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Introduction

• Input: attributes X = {xi}Ni=1, labels Y = {yi}Ni=1 (i.i.d)
• yi ∈ {1, . . . ,K} (classification) or yi ∈ R (regression)
• Goal: Predict y∗ for test data x∗

• Recipe for prediction: Use a ‘random forest’

– Ensemble of randomized decision trees
– State-of-the-art for lots of real world prediction tasks

[Breiman, 2001, Caruana and Niculescu-Mizil, 2006]
– ‘Decision Forests: A Unified Framework for Classification,

Regression, Density Estimation, Manifold Learning and
Semi-Supervised Learning’ [Criminisi et al., 2012]
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Example: Classification tree

• Hierarchical axis-aligned binary partitioning of input space
• Rule for predicting label within each block
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T : list of nodes, feature-id + location of splits for non-leaf nodes
θ: Multinomial parameters at leaf nodes
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Random forest (RF)

• Averaged over iid randomized decision trees T1, . . . , TM
conditioned on X and Y .

p(y∗|x∗) =
1
M

∑
m

p(y∗|x∗, Tm,X ,Y )

• Combining multiple decision trees significantly improves
predictive performance over single trees.

• Technique for variance reduction, not bias reduction.
• Model combination, not Bayesian model averaging.
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Random forest (RF)

• Breiman’s Random Forest [Breiman, 2001]: Bagging +
Randomly subsample features and choose best split
amongst subsampled features, optimising over all split
locations.

• Extremely Randomized Trees [Geurts et al., 2006]
(ERT-k ): Randomly sample k (feature-id, location) pairs
and choose the best split amongst this subset

– no bagging
– ERT-1 does not use labels Y to guide splits!
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Pros and Cons

• Advantages of RF
– Excellent predictive performance (test accuracy)
– Fast to train (in batch setting) and test
– Trees can be trained in parallel
– No overfitting

• Not possible to train incrementally
– Re-training batch version periodically is slow O(N2 log N)

and requires access to past data
– Existing online RF variants

[Saffari et al., 2009, Denil et al., 2013] require
– lots of memory / computation (impractical) or
– need lots of training data before they can deliver good test

accuracy (data inefficient)

Mondrian forests = Mondrian process + Random forests
• Can operate in either batch mode or online mode
• Online speed O(N log N)
• Data efficient (predictive performance of online mode

equals that of batch mode!)
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Mondrian process

Figure: Mondrian Composition II in Red, Blue and Yellow (Source: Wikipedia)

• A stochastic process over binary hierarchical axis-aligned
partitions of Rd [Roy and Teh, 2009].
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Generative process: MP(λ, [`1,u1], [`2,u2])

1. Draw ∆ε from exponential with rate u1 − `1 + u2 − `2
2. IF ∆ε > λ stop,

3. ELSE, sample a split
– Split dimension: choose dimension j with prob ∝ uj − `j
– Split location: choose cut location uniformly from [`j ,uj ]
– Recurse on left and right subtrees with parameter λ−∆ε

�1 u1

u2

�2
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Self-consistency of Mondrian process

• Simulate T ∼MP(λ, [`1,u1], [`2,u2])

• Restrict T to a smaller rectangle [`′1,u
′
1]× [`′2,u

′
2]

�1 u1

u2

�2

• Restriction has distributionMP(λ, [`′1,u
′
1], [`′2,u

′
2])!

• Well-defined extension toMP(λ,R,R), such that
MP(λ, [`1,u1], [`2,u2]) is the restriction to [`1,u1]× [`2,u2].
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Mondrian trees

• UseMP(λ, [`1,u1], . . . , [`d ,ud ]) as prior over decision
trees p(T |X ), where the range is given by X .

• Self-consistency:
– Equivalent to a prior over trees defined on Rd and

independent of X .
– p(T |X ) is simply the restriction to range of X .

• Online learning:
– As dataset grows, we simply unveil T on a larger range.
– We can enlarge the visible range by simulating from a

conditional Mondrian process.
– Distribution of trees in offline and online modes are the

same!
– Order of the data points does not matter.
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Online learning cartoon

Start with data points a and b
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Online learning cartoon

Adding new data point c: update range
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Online learning cartoon

Adding new data point c: introduce new split above existing one
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Online learning cartoon

Adding new data point d : traverse to left child and update range
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Online learning cartoon

Adding new data point d : extend the existing split to new range
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Online learning cartoon

Adding new data point d : split leaf further
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Key differences between Mondrian forests
and existing online random forests

• Splits not extended to unseen regions
• New split can be introduced anywhere in the tree (as long

as it is consistent with current tree)
• The size and lifetime of a node control probability of new

splits being introduced
• Self-consistent hierarchical Bayesian prior on the leaf

parameters (not discussed).
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Experimental setup

• Datasets:

Name D #Classes #Train #Test
Satellite images 36 6 3104 2000

Letter 16 26 15000 5000
USPS 256 10 7291 2007
DNA 180 3 1400 1186

• Training data split into 100 mini batches (unfair to MF)
• Number of trees = 100
• Existing randomised decision trees:

– Periodically retrained offline methods RF, ERT-1, ERT-k .
– Online RF [Saffari et al., 2009]
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Letter
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Figure: Test accuracy

• Data efficiency: Online MF very close to offline Breiman’s
RF and ERT, and significantly outperforms ORF-Saffari.

• Speed: MF much faster than periodically re-trained offline
RF and ERT, as well as online RF.
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USPS
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Satellite Images
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DNA
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Figure: Test accuracy

• Irrelevant features: Choosing splits independent of labels
(MF, ERT-1) harmful in presence of irrelevant features

• Removing irrelevant features (use only the 60 most
relevant features1) improves test accuracy (MF†, ERT-1†)

1https://www.sgi.com/tech/mlc/db/DNA.names 21
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Conclusion

• MF: Alternative to RF that supports incremental learning
• Computationally faster compared to existing online RF and

periodically re-trained Breiman-RF, ERT
• Future work:

– Mondrian forests for high dimensional data with lots of
irrelevant features.

– Use labels to guide splits in MF (e.g. using ERT-k ideas)
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Thank you!

arXiv: http://arxiv.org/abs/1406.2673

code: http://www.gatsby.ucl.ac.uk/∼balaji/mondrianforest/

Questions?

24

http://arxiv.org/abs/1406.2673
http://www.gatsby.ucl.ac.uk/~balaji/mondrianforest/


References I

Breiman, L. (2001).
Random forests.
Mach. Learn., 45(1):5–32.

Caruana, R. and Niculescu-Mizil, A. (2006).
An empirical comparison of supervised learning algorithms.
In Proc. Int. Conf. Mach. Learn. (ICML).

Chipman, H. A., George, E. I., and McCulloch, R. E. (2010).
BART: Bayesian additive regression trees.
Ann. Appl. Stat., 4(1):266–298.

Criminisi, A., Shotton, J., and Konukoglu, E. (2012).
Decision forests: A unified framework for classification, regression,
density estimation, manifold learning and semi-supervised learning.
Found. Trends Comput. Graphics and Vision, 7(2–3):81–227.

25



References II

Denil, M., Matheson, D., and de Freitas, N. (2013).
Consistency of online random forests.
In Proc. Int. Conf. Mach. Learn. (ICML).

Geurts, P., Ernst, D., and Wehenkel, L. (2006).
Extremely randomized trees.
Mach. Learn., 63(1):3–42.

Lakshminarayanan, B., Roy, D. M., and Teh, Y. W. (2013).
Top-down particle filtering for Bayesian decision trees.
In Proc. Int. Conf. Mach. Learn. (ICML).

Roy, D. M. and Teh, Y. W. (2009).
The Mondrian process.
In Adv. Neural Inform. Proc. Syst. (NIPS).

26



References III

Saffari, A., Leistner, C., Santner, J., Godec, M., and Bischof, H. (2009).
On-line random forests.
In Computer Vision Workshops (ICCV Workshops). IEEE.

Teh, Y. W. (2006).
A hierarchical Bayesian language model based on Pitman–Yor
processes.
In Proc. 21st Int. Conf. on Comp. Ling. and 44th Ann. Meeting Assoc.
Comp. Ling., pages 985–992. Assoc. for Comp. Ling.

27



Hierarchical prior over θ

• Gj parametrizes p(y |x) in Bx
j

• Normalized stable process
(NSP): special case of PYP
where concentration = 0

• dj ∈ (0,1) is discount for node j
• Gε|H ∼ NSP(dε,H),

Gj0|Gj ∼ NSP(dj0,Gj),
Gj1|Gj ∼ NSP(dj1,Gj)

H

Gε

G0 G1

G10 G11

0 1

0 1

• E[Gε(s)] = H(s)

• Var[Gε(s)] = (1− dH)H(s)
(
1− H(s)

)
• Closed under Marginalization: G0|H ∼ NSP(dεd0,H)

• dj = e−γ∆j where ∆j is the lifetime of node j
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Posterior inference for NSP

• Special case of approximate inference for PYP [Teh, 2006]
• Chinese restaurant process representation
• Interpolated Kneser-Ney smoothing

– fast approximation
– Restrict number of tables serving a dish to at most 1
– IKN popular smoothing technique in language modeling
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Prediction

• Extend Mondrian to range of test data (similar to training)
– Test data point can potentially branch off and form separate

leaf node of its own (unlike conventional decision trees)
– If test point is in its own node, prediction is made from the

(hierarchical) prior
– Points far away from range of training data are more likely

to lie in their own ode
– We analytically average over every possible extension

(unlike training where we sample an extension)
– Computational complexity linear in tree depth ≈ log(N)

• Prediction interpolates between observed labels and prior
depending on how close test data point is to training data
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