

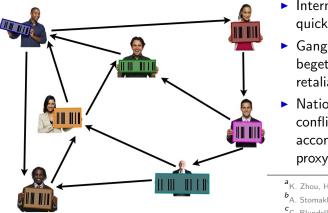
smbc-comics.com

Tracking Influences within Dynamic Networks

Rebecca Willett, University of Wisconsin-Madison

Joint work with Eric Hall

Cascading chains of interactions



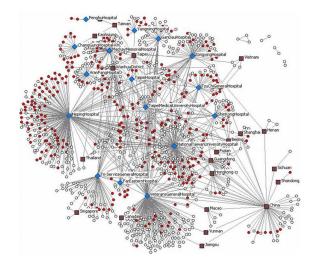
- Internet memes quickly propagate^a
- Gang violence begets retaliations^b
- Nation-state conflicts are accompanied by proxy wars^c

^aK. Zhou, H. Zha, and L. Song, 2013

- ^bA. Stomakhin, M. B. Short, and A. Bertozzi, 2011
- ^cC. Blundell, K. A. Heller, and J. M. Beck, 2012

Can we infer the underlying network of influences from observations of individual events?

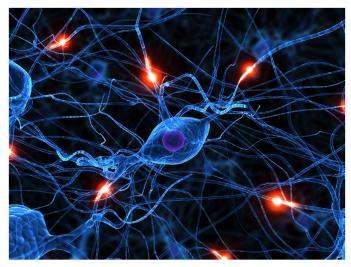
Epidemiology



Can we predict the spread of infectious disease?¹

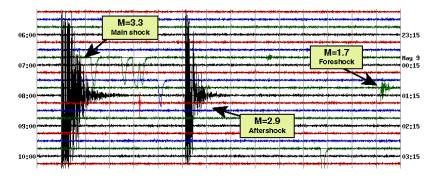
¹http://ai.arizona.edu/research/bioportal/

Functional neural network connectivity



We record neurons firing in response to different stimuli. Can we track the dynamic functional network?

Seismology



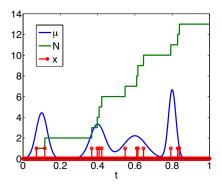
We record seismic events and shocks.² Can we infer patterns of earthquake interactions?

² http://earthquake.usgs.gov/monitoring/helicorders/examples/Fore_main_after.php

Point process likelihood

- For each node k ∈ [[p]], we have a point process with N_{k,τ} = the number of events up to an including time τ.
- Let μ_k(τ) denote a time-varying rate function, so that the likelihood of node k participating in an event between times t₁ and t₂ is controlled by

$$\int_{t_1}^{t_2} \mu_k(\tau) d\tau$$



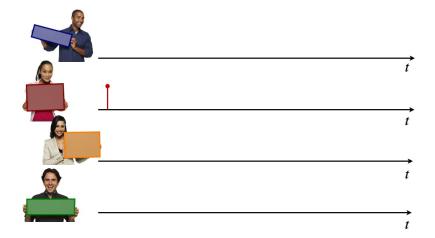
Point processes likelihood

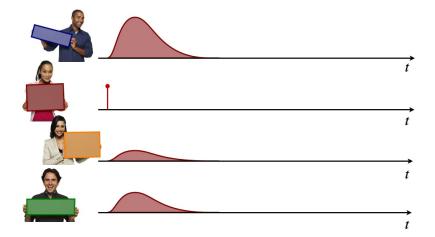
Neglecting terms independent of μ , we have

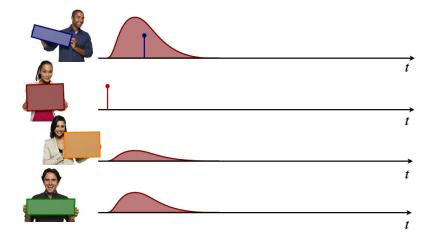
$$-\log(N^{T}|\mu) = \sum_{k=1}^{p} \int_{0}^{T} \log \mu_{k}(\tau) dN_{k,\tau} - \mu_{k}(\tau) d\tau$$
$$\approx \sum_{t=1}^{T/\delta} \langle \delta \mu_{t}, \mathbb{1} \rangle - \langle x_{t}, \log \delta \mu_{t} \rangle.$$

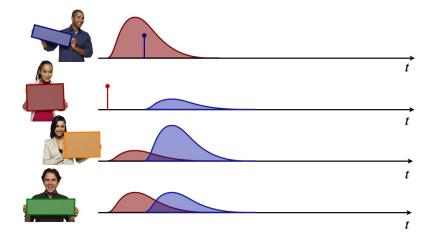
where $x_{t,k}$ is the count of events for node k in the time window $(\delta(t-1), \delta t]$.

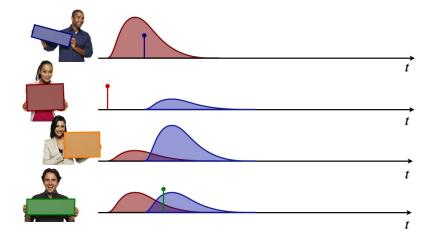
We now need a model for μ that captures the underlying network structure...

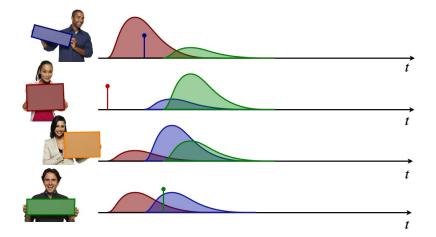


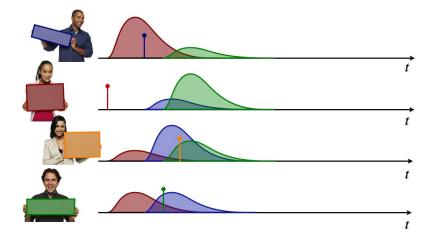


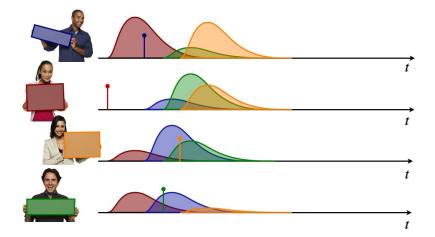


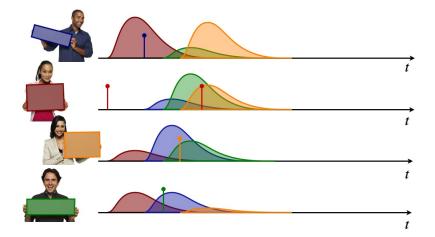


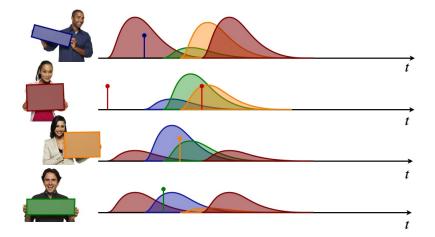


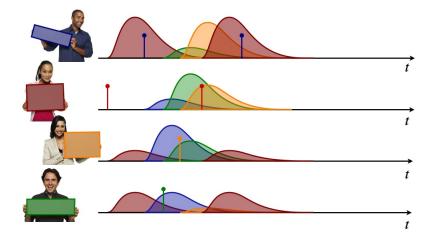




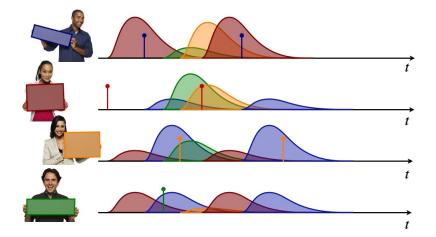


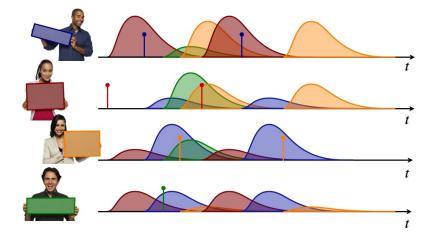


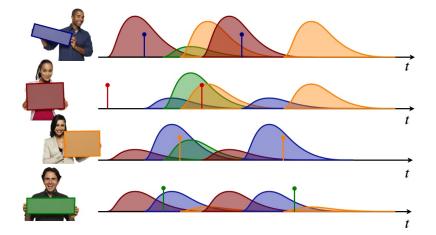


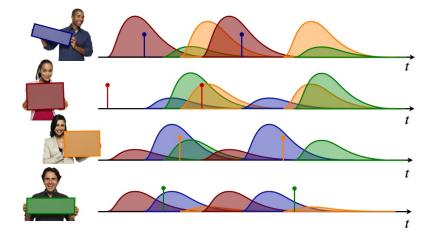


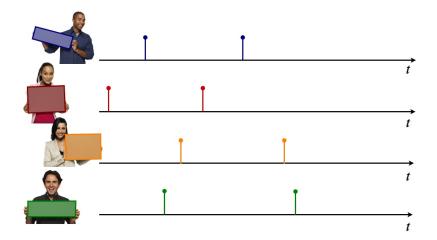












The multivariate Hawkes processes³ considered here are essentially an **autoregressive point process**, where each rate function $\mu_k(\tau)$ depends on the history of past events, N^{τ} :

$$\mu_k(\tau) = \bar{\mu}_k + \sum_{n=1}^{N_\tau} h_{k,k_n}(\tau - \tau_n)$$

The p^2 functions $h_{k_1,k_2}(\tau) = W_{k_1,k_2}h(\tau)$ describe how events associated with node k_1 will impact the likelihood of events associated with node k_2 .

³Hawkes (1971)

Network model

The functions $h_{k_1,k_2}(\tau)$ depend on the (unknown) underlying network connectivity. We assume

$$h_{k_1,k_2}(\tau)=W_{k_1,k_2}h(\tau),$$

where the matrix W represents excitatory influences between nodes.

Our goal is to learn and track Hawkes processes *efficiently* and *robustly* from streaming observations.

Online learning

Let θ be a parameter defining our Hawkes process. For instance, θ might be the weighted adjacency matrix W.

Sequence of events: set initial "prediction" $\hat{\theta}_1$. At time *t*:

- 1. Observe **datum** *x*_{*t*} indicating which nodes participated in events at time *t*.
- **2.** Incur loss $\ell_t(\widehat{\theta}_t) \propto -\log p(x_t | \widehat{\theta}_t)$
- **3.** Make a **prediction** $\hat{\theta}_{t+1}$, which determines the likelihood of nodes participating in an event at time t + 1

How do we make these predictions? How do we evaluate the efficacy of different prediction strategies?

Regret

Definition: The **regret** of $\hat{\theta}_T = (\hat{\theta}_1, \dots, \hat{\theta}_T)$ with respect to a comparator $\theta_T = (\theta_1, \dots, \theta_T)$ is

$$R_T(\boldsymbol{\theta}_T) \triangleq \sum_{t=1}^T \ell_t(\widehat{\theta}_t) - \sum_{t=1}^T \ell_t(\theta_t).$$

Goal: Generate losses comparable to what a batch algorithm might achieve; *i.e.*, **sublinear regret**:

$$rac{1}{T} R_T(oldsymbol{ heta}_T) o 0$$
 as $T o \infty$

Mirror descent⁴

$$\widehat{\theta}_{t+1} = \argmin_{\theta} \eta_t \left\langle \nabla \ell_t(\widehat{\theta}_t), \theta \right\rangle + D(\theta, \widehat{\theta}_t)$$

- $\nabla \ell_t$ is an arbitrary subgradient of ℓ_t
- η_t is the step size
- Special case where $D(\theta, \theta') = \|\theta \theta'\|^2$:

$$\widehat{ heta}_{t+1} \equiv \widehat{ heta}_t - rac{1}{\eta_t}
abla \ell_t(\widehat{ heta}_t)$$

⁴Nemirovski & Yudin 1983; Beck & Teboulle 2003; Zinkevich 2003

Tracking *W* **directly**

With the Hawkes process, we have a negative log likelihood

$$-\log(N^{T}|\mu) \approx \sum_{t=1}^{T/\delta} \langle \delta \mu_{t}, \mathbb{1} \rangle - \langle x_{t}, \log \delta \mu_{t} \rangle$$

where

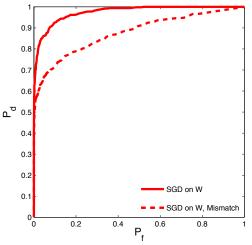
$$\mu_{t,k}(W) = \bar{\mu}_k + \sum_{n=1}^{N_\tau} W_{k,k_n} h(\delta t - \tau_n).$$

Thus we could define the loss function

$$\ell_t(W) = \langle \delta \mu_t(W), \mathbb{1} \rangle - \langle x_t, \log \delta \mu_t(W) \rangle$$

and perform mirror descent directly on W over a convex feasible space \mathcal{W} (*e.g.*, ℓ_1 or nuclear norm ball).

Detection of strong network edges



Unfortunately, this only works well when the influence functions $h_{k,m}(\tau)$ are known *exactly*.

Just tracking W is fragile to model mismatch. Can we instead track W and μ *simultaneously* for increased robustness?

We have

$$-\log(N^{T}|\mu) \approx \sum_{t=1}^{T/\delta} \langle \delta \mu_{t}, \mathbb{1} \rangle - \langle \mathsf{x}_{t}, \log \delta \mu_{t} \rangle.$$

Define the loss to be

$$\ell_t(\mu) \triangleq \langle \delta \mu, \mathbb{1} \rangle - \langle x_t, \log \delta \mu \rangle$$

Static regret bounds

Theorem⁵: Assume
$$\mu_T$$
 is static, so that
 $\mu \triangleq \mu_1 = \mu_2 = \ldots = \mu_T$. If $\eta_t \propto 1/\sqrt{T}$, then
 $R_T(\mu_T) \triangleq \sum_{t=1}^T \ell_t(\hat{\mu}_t) - \sum_{t=1}^T \ell_t(\mu_t) = O\left(\sqrt{T}\right)$.

What's missing?

- Comparing against a static model is weak; how do we do relative to a dynamic comparator?
- What about unknown underlying networks reflecting interactions between data and the θ_ts?

⁵Nemirovski & Yudin 1983; Beck & Teboulle 2003; Zinkevich 2003

Tracking regret against time-varying reference models

Theorem:⁶ If $\eta_t = 1/\sqrt{t}$, then

$$R_{T}(\boldsymbol{\mu}_{T}) = O\left(\sqrt{T}(\boldsymbol{V}_{T}(\boldsymbol{\mu}_{T})+1)\right),$$

where

$$V_{\mathcal{T}}(\boldsymbol{\mu}_{\mathcal{T}}) \triangleq \sum_{t=1}^{T-1} \|\boldsymbol{\mu}_{t+1} - \boldsymbol{\mu}_t\|$$

measures the temporal variation in μ_T .

In other words, the algorithm can track a dynamically changing environment, provided the **changes are sufficiently infrequent and/or smooth (restrictive!)**

⁶Herbster & Warmuth 2001, Cesa-Bianchi & Lugosi 2006, Cesa-Bianchi *et al.* 2012

A dynamical model perspective of Hawkes processes

Recall the Hawkes model

$$\mu_k(\tau) = \bar{\mu}_k + \sum_{n=1}^{N_t} W_{k,k_n} h(\tau - \tau_n)$$

and let

$$h(\tau) = e^{-r\tau} u(\tau).$$

This suggests the dynamical models

$$\mu_{t+1} \approx \Phi_t(\mu_t, W) \triangleq (1 - e^{-r\delta})\overline{\mu} + e^{-r\delta}\mu_t + e^{-r\delta}Wx_t$$

How do we incorporate dynamics into mirror descent?

Dynamic Mirror Descent (DMD)

Our approach: Let Φ_t be a series of predetermined dynamical models; set

$$\begin{split} \widetilde{\mu}_{t+1} &= \operatorname*{arg\,min}_{\mu} \eta_t \langle \nabla \ell_t(\Phi_t(\widetilde{\mu}_t)), \mu \rangle + D(\mu \| \Phi_t(\widetilde{\mu}_t)) \\ \widehat{\mu}_{t+1} &= \Phi_{t+1}(\widetilde{\mu}_{t+1}) \end{split}$$

Theorem: Assume each Φ_t is contractive, so that

$$D(\Phi_t(\mu) \| \Phi_t(\mu')) \leq D(\mu \| \mu') \ \forall \mu, \mu'.$$

Then if $\eta_t \propto \frac{1}{\sqrt{t}}$ we have $R_T(\mu_T) = O(\sqrt{T}[1 + V_{\Phi}(\mu_T)])$ where

$$V_{\Phi}(\boldsymbol{\mu}_{\mathcal{T}}) \triangleq \sum_{t=1}^{\mathcal{T}} \|\mu_{t+1} - \Phi_{t+1}(\mu_t)\|$$

measures the deviation of the comparator from the dynamic models ($\Phi_t s$).

Contractivity

Contractivity condition:

 $D(\Phi_t(\theta) \| \Phi_t(\theta')) - D(\theta \| \theta') \le 0 \qquad \forall \theta, \theta', t$

- **Q:** How much does this condition restrict the class of *W* we may track?
- A: W must ensure $\widetilde{\Phi}_t(\mu) \ge 0$ for all $\mu \succeq 0$ e.g. W models excitation, not inhibition.

In particular, the dynamics are contractive whenever $\widetilde{\Phi}_t(\mu)$ has the form

$$\widetilde{\Phi}_t(\mu) = A_t \mu + W_t b_t + c_t$$

for arbitrary nonnegative W_t , b_t and c_t as long as the eigenvalues of A are bounded by one.

In our setup, $A_t = e^{-rt}I$, so we simply need r > 0.

Tracking *W* **indirectly**

In our setting the dynamical model Φ_t is a function of W.

- ▶ W is unknown and it may be changing over time
- The space of possible Ws is huge

Fortunately, there is still a way to track W.

Lemma: For any $W, W' \in \mathbb{R}^{p \times p}$, let $\widehat{\mu}_1^{(W)} = \widehat{\mu}_1^{(W')}$. Then

$$\widehat{\mu}_t^{(W)} = \widehat{\mu}_t^{(W')} + (W - W')K_t$$

where

$$K_t = (1 - \eta_{t-1})A_{t-1}K_{t-1} + X_{t-1}.$$

This lemma suggests we may compute $\hat{\mu}_t^{(W)}$ for **any** W, and from there easily calculate the $\hat{\mu}_t^{(W)}$ we **would have computed** had we used a different W from the beginning.

Tracking *W* **indirectly**

This lemma suggests we may compute $\widehat{\mu}_t^{(W)}$ for any W, and from there easily calculate the $\widehat{\mu}_t^{(W)}$ we would have computed had we used a different W from the beginning.

Define the loss with respect to W

$$g_t(W) \triangleq \ell_t(\widehat{\mu}_t^{(W)}).$$

- $g_t(W)$ is convex in W
- $g_t(W)$ and its gradient are both easily computable
- ► We can use mirror descent on the sequence of losses g_t over any convex feasible set W

Proposed method

Initialize $\hat{W}_1 = \mathbf{0}$, $K_1 = \mathbf{0}$, $\hat{\mu}_1 = \mathbb{1}$ For t = 1, ..., T

$$\ell_t(\widehat{\mu}_t) = \langle \delta \widehat{\mu}_t, \mathbb{1} \rangle - \langle \log \delta \widehat{\mu}_t, x_t \rangle$$

incur loss

$$\widehat{W}_{t+1} = \operatorname{Proj}_{\mathcal{W}} \left[\widehat{W}_t - \tau_t \left(\frac{-K_t^{\mathsf{T}} X_t}{\widehat{\mu}_t^0 + K_t \widehat{W}_t} + K_t^{\mathsf{T}} \mathbb{1} \right) \right]$$

update network estimate

$$K_{t+1} = (1 - \eta_t) A_t K_t + X_t$$

bookkeeping

$$\widetilde{\mu}_{t+1} = (1 - \eta_t)\widehat{\mu}_t + \eta_t x_t$$

gradient descent

$$\widehat{\mu}_{t+1} = \Phi_t(\widetilde{\mu}_{t+1}, \widehat{W}_t) + (\widehat{W}_{t+1} - \widehat{W}_t) \mathcal{K}_{t+1}$$

update prediction using current network est.

Proposed method

Initialize
$$\hat{W}_{1} = \mathbf{0}, \ K_{1} = \mathbf{0}, \ \hat{\mu}_{1} = \mathbb{1}$$

For $t = 1, ..., T$
 $\ell_{t}(\hat{\mu}_{t}) = \langle \delta \hat{\mu}_{t}, \mathbb{1} \rangle - \langle \log \delta \hat{\mu}_{t}, x_{t} \rangle$
 $\widehat{W}_{t+1} = \operatorname{Proj}_{W} \left[\widehat{W}_{t} - \tau_{t} \left(\frac{-K_{t}^{T} X_{t}}{\widehat{\mu}_{t}^{0} + K_{t} \widehat{W}_{t}} + K_{t}^{T} \mathbb{1} \right) \right]$
 $K_{t+1} = (1 - \eta_{t}) A_{t} K_{t} + X_{t}$
 $\widetilde{\mu}_{t+1} = (1 - \eta_{t}) \widehat{\mu}_{t} + \eta_{t} x_{t}$
 $\widehat{\mu}_{t+1} = \Phi_{t}(\widetilde{\mu}_{t+1}, \widehat{W}_{t}) + (\widehat{W}_{t+1} - \widehat{W}_{t}) K_{t+1}$

Main result

Theorem: Let \mathcal{W} be a convex set of feasible influence matrices W; this set may reflect sparsity or rank constraints.

Let $\Phi_t(\cdot, W)$ be a contractive dynamical model for all $W \in W$ and $t = 1, 2, \ldots$. Let the sequence $\hat{\mu}_T$ be the output of our method, and let μ_T be an arbitrary sequence. If $\eta_t = 1/\sqrt{t}$, then

$$R_{\mathcal{T}}(oldsymbol{\mu}_{\mathcal{T}}) = O(\sqrt{\mathcal{T}}[1 + \min_{W \in \mathcal{W}} V_{\Phi,W}(oldsymbol{\mu}_{\mathcal{T}})])$$

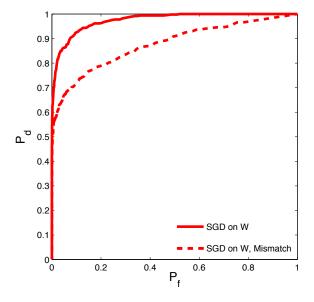
where

$$V_{\Phi,W}(\mu_T) \triangleq \sum_{t=1}^T \|\mu_{t+1} - \Phi_t(\mu_t, W)\|$$

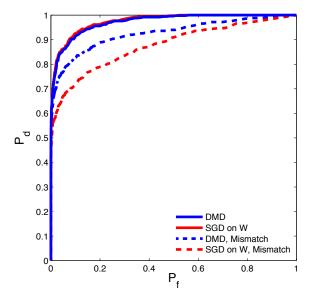
measures variations or deviations of the comparator sequence μ_T from the sequence of dynamical models $\Phi_1, \Phi_2, \ldots, \Phi_T$.

This regret is low for very large sets of μ_T s.

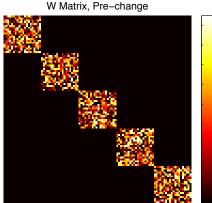
Detection of strong network edges



Detection of strong network edges



Tracking a changing network



0.09

0.08

0.07

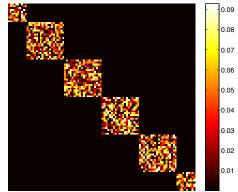
0.06

0.05

0.04

0.03 0.02

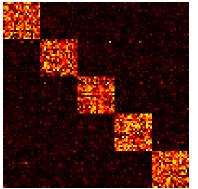
0.01



W Matrix, Post-change

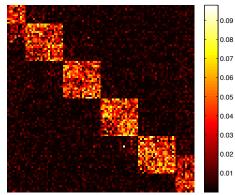
Tracking a changing network

Final W Estimate, Pre-change

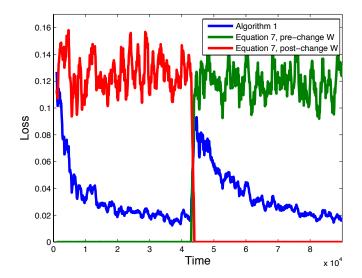


	0.09
	0.08
_	0.07
_	0.06
	0.05
	0.04
	0.03
	0.02
	0.01
	0

Final W Estimate

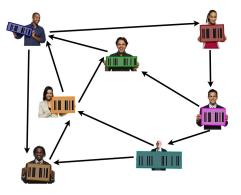


Tracking changing network



Conclusions

- Our techniques offer principled mechanisms for using streaming event observations to track dynamic networks
- Computation scales well with network size
- Theoretical performance bounds are robust to model mismatch and changing networks
- Interesting open questions remain!



Thank you.

