... \\ |||\tilde{x} \star \psi_{\lambda_{1}}| \star ..| \star \psi_{\lambda_{m}}| \star \phi_{2J} \end{pmatrix}_{\lambda_{1},...,\lambda_{m}} \begin{pmatrix} x \star \phi_{2J} \\ |x \star \psi_{\lambda_{1}}| \star \phi_{2J} \\ ... \\ |||x \star \psi_{\lambda_{1}}| \star ..| \star \psi_{\lambda_{m}}| \star \phi_{2J} \end{pmatrix}_{\lambda_{1},...,\lambda_{m}} = S_{J}x$$

with $\|\tilde{x}\|$ minimum. Non convex optimisation problem.

- For m = 1 and $2^J = \infty$, minimize $\|\tilde{x}\|$ subject to: $\int \tilde{x}(u) \, du = \int x(u) \, du$ $\forall \lambda_1 \ , \ \|\tilde{x} \star \psi_{\lambda_1}\|_1 = \|x \star \psi_{\lambda_1}\|_1$
 - If x(u) is a Dirac, or a straight edge or a sinusoid then \tilde{x} is equal to x up to a translation.

Sparse Shape Reconstruction

Joan Bruna

With a gradient descent algorithm:

Original images of N^2 pixels:

$m = 1, 2^J = N$: reconstruction from $O(\log_2 N)$ scattering coeff.

$m = 2, 2^J = N$: reconstruction from $O(\log_2^2 N)$ scattering coeff.

Ergodic Texture Reconstructions

Original Textures

Joan Bruna

Gaussian process model with same second order moments

$m = 2, 2^J = N$: reconstruction from $O(\log_2^2 N)$ scattering coeff.

Multiscale Scattering Reconstructions

Original Images N^2 pixels

Scattering Reconstruction $2^J = 16$ $1.4 N^2$ coeff.

 $2^{J} = 32$ $0.5 N^{2}$ coeff.

 $2^{J} = 64$

 $2^J = 128 = N$

Scattering Reconstructions

Original Images

Scat-2. Reconstr. $2^J = 32$

Learning Physics: N-Body Problem

• Energy of d interacting bodies:

N. Poilvert Matthew Hirn

Can we learn the interaction energy f(x) of a system with $x = \{ \text{positions, values} \}$?

Astronomy

Quantum Chemistry

Learning Physics: N-Body Problem N. Poilvert

• Classic energy of d interacting bodies: If $x(u) = \sum_{k=1}^{d} q_k \,\delta(u - p_k)$ then $f(x) = \sum_{k=1}^{d} \sum_{k'=1}^{d} \frac{q_k \,q_{k'}}{|p_k - p_{k'}|^{\beta}}$

Each particle interacts with $O(\log d)$ groups

Theorem: For any $\epsilon > 0$ there exists wavelets with

$$f(x) = \sum_{m=0}^{M} \sum_{\lambda_1, \lambda_m} \alpha(\lambda_1, ..., \lambda_m) S^2 x(\lambda_1, ..., \lambda_m) (1 + \epsilon)$$

• Complex orbital interactions: no analytical energy f(x).

- Invariant to translations, rotations, stable to deformations.
- Data basis $\{x_i, f(x_i)\}_i$ of 700 2D molecules (about 20 atoms)
- Best *M*-term scattering approximation f_M of f:
- M $f_M(x) = \sum \alpha_n \, \phi_n(x)$ $\log \|f - f_M\|$ 7.5 n=1where the $\phi_n(x)$ is a 1st or 2nd order term 6.5 6 $||f_M - f|| \approx C M^{-1/2} \ll M^{-1/d}$ 5.5 $d \approx 60$ degrees of freedom 5 4.5 $M = 80 \qquad ||f - f_M|| = 9 \operatorname{kcal/mole}$ 4 3.5 $\underline{}\log M$ 7 5 2 3 4 6

- Do we need to learn deep net filters ?
- Can we analyse geometry in Euclidean spaces ?
- How much physics can we learn and why ?

Looking for Post-Doc! www.di.ens.fr/data/scattering