
1

1. Binary Adder – Subtractor

Logic Design with MSI Circuits
There are several specialized MSI components
that have extensive use in digital systems.

These are classified as standard components.

These include adders, subtractors, comparators,
decoders, encoders and multiplexers.

The most basic arithmetic operation is the addition
of two binary digits. This simple addition consists
of four possible elementary operations:

The first three operations produce a sum (S) of
one digit, but when both augend and addend bits
are equal to 1 a carry (C) is also generated (this
propagates to the next most significant stage of
the addition).

1011
101
110
000

=+
=+
=+
=+

2

1.1 Half Adder

Performs the addition of two bits.

xyC
yxyxS

=
′+′=

Implementation:

xyC
yxS

=
⊕=

xyC
yxyxS

=
′+′=

3

1.2 Full Adder

Performs the arithmetic sum of three bits.

Karnaugh maps:

C

4

The full adder can be also realized with two half
adders and one OR-gate:

Alternative Implementation:

The output S from the second half adder is the X-
OR of z and the output of the first half adder,
giving:

The carry output is:

zyxxyzzyxzyx
yxxyzyxyxz
yxyxzyxyxz

yxzS

′′++′′+′′=
′′++′+′′=

′′′+′+′+′′=
⊕⊕=

)()(
)()(

)(

xyyzxzyxxyyxyxzC +′+′=+′+′=)(

5

1.3 Binary Adder

Produces the arithmetic sum of two binary
numbers. It can be realized with full adders (FAs)
connected in cascade. A 4-bit binary ripple adder
is realized as shown below:

An n-bit adder requires n full adders with each
output carry connected to the input carry of the
next higher-order full adder.

Example: Consider the two binary numbers, A =
1011 and B = 0011. Their sum S = 1110 is formed
with the 4-bit adders as follows:

6

1.4 Carry Propagation

The longest propagation time in a binary ripple
adder is the time it takes the carry to propagate
through all full adders.

The number of gate levels for the carry propagation
can be found from the circuit of the full adder:

The subscript i denotes a given stage in the adder.
The signals Pi and Gi settle to their steady state
values after they propagate through their gates. Pi
and Gi are common to all full adders and depend
only on the input augend and addend bits.

The signal from the input carry Ci to the output
carry Ci+1, propagates through two gates. If there
are four full adders, the output carry C4 would
have 2 X 4 = 8 gate levels from C0 to C4.

Clearly, carry propagation time the limiting factor
on the speed with which two numbers are added.

7

The most widely used technique for reducing the
carry propagation time in a parallel adder employs
the principle of carry lookahead.

Consider again the circuit of the full adder:

If two new binary variables are defined:

iii

iii

BAG
BAP

=
⊕=

the output sum and carry can be expressed as:

iiii

iii

CPGC
CPS
+=

⊕=

+1

Gi is called a carry generate and it produces a
carry of 1, regardless of the input carry Ci.

Pi is called a carry propagate because it is the term
associated with the propagation of the carry from
Ci to Ci+1.

8

We can now write the Boolean functions for the
carry outputs of each stage and substitute for each
Ci its value from the previous equations:

These expressions are implemented in the
following carry lookahead generator:

00120121222223

00101100111112

0001

0

)(

carry input

CPPPGPPGPGCPGC
CPPGPGCGPGCPGC

CPGC
C

+++=+=
++=+=+=

+=
=

9

The construction of a 4-bit adder with a carry
lookahead scheme is shown below:

All output carries are generated after a delay
through two levels of gates. Thus outputs S1
through S3 have equal propagation times.

The two level circuit for the output carry C4 is not
shown. This can be derived by the equation-
substitution method.

10

1.5 Binary Subtractor

The subtraction of unsigned binary numbers can
be simplified by means of complements. For
example, A – B can be done by taking the 2’s
complement of B and adding it to A. The 2’s
complement can be obtained by taking the 1’s
complement and adding 1 to the least significant
pair of bits. The 1’s complement can be realized
with inverters and a 1 can be added to the sum
through the input carry.

A 4-bit adder-subtractor circuit is shown below:

M = 0; addition M = 1; subtraction

The V bit detects an overflow when the two binary
numbers to be added are signed.

11

Sometimes, when an adder/subtractor is using
signed arithmetic, there is arithmetic overflow from
the most significant magnitude bit into the sign bit.
An overflow may occur if the two numbers added
are both positive or negative.

An example of 4 possible situations that may arise
is given below for a 4-bit (n = 4) word. For each
case the carries Cn-1 and Cn are recorded:

1.6 Overflow

In the case where the sum should +11 or -11, the
corresponding binary sum is wrong. It is obvious
that an overflow flag should be raised when Cn-1 =
1 and Cn = 0, or, when Cn-1 = 0 and Cn = 1. Hence,
the equation for overflow is:

nn CCV ⊕= −1 12

2. Decimal Adder
Computers or calculators that perform arithmetic
operations directly in the decimal number system
represent decimal numbers in binary-coded form.

The 8421 weighted coding scheme is the most
commonly occurring in digital systems and is often
referred to as simply BCD (binary-coded decimal).

When using BCD, a single-decade decimal adder
can be realized by first performing conventional
binary addition on two binary-coded operands and
then applying a corrective procedure. This is
illustrated below:

13

Since each operand digit does not exceed 9, the
output sum cannot be greater than 9 + 9 +1 = 19,
the 1 in the sum being an input carry.

The various outputs from the 4-bit binary adder
and the required outputs from the single-decade
decimal adder are summarized in the table below:

No correction to the binary sum is needed when
KP3P2P1P0 ≤ 01001.

However, 0110 (decimal 6) must be added to
P3P2P1P0 when KP3P2P1P0 > 01001. 14

The logic circuit that detects the necessary
correction can be derived from the table entries.

Clearly, a correction is needed when the binary
sum has an output carry K = 1.

For the other six combinations from 1010 through
1111 (that also need a correction), a Boolean
expression is required to detect them:

13236 Add PPPPK ++=

The first term corresponds to the decimal sums 10
to 15 where the carry bit K is 1. The remaining two
terms correspond to the decimal sums 16 to 19
where K = 0.

The condition for a correction and an output carry
can be expressed by the Boolean function:

1323 PPPPf +=

15

The logic diagram of a single-decade BCD adder is
shown below:

Whenever Cout = 0, the outputs from the upper 4-bit
binary adder are sent to the lower 4-bit adder and
decimal 0 is added.

However, whenever Cout = 1, decimal 6 is added to
the outputs of the upper 4-bit binary adder so that
the correct sum digit is obtained.

A decimal adder for two n-digit BCD numbers can
be constructed by cascading the above system in
much the same way as was done for the ripple
binary adder.

16

3. Binary Multiplier
Multiplication of binary numbers is performed in
the same way as in decimal numbers. The
multiplicand is multiplied by each bit of the
multiplier starting from the LSB. Each such
multiplication forms a partial product. Successive
partial products are shifted one position to the left.
The final product is obtained from the sum of the
partial products. A 2-bit by 2-bit binary multiplier is
shown below. It is realized using AND-gates and
two half adder (HA) circuits:

17

A combinational circuit binary multiplier with more
bits can be constructed in a similar fashion. For J
multiplier bits and K multiplicand bits (J X K) AND-
gates and (J – 1) K-bit adders to produce a product
of J + K bits. The logic diagram of a 4-bit by 3-bit
binary multiplier is shown below:

18

4. Magnitude Comparator
A circuit that compares two numbers, A and B,
and determines their relative magnitudes.

So the output is 1 if A = B = 0 or if A = B = 1. In
addition to the equality relation, the outcome must
indicate whether A > B, or A < B:

and from the table it is easy to show that:

ABBABA
BABA
BABA

+′′==
′=>

′=<

with the following NAND-gate realization:

4.1 1-bit Comparator

For this case, it is simply the X-NOR function:

BAABf ′′+=

19

In this case an algorithm is required. Let the words
be:

0123

0123

BBBBB
AAAAA

=
=

4.2 4-bit Comparator

The equality relation of each pair of bits can be
expressed logically with the X-NOR function as:

3,2,1,0 for =′′+= iBABAx iiiii

where xi = 1 only if the pair of bits in position i are
equal (i.e., if both are 1 or both are 0).

For the equality condition to exist, all xi variables
must be equal to 1. This dictates an AND operation
of all variables:

0123)(xxxxBA ==

20

To determine whether A > B or A < B, examine the
relative magnitudes of pairs of significant digits
starting from the most significant position:

00123112322333

00123112322333

)(

)(

BAxxxBAxxBAxBABA

BAxxxBAxxBAxBABA

′+′+′+′=<

′+′+′+′=>

The symbols (A > B) and (A < B) are binary
outputs that are equal to 1 when A > B or A < B,
respectively.

Finally, the logic diagram of the 4-bit magnitude
comparator is as follows:

If the two digits are equal, compare the next
lower significant pair of digits. The comparison
continues until a pair of unequal digits is found.
If the corresponding digit of A is 1 and that of B
is 0, conclude that A > B.
If the corresponding digit of A is 0 and that of B
is 1, conclude that A < B.

The sequential comparison can be expressed
logically by the two Boolean functions:

21

0123

0123

BBBBB
AAAAA

=
=

3,2,1,0 for =′′+= iBABAx iiiii

The four x outputs are generated with X-NOR
circuits and applied to an AND gate to give the
output binary variable (A = B).

The other two outputs use the x variables to
generate the Boolean functions shown before.

22

5. Decoders
Often, digital information represented in dome
binary form must be converted into some
alternative digital form. This is achieved by a
multiple-input, multiple output network referred to
as a decoder. The most commonly used decoder
is the n-to-2n-line decoder:

The structure of a such decoder is straightforward.
Consider the truth table of a 3-to-8-line decoder:

23

This corresponds to the logic diagram shown
below:

A particular application for this decoder is binary-
to-octal conversion. The input variables represent
a binary number, and the outputs represent the
eight digits in the octal number system.

24

Some decoders include one or more enable inputs
to control the circuit operation. The logic diagram
and truth table of a 2-to-4-line decoder are shown
below:

A decoder with enable input can function as a
demultiplexer. The above decoder can function as
a 4-to-1-line demultiplexer when E is taken as a
data input line and A and B are taken as the
selection inputs.

5.1 Decoders with an Enable Input

25

Decoders with enable inputs can be connected
together to form a larger decoder circuit. A 4-to-16-
line decoder realized using two 3-to-8-line
decoders is shown below:

When w = 0, the top decoder is enabled and the
other is disabled. The bottom decoder outputs are
all 0’s, and the top eight outputs generate
minterms 0000 to 0111.

When w = 1, the enabled conditions are reversed;
the bottom decoder generates minterms 1000 to
1111, while the outputs of the top decoder are all
0’s.

26

The n-to-2n-line decoder is only one of several
types of decoders. Function-specific decoders exist
having fewer than 2n outputs. Examples include
the BCD-to-decimal decoder (7442A) and the
BCD-to-7-segment decoder.

27

5.2 Combinational Logic Implementation

An n-to-2n-line decoder is a minterm generator.
Recall that any Boolean function is describable by
a sum-of-minterms. Thus, by using OR-gates in
conjunction with an n-to-2n-line decoder
realizations of Boolean functions are possible.
However, these realizations do not correspond to
minimal sum-of-products.

Consider the pair of expressions:

∑
∑

=

=

)7,5,1(),,(

)5,4,2,1(),,(

0122

0121

xxxf

xxxf

Using a single 3-to-8-line decoder and two OR-
gates, the following realization is obtained:

28

When more than ½ the total number of minterms
must be OR-ed, it is usually more economical to
use NOR-gates rather than OR-gates to do the
summing. Consider the pair of expressions:

∑
∑

=

=

)6,4,3,2,1(),,(

)6,5,4,3,1,0(),,(

0122

0121

xxxf

xxxf

These may be realized with a 3-to-8-line decoder
and two OR-gates having a total of 11 terminals
between them. However, a more efficient
realization is to re-write the expressions as:

This corresponds to the realization shown below:

∑

∑
=′=′′

=′=′′

)7,5,0(),,(),,(

)7,2(),,(),,(

01220122

01210121

xxxfxxxf

xxxfxxxf

A total of five gate-input terminals are needed.

29

6. Encoders
Perform the inverse operation of decoders. An
encoder has 2n (or fewer) input lines and n output
lines. The output lines generate the binary code
corresponding to the input value. An example of
an encoder is the octal-to-binary encoder whose
truth table is as follows:

The equations for the three outputs are:

7654

7632

7531

DDDDx
DDDDy
DDDDz

+++=
+++=
+++=

The encoder can be realized with three OR-gates.

30

6.1 Priority Encoder

The encoder defined before has the limitation that
only one input can be active at any given time. If
two inputs are active simultaneously, the output
produces an undefined combination. This is
resolved by establishing an input priority function.

The truth table of a four-input priority encoder is:

In addition to the two outputs, x and y, the circuit
has a third output V; this is a valid bit indicator and
is set to 1 when one or more inputs are equal to 1.

X’s in the output represent don’t-care conditions.

X’s in the input columns are for representing the
truth table in condensed form. Instead of listing all
16 minterms of four variables, the truth table uses
an X to represent either 1 or 0.

According to the table, D3 has the highest priority
followed by D2 and D1.

31

The maps for simplifying outputs x and y are
shown below:

The condition for output V is an OR function of all
the input variables:

The priority encoder is implemented as follows:

3210 DDDDV +++=

32

7. Multiplexers
A multiplexer is a circuit that selects binary
information from one of many input lines and
directs it to a single output. Normally, there are 2n

input lines and n selection lines whose bit
combination determine which input is selected.

The logic and block diagrams of a 2-to-1-line
multiplexer are shown below:

The circuit has two data input lines, I1 and I2, one
output line Y, and one selection line S.

When S = 1, the lower AND gate is enabled and I1
has path to the output. This multiplexer acts like a
switch that selects one of the two sources.

33

A 4-to-1-line multiplexer is shown below:

A multiplexer is also called a data selector, since it
selects one of many inputs and steers the binary
information to the output line.

In general, a 2n-to-1-line multiplexer is constructed
from an n-to-2n decoder by adding to it 2n input
lines, one to each AND gate. The outputs of the
AND gates are applied to a single OR gate.

As in decoders, multiplexers may have an enable
input to control the operation of the unit.

34

By interconnecting several multiplexers in a
treelike structure, it is possible to produce a larger
multiplexer. For example, a 16-to-1 line multiplexer
may be constructed using five 4-to-1-line
multiplexers as follows:

35

One of the primary applications of multiplexers is to
provide for the transmission of information from
several sources over a single path. This process is
known as multiplexing. E.g., the multiplexing of
conversations on the telephone system.

When a multiplexer is used in conjunction with a
demultiplexer, an effective means is provided for
connecting information from several source
locations to several destination locations. This
basic application is illustrated below:

By using n of the structures shown above in
parallel, an n-bit word from any of four source
locations is transferred to the four destination
locations.

7.1 MUX/DeMUX Transmission System

36

7.2 Logic Design with Multiplexers

Consider the Boolean function of three variables:

The realization is obtained by placing x, y, and z
on the S2, S1, and S0 lines respectively, logic-1 on
data input lines I0, I2, I3, and I5 and logic-0 on the
remaining data input lines. Also the multiplexer
must be enabled by setting E = 1.

∑=)5,3,2,0(),,(zyxf

The function can be implemented with an 8-to-1-
line multiplexer:

37

If at least one input variable of a Boolean function
is assumed to be available in both its normal and
complemented form, then any n-variable function
can be realized with a 2n–1-to-1-line multiplexer.

For example, reconsider the previous function:

Doing some simple factoring becomes:

zyxyzxzyxzyx
zyxf

′+′+′′+′′′=

= ∑)5,3,2,0(),,(

which is realized using a 4-to-1-line multiplexer:

The last term, xy(0), was included to indicate what
input must appear on the I3 line to provide for the
appropriate output when selected with x = y =1.

)0()()1()(
)()()(),,(

xyzyxyxzyx
zyxzzyxzyxzyxf

+′+′+′′′=
′++′′+′′′=

38

Karnaugh maps provide a convenient tool for
obtaining multiplexer realizations. First it is
necessary to establish which variables to assign to
the select lines. Next the inputs for the Ii data lines
are read directly from the map.

To illustrate this, again consider the three-variable
function:

Assume that x is placed on the S1 line and y is
placed on the S0 line, the resulting map is:

Grouping the 1-cells, the expressions for the sub-
functions may be written. That is, I0 = z′, I1 = 1, I2 =
z, and I3 = 0. The logic realization is as before.

∑=)5,3,2,0(),,(zyxf

submaps:

39

7.3 Three-State Gates

A multiplexer can be constructed with three-state
gates. A three-state gate is a digital circuit that
exhibits three states. Two of the states are signals
equivalent to logic 1 and 0. The third state is a
high-impedance state which behaves like an open
circuit.

The graphic symbol of a three-state buffer is:

The presence of the high-impedance state allows
the connection of a large number of three-state
gate outputs to a common line without endangering
loading effects.

The realization of a 2-to-1-line multiplexer with
three-state buffers is shown below:

40

and the construction of a 4-to-1-line multiplexer is
shown below:

The use of a decoder ensures that no more than
one buffer control input is active at any given time.

When the EN input of the decoder is 0, all of its
four outputs are 0, and the bus line is in a high-
impedance state.

When EN is active, one of the buffers will be active
depending on the binary value in S1 and S2 of the
decoder.

