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Cascading chains of interactions

I Internet memes
quickly propagatea

I Gang violence
begets
retaliationsb

I Nation-state
conflicts are
accompanied by
proxy warsc

a
K. Zhou, H. Zha, and L. Song, 2013

b
A. Stomakhin, M. B. Short, and A. Bertozzi, 2011

c
C. Blundell, K. A. Heller, and J. M. Beck, 2012

Can we infer the underlying network of influences from
observations of individual events?
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Epidemiology

Can we predict the spread of infectious disease?1

1
http://ai.arizona.edu/research/bioportal/
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Functional neural network connectivity

We record neurons firing in response to different stimuli.
Can we track the dynamic functional network?
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Seismology

We record seismic events and shocks.2

Can we infer patterns of earthquake interactions?

2
http://earthquake.usgs.gov/monitoring/helicorders/examples/Fore_main_after.php
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Point process likelihood

I For each node k ∈ JpK, we
have a point process with
Nk,τ = the number of events
up to an including time τ .

I Let µk(τ) denote a
time-varying rate function,
so that the likelihood of
node k participating in an
event between times t1 and
t2 is controlled by∫ t2

t1

µk(τ)dτ
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Point processes likelihood

Neglecting terms independent of µ, we have

− log(NT |µ) =

p∑
k=1

∫ T

0
logµk(τ)dNk,τ − µk(τ)dτ

≈
T/δ∑
t=1

〈δµt ,1〉 − 〈xt , log δµt〉.

where xt,k is the count of events for node k in the time window
(δ(t − 1), δt].

We now need a model for µ that captures the underlying
network structure...
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Multivariate Hawkes Processes
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Multivariate Hawkes Processes

The multivariate Hawkes processes3 considered here are essentially
an autoregressive point process, where each rate function µk(τ)
depends on the history of past events, Nτ :

µk(τ) = µ̄k +
Nτ∑
n=1

hk,kn(τ − τn)

The p2 functions hk1,k2(τ) = Wk1,k2h(τ) describe how events
associated with node k1 will impact the likelihood of events
associated with node k2.

3
Hawkes (1971)
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Network model

The functions hk1,k2(τ) depend on the (unknown) underlying
network connectivity. We assume

hk1,k2(τ) = Wk1,k2h(τ),

where the matrix W represents excitatory influences between
nodes.

Our goal is to learn and track Hawkes
processes efficiently and robustly from

streaming observations.
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Online learning

Let θ be a parameter defining our Hawkes process. For instance, θ
might be the weighted adjacency matrix W .

Sequence of events: set initial “prediction” θ̂1. At time t:

1. Observe datum xt indicating which nodes participated in
events at time t.

2. Incur loss `t(θ̂t) ∝ − log p(xt |θ̂t)
3. Make a prediction θ̂t+1, which determines the likelihood of

nodes participating in an event at time t + 1

How do we make these predictions? How do we evaluate the
efficacy of different prediction strategies?
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Regret

Definition:The regret of θ̂T = (θ̂1, . . . , θ̂T ) with respect to a
comparator θT = (θ1, . . . , θT ) is

RT (θT ) ,
T∑
t=1

`t(θ̂t)−
T∑
t=1

`t(θt).

Goal: Generate losses comparable to what a batch algorithm
might achieve; i.e., sublinear regret:

1

T
RT (θT )→ 0 as T →∞
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Mirror descent4

θ̂t+1 = argmin
θ

ηt

〈
∇`t(θ̂t), θ

〉
+ D(θ, θ̂t)

I ∇`t is an arbitrary subgradient of `t
I ηt is the step size

I Special case where D(θ, θ′) = ‖θ − θ′‖2:

θ̂t+1 ≡ θ̂t −
1

ηt
∇`t(θ̂t)

4
Nemirovski & Yudin 1983; Beck & Teboulle 2003; Zinkevich 2003
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Tracking W directly

With the Hawkes process, we have a negative log likelihood

− log(NT |µ) ≈
T/δ∑
t=1

〈δµt ,1〉 − 〈xt , log δµt〉

where

µt,k(W ) = µ̄k +
Nτ∑
n=1

Wk,knh(δt − τn).

Thus we could define the loss function

`t(W ) = 〈δµt(W ),1〉 − 〈xt , log δµt(W )〉

and perform mirror descent directly on W over a convex feasible
space W (e.g., `1 or nuclear norm ball).

15 / 33



Detection of strong network edges
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Unfortunately, this only works well when the influence
functions hk,m(τ) are known exactly.
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Just tracking W is fragile to model
mismatch. Can we instead track W and µ
simultaneously for increased robustness?

We have

− log(NT |µ) ≈
T/δ∑
t=1

〈δµt ,1〉 − 〈xt , log δµt〉.

Define the loss to be

`t(µ) ,〈δµ,1〉 − 〈xt , log δµ〉
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Static regret bounds

Theorem5: Assume µT is static, so that
µ , µ1 = µ2 = . . . = µT . If ηt ∝ 1/

√
T , then

RT (µT ) ,
T∑
t=1

`t(µ̂t)−
T∑
t=1

`t(µt) = O
(√

T
)
.

What’s missing?

I Comparing against a static model is weak; how do we do
relative to a dynamic comparator?

I What about unknown underlying networks reflecting
interactions between data and the θts?

5
Nemirovski & Yudin 1983; Beck & Teboulle 2003; Zinkevich 2003
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Tracking regret against time-varying reference
models

Theorem:6 If ηt = 1/
√
t, then

RT (µT ) = O
(√

T (VT (µT ) + 1)
)
,

where

VT (µT ) ,
T−1∑
t=1

‖µt+1 − µt‖

measures the temporal variation in µT .

In other words, the algorithm can track a dynamically changing
environment, provided the changes are sufficiently infrequent
and/or smooth (restrictive!)

6
Herbster & Warmuth 2001, Cesa-Bianchi & Lugosi 2006, Cesa-Bianchi et al. 2012
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A dynamical model perspective of Hawkes processes

Recall the Hawkes model

µk(τ) = µ̄k +
Nt∑
n=1

Wk,knh(τ − τn)

and let
h(τ) = e−rτu(τ).

This suggests the dynamical models

µt+1 ≈ Φt(µt ,W ) , (1− e−rδ)µ̄+ e−rδµt + e−rδWxt

How do we incorporate dynamics into mirror descent?

20 / 33



Dynamic Mirror Descent (DMD)
Our approach: Let Φt be a series of predetermined dynamical
models; set

µ̃t+1 = arg min
µ

ηt〈∇`t(Φt(µ̃t)), µ〉+ D(µ‖Φt(µ̃t))

µ̂t+1 = Φt+1(µ̃t+1)

Theorem: Assume each Φt is contractive, so that

D(Φt(µ)‖Φt(µ
′)) ≤ D(µ‖µ′) ∀µ, µ′.

Then if ηt ∝ 1√
t

we have RT (µT ) = O(
√
T [1 + VΦ(µT )]) where

VΦ(µT ) ,
T∑
t=1

‖µt+1 − Φt+1(µt)‖

measures the deviation of the comparator from the dynamic
models (Φts).
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Contractivity

Contractivity condition:

D(Φt(θ)‖Φt(θ
′))− D(θ‖θ′) ≤ 0 ∀θ, θ′, t

Q: How much does this condition restrict the class of W we
may track?

A: W must ensure Φ̃t(µ) ≥ 0 for all µ � 0 – e.g. W models
excitation, not inhibition.

In particular, the dynamics are contractive whenever Φ̃t(µ) has the
form

Φ̃t(µ) = Atµ+ Wtbt + ct

for arbitrary nonnegative Wt , bt and ct as long as the eigenvalues
of A are bounded by one.

In our setup, At = e−rt I , so we simply need r > 0.
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Tracking W indirectly
In our setting the dynamical model Φt is a function of W .

I W is unknown – and it may be changing over time

I The space of possible W s is huge

Fortunately, there is still a way to track W .

Lemma: For any W ,W ′ ∈ Rp×p, let µ̂
(W )
1 = µ̂

(W ′)
1 . Then

µ̂
(W )
t = µ̂

(W ′)
t + (W −W ′)Kt

where
Kt = (1− ηt−1)At−1Kt−1 + Xt−1.

This lemma suggests we may compute µ̂
(W )
t for any W , and

from there easily calculate the µ̂
(W )
t we would have

computed had we used a different W from the beginning.
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Tracking W indirectly

This lemma suggests we may compute µ̂
(W )
t for any W , and from

there easily calculate the µ̂
(W )
t we would have computed had we

used a different W from the beginning.

Define the loss with respect to W

gt(W ) , `t(µ̂
(W )
t ).

I gt(W ) is convex in W

I gt(W ) and its gradient are both easily computable

I We can use mirror descent on the sequence of losses gt over
any convex feasible set W
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Proposed method
Initialize Ŵ1 = 0, K1 = 0, µ̂1 = 1

For t = 1, ...,T

`t(µ̂t) =〈δµ̂t ,1〉 − 〈log δµ̂t , xt〉
incur loss

Ŵt+1 =ProjW

[
Ŵt − τt

(
−KT

t Xt

µ̂0
t + KtŴt

+ KT
t 1

)]
update network estimate

Kt+1 =(1− ηt)AtKt + Xt

bookkeeping

µ̃t+1 =(1− ηt)µ̂t + ηtxt

gradient descent

µ̂t+1 =Φt(µ̃t+1, Ŵt) + (Ŵt+1 − Ŵt)Kt+1

update prediction using current network est.
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Proposed method

Initialize Ŵ1 = 0, K1 = 0, µ̂1 = 1

For t = 1, ...,T

`t(µ̂t) =〈δµ̂t ,1〉 − 〈log δµ̂t , xt〉

Ŵt+1 =ProjW

[
Ŵt − τt

(
−KT

t Xt

µ̂0
t + KtŴt

+ KT
t 1

)]
Kt+1 =(1− ηt)AtKt + Xt

µ̃t+1 =(1− ηt)µ̂t + ηtxt

µ̂t+1 =Φt(µ̃t+1, Ŵt) + (Ŵt+1 − Ŵt)Kt+1
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Main result

Theorem: Let W be a convex set of feasible influence matrices
W ; this set may reflect sparsity or rank constraints.

Let Φt(·,W ) be a contractive dynamical model for all W ∈ W and
t = 1, 2, . . .. Let the sequence µ̂T be the output of our method,
and let µT be an arbitrary sequence. If ηt = 1/

√
t, then

RT (µT ) = O(
√
T [1 + min

W∈W
VΦ,W (µT )])

where

VΦ,W (µT ) ,
T∑
t=1

‖µt+1 − Φt(µt ,W )‖

measures variations or deviations of the comparator sequence µT

from the sequence of dynamical models Φ1,Φ2, . . . ,ΦT .

This regret is low for very large sets of µT s.
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Detection of strong network edges
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Tracking a changing network

W Matrix, Pre change
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Tracking a changing network

Final W Estimate, Pre change
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Tracking changing network
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Algorithm 1
Equation 7, pre change W
Equation 7, post change W

31 / 33



Conclusions

I Our techniques offer
principled mechanisms
for using streaming event
observations to track
dynamic networks

I Computation scales well
with network size

I Theoretical performance
bounds are robust to
model mismatch and
changing networks

I Interesting open
questions remain!
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Thank you.
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