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1. Binary Adder – Subtractor

Logic Design with MSI Circuits
There are several specialized MSI components 
that have extensive use in digital systems.

These are classified as standard components.

These include adders, subtractors, comparators, 
decoders, encoders and multiplexers.  

The most basic arithmetic operation is the addition 
of two binary digits. This simple addition consists 
of four possible elementary operations:

The first three operations produce a sum (S) of 
one digit, but when both augend and addend bits 
are equal to 1 a carry (C) is also generated (this 
propagates to the next most significant stage of 
the addition).
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1.1  Half Adder

Performs the addition of two bits.
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Implementation:
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1.2  Full Adder

Performs the arithmetic sum of three bits.

Karnaugh maps:

C
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The full adder can be also realized with two half 
adders and one OR-gate:

Alternative Implementation:

The output S from the second half adder is the X-
OR of z and the output of the first half adder, 
giving:

The carry output is:
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1.3  Binary Adder

Produces the arithmetic sum of two binary 
numbers. It can be realized with full adders (FAs) 
connected in cascade. A 4-bit binary ripple adder 
is realized as shown below: 

An n-bit adder requires n full adders with each 
output carry connected to the input carry of the 
next higher-order full adder.

Example: Consider the two binary numbers, A = 
1011 and B = 0011. Their sum S = 1110 is formed 
with the 4-bit adders as follows: 
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1.4  Carry Propagation

The longest propagation time in a binary ripple 
adder is the time it takes the carry to propagate 
through all full adders.

The number of gate levels for the carry propagation 
can be found from the circuit of the full adder:

The subscript i denotes a given stage in the adder. 
The signals Pi and Gi settle to their steady state 
values after they propagate through their gates. Pi
and Gi are common to all full adders and depend 
only on the input augend and addend bits.

The signal from the input carry Ci to the output 
carry Ci+1, propagates through two gates. If there 
are four full adders, the output carry C4 would 
have 2 X 4 = 8 gate levels from C0 to C4.

Clearly, carry propagation time the limiting factor 
on the speed with which two numbers are added.
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The most widely used technique for reducing the 
carry propagation time in a parallel adder employs 
the principle of carry lookahead.

Consider again the circuit of the full adder:

If two new binary variables are defined:
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the output sum and carry can be expressed as:
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Gi is called a carry generate and it produces a 
carry of 1, regardless of the input carry Ci.

Pi is called a carry propagate because it is the term 
associated with the propagation of the carry from 
Ci to Ci+1.

8

We can now write the Boolean functions for the 
carry outputs of each stage and substitute for each 
Ci its value from the previous equations:

These expressions are implemented in the 
following carry lookahead generator:
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The construction of a 4-bit adder with a carry 
lookahead scheme is shown below:

All output carries are generated after a delay 
through two levels of gates. Thus outputs S1
through S3 have equal propagation times.

The two level circuit for the output carry C4 is not 
shown. This can be derived by the equation-
substitution method.

10

1.5  Binary Subtractor

The subtraction of unsigned binary numbers can 
be simplified by means of complements. For 
example, A – B can be done by taking the 2’s 
complement of B and adding it to A. The 2’s 
complement can be obtained by taking the 1’s 
complement and adding 1 to the least significant 
pair of bits. The 1’s complement can be realized 
with inverters and a 1 can be added to the sum 
through the input carry.

A 4-bit adder-subtractor circuit is shown below: 

M = 0; addition M = 1; subtraction

The V bit detects an overflow when the two binary 
numbers to be added are signed.
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Sometimes, when an adder/subtractor is using 
signed arithmetic, there is arithmetic overflow from 
the most significant magnitude bit into the sign bit. 
An overflow may occur if the two numbers added 
are both positive or negative.

An example of 4 possible situations that may arise 
is given below for a 4-bit (n = 4) word. For each 
case the carries Cn-1 and Cn are recorded: 

1.6  Overflow

In the case where the sum should +11 or -11, the 
corresponding binary sum is wrong. It is obvious 
that an overflow flag should be raised when Cn-1 = 
1 and Cn = 0, or, when Cn-1 = 0 and Cn = 1. Hence, 
the equation for overflow is:

nn CCV ⊕= −1 12

2. Decimal Adder
Computers or calculators that perform arithmetic 
operations directly in the decimal number system 
represent decimal numbers in binary-coded form.

The 8421 weighted coding scheme is the most 
commonly occurring in digital systems and is often 
referred to as simply BCD (binary-coded decimal).

When using BCD, a single-decade decimal adder 
can be realized by first performing conventional 
binary addition on two binary-coded operands and 
then applying a corrective procedure. This is 
illustrated below:  
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Since each operand digit does not exceed 9, the 
output sum cannot be greater than 9 + 9 +1 = 19, 
the 1 in the sum being an input carry.

The various outputs from the 4-bit binary adder 
and the required outputs from the single-decade 
decimal adder are summarized in the table below:

No correction to the binary sum is needed when 
KP3P2P1P0 ≤ 01001.

However, 0110 (decimal 6) must be added to 
P3P2P1P0 when KP3P2P1P0 > 01001. 14

The logic circuit that detects the necessary 
correction can be derived from the table entries.

Clearly, a correction is needed when the binary 
sum has an output carry K = 1.

For the other six combinations from 1010 through 
1111 (that also need a correction), a Boolean 
expression is required to detect them:

13236 Add PPPPK ++=

The first term corresponds to the decimal sums 10 
to 15 where the carry bit K is 1. The remaining two 
terms correspond to the decimal sums 16 to 19 
where K = 0.

The condition for a correction and an output carry 
can be expressed by the Boolean function:

1323 PPPPf +=
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The logic diagram of a single-decade BCD adder is 
shown below:

Whenever Cout = 0, the outputs from the upper 4-bit 
binary adder are sent to the lower 4-bit adder and 
decimal 0 is added.

However, whenever Cout = 1, decimal 6 is added to 
the outputs of the upper 4-bit binary adder so that 
the correct sum digit is obtained.

A decimal adder for two n-digit BCD numbers can 
be constructed by cascading the above system in 
much the same way as was done for the ripple 
binary adder.
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3. Binary Multiplier
Multiplication of binary numbers is performed in 
the same way as in decimal numbers. The 
multiplicand is multiplied by each bit of the 
multiplier starting from the LSB. Each such 
multiplication forms a partial product. Successive 
partial products are shifted one position to the left. 
The final product is obtained from the sum of the 
partial products. A 2-bit by 2-bit binary multiplier is 
shown below. It is realized using AND-gates and 
two half adder (HA) circuits:
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A combinational circuit binary multiplier with more 
bits can be constructed in a similar fashion. For J
multiplier bits and K multiplicand bits (J X K) AND-
gates and (J – 1) K-bit adders to produce a product 
of J + K bits. The logic diagram of a 4-bit by 3-bit 
binary multiplier is shown below: 
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4. Magnitude Comparator
A circuit that compares two numbers, A and B, 
and determines their relative magnitudes.

So the output is 1 if A = B = 0 or if A = B = 1. In 
addition to the equality relation, the outcome must 
indicate whether A > B, or A < B:

and from the table it is easy to show that:

ABBABA
BABA
BABA

+′′==
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′=<

with the following NAND-gate realization:

4.1  1-bit Comparator

For this case, it is simply the X-NOR function:

BAABf ′′+=
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In this case an algorithm is required. Let the words 
be:

0123

0123

BBBBB
AAAAA

=
=

4.2  4-bit Comparator

The equality relation of each pair of bits can be 
expressed logically with the X-NOR function as:

3,2,1,0 for =′′+= iBABAx iiiii

where xi = 1 only if the pair of bits in position i are 
equal (i.e., if both are 1 or both are 0).

For the equality condition to exist, all xi variables 
must be equal to 1. This dictates an AND operation 
of all variables:

0123)( xxxxBA ==
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To determine whether A > B or A < B, examine the 
relative magnitudes of pairs of significant digits 
starting from the most significant position:

00123112322333

00123112322333
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BAxxxBAxxBAxBABA

BAxxxBAxxBAxBABA
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The symbols (A > B) and (A < B) are binary 
outputs that are equal to 1 when A > B or A < B, 
respectively.

Finally, the logic diagram of the 4-bit magnitude 
comparator is as follows:

If the two digits are equal, compare the next 
lower significant pair of digits. The comparison 
continues until a pair of unequal digits is found.
If the corresponding digit of A is 1 and that of B
is 0, conclude that A > B.
If the corresponding digit of A is 0 and that of B
is 1, conclude that A < B.

The sequential comparison can be expressed 
logically by the two Boolean functions:
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3,2,1,0 for =′′+= iBABAx iiiii

The four x outputs are generated with X-NOR 
circuits and applied to an AND gate to give the 
output binary variable (A = B).

The other two outputs use the x variables to 
generate the Boolean functions shown before.
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5. Decoders
Often, digital information represented in dome 
binary form must be converted into some 
alternative digital form. This is achieved by a 
multiple-input, multiple output network referred to 
as a decoder. The most commonly used decoder 
is the n-to-2n-line decoder:

The structure of a such decoder is straightforward. 
Consider the truth table of a 3-to-8-line decoder:  
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This corresponds to the logic diagram shown 
below:

A particular application for this decoder is binary-
to-octal conversion. The input variables represent 
a binary number, and the outputs represent the 
eight digits in the octal number system.
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Some decoders include one or more enable inputs 
to control the circuit operation. The logic diagram 
and truth table of a 2-to-4-line decoder are shown 
below: 

A decoder with enable input can function as a 
demultiplexer. The above decoder can function as 
a 4-to-1-line demultiplexer when E is taken as a 
data input line and A and B are taken as the 
selection inputs.

5.1  Decoders with an Enable Input



25

Decoders with enable inputs can be connected 
together to form a larger decoder circuit. A 4-to-16-
line decoder realized using two 3-to-8-line 
decoders is shown below: 

When w = 0, the top decoder is enabled and the 
other is disabled. The bottom decoder outputs are 
all 0’s, and the top eight outputs generate 
minterms 0000 to 0111.

When w = 1, the enabled conditions are reversed; 
the bottom decoder generates minterms 1000 to 
1111, while the outputs of the top decoder are all 
0’s.
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The n-to-2n-line decoder is only one of several 
types of decoders. Function-specific decoders exist 
having fewer than 2n outputs. Examples include 
the BCD-to-decimal decoder (7442A) and the 
BCD-to-7-segment decoder.
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5.2  Combinational Logic Implementation

An n-to-2n-line decoder is a minterm generator. 
Recall that any Boolean function is describable by 
a sum-of-minterms. Thus, by using OR-gates in 
conjunction with an n-to-2n-line decoder 
realizations of Boolean functions are possible. 
However, these realizations do not correspond to 
minimal sum-of-products.

Consider the pair of expressions:  

∑
∑

=

=
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0122
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xxxf

xxxf

Using a single 3-to-8-line decoder and two OR-
gates, the following realization is obtained:
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When more than ½ the total number of minterms
must be OR-ed, it is usually more economical to 
use NOR-gates rather than OR-gates to do the 
summing. Consider the pair of expressions:

∑
∑
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These may be realized with a 3-to-8-line decoder 
and two OR-gates having a total of 11 terminals 
between them. However, a more efficient 
realization is to re-write the expressions as:

This corresponds to the realization shown below:

∑

∑
=′=′′
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A total of five gate-input terminals are needed.
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6. Encoders
Perform the inverse operation of decoders. An 
encoder has 2n (or fewer) input lines and n output 
lines. The output lines generate the binary code 
corresponding to the input value. An example of 
an encoder is the octal-to-binary encoder whose 
truth table is as follows: 

The equations for the three outputs are:

7654

7632

7531

DDDDx
DDDDy
DDDDz

+++=
+++=
+++=

The encoder can be realized with three OR-gates.
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6.1  Priority Encoder

The encoder defined before has the limitation that 
only one input can be active at any given time. If 
two inputs are active simultaneously, the output 
produces an undefined combination. This is 
resolved by establishing an input priority function.

The truth table of a four-input priority encoder is:    

In addition to the two outputs, x and y, the circuit 
has a third output V; this is a valid bit indicator and 
is set to 1 when one or more inputs are equal to 1.

X’s in the output represent don’t-care conditions.

X’s in the input columns are for representing the 
truth table in condensed form. Instead of listing all 
16 minterms of four variables, the truth table uses 
an X to represent either 1 or 0. 

According to the table, D3 has the highest priority 
followed by D2 and D1.   
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The maps for simplifying outputs x and y are 
shown below:

The condition for output V is an OR function of all 
the input variables:

The priority encoder is implemented as follows:

3210 DDDDV +++=
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7. Multiplexers
A multiplexer is a circuit that selects binary 
information from one of many input lines and 
directs it to a single output. Normally, there are 2n

input lines and n selection lines whose bit 
combination determine which input is selected. 

The logic and block diagrams of a 2-to-1-line 
multiplexer are shown below: 

The circuit has two data input lines, I1 and I2, one 
output line Y, and one selection line S.

When S = 1, the lower AND gate is enabled and I1
has path to the output. This multiplexer acts like a 
switch that selects one of the two sources.
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A 4-to-1-line multiplexer is shown below:

A multiplexer is also called a data selector, since it 
selects one of many inputs and steers the binary 
information to the output line.

In general, a 2n-to-1-line multiplexer is constructed 
from an n-to-2n decoder by adding to it 2n input 
lines, one to each AND gate. The outputs of the 
AND gates are applied to a single OR gate.

As in decoders, multiplexers may have an enable
input to control the operation of the unit.
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By interconnecting several multiplexers in a 
treelike structure, it is possible to produce a larger 
multiplexer. For example, a 16-to-1 line multiplexer 
may be constructed using five 4-to-1-line 
multiplexers as follows:
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One of the primary applications of multiplexers is to 
provide for the transmission of information from 
several sources over a single path. This process is 
known as multiplexing. E.g., the multiplexing of 
conversations on the telephone system.

When a multiplexer is used in conjunction with a 
demultiplexer, an effective means is provided for 
connecting information from several source 
locations to several destination locations. This 
basic application is illustrated below: 

By using n of the structures shown above in 
parallel, an n-bit word from any of four source 
locations is transferred to the four destination 
locations. 

7.1  MUX/DeMUX Transmission System

36

7.2  Logic Design with Multiplexers

Consider the Boolean function of three variables:   

The realization is obtained by placing x, y, and z 
on the S2, S1, and S0 lines respectively, logic-1 on 
data input lines I0, I2, I3, and I5 and logic-0 on the 
remaining data input lines. Also the multiplexer 
must be enabled by setting E = 1.

∑= )5,3,2,0(),,( zyxf

The function can be implemented with an 8-to-1-
line multiplexer:   
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If at least one input variable of a Boolean function 
is assumed to be available in both its normal and 
complemented form, then any n-variable function 
can be realized with a 2n–1-to-1-line multiplexer.

For example, reconsider the previous function: 

Doing some simple factoring becomes: 

zyxyzxzyxzyx
zyxf
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which is realized using a 4-to-1-line multiplexer:

The last term, xy(0), was included to indicate what 
input must appear on the I3 line to provide for the 
appropriate output when selected with x = y =1.

)0()()1()(
)()()(),,(

xyzyxyxzyx
zyxzzyxzyxzyxf
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Karnaugh maps provide a convenient tool for 
obtaining multiplexer realizations. First it is 
necessary to establish which variables to assign to 
the select lines. Next the inputs for the Ii data lines 
are read directly from the map.

To illustrate this, again consider the three-variable 
function: 

Assume that x is placed on the S1 line and y is 
placed on the S0 line, the resulting map is:

Grouping the 1-cells, the expressions for the sub-
functions may be written. That is, I0 = z′, I1 = 1, I2 = 
z, and I3 = 0. The logic realization is as before.  

∑= )5,3,2,0(),,( zyxf

submaps:
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7.3  Three-State Gates

A multiplexer can be constructed with three-state 
gates. A three-state gate is a digital circuit that 
exhibits three states. Two of the states are signals 
equivalent to logic 1 and 0. The third state is a 
high-impedance state which behaves like an open 
circuit.

The graphic symbol of a three-state buffer is:

The presence of the high-impedance state allows 
the connection of a large number of three-state 
gate outputs to a common line without endangering 
loading effects.

The realization of a 2-to-1-line multiplexer with 
three-state buffers is shown below:
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and the construction of a 4-to-1-line multiplexer is 
shown below: 

The use of a decoder ensures that no more than 
one buffer control input is active at any given time.

When the EN input of the decoder is 0, all of its 
four outputs are 0, and the bus line is in a high-
impedance state.

When EN is active, one of the buffers will be active 
depending on the binary value in S1 and S2 of the 
decoder. 


