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Abstract 
A similarity measure is described that does not require the prior specification of features 
or the need for training sets of representative data.  Instead large numbers of features are 
generated as part of the similarity calculation and the extent to which features can be 
found to be common to pairs of patterns determines the measure of their similarity.  
Emphasis is given to salient image regions in this process and it is shown that the 
parameters of invariant transforms may be extracted from the statistics of matching 
features and used to focus the similarity calculation.  Some results are shown on MPEG-7 
shape data and discussed in the paper. 
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1.  Introduction 

Similarity measures are central to most pattern recognition problems not least in 
computer vision and the need to access huge volumes of multimedia content now being 
broadcast and offered on the Internet.  These problems have motivated much research 
into content based image retrieval [1-4] and many commercial and laboratory systems are 
described in the literature [5-10].   

The notion of similarity is elusive.  Quite often having selected a number of appealing 
features that we believe characterises similarity, we soon discover that new structure in 
unseen patterns does not contain the desired features despite still apparently possessing a 
high degree of similarity.  By the same token other patterns that do satisfy the similarity 
criteria seem totally dissimilar to the human eye. 

This paper proposes a similarity measure that imposes only very weak assumptions on 
the nature of the features used in the recognition process.  This approach does not make 
use of a pre-defined distance metric plus feature space in which feature values are 
extracted from a query image and used to match those from database images, but instead 
generates features on a trial and error basis during the calculation of the similarity 
measure.  This has the significant advantage that features that determine similarity can 
match whatever image property is important in a particular region whether it be a shape, a 
texture, a colour or a combination of all three.  It means that effort is expended searching 
for the best feature for the region rather than expecting that a fixed feature set will 
perform optimally over the whole area of an image and over every image in the database.  
By generating thousands of random features and applying them on a trial and error basis 
as an integral part of the calculation of the similarity value, it is shown that a consistent 
measure is obtained that is not dependent upon any one or group of specific pattern 
measurements or representative training sets.  Such a system is emergent rather than 
cognitivist as it does not rely upon a priori specification or programming, but rather 
constructs its own representation as it interacts and explores the visual scene [11].  

Section 2 outlines a selection of papers describing related research and  Section 3 then 
describes the visual attention model used in this paper.  The next section defines the 
similarity measure and Section 5 reports results obtained on shapes from the MPEG-7 
test set.  This is followed by a discussion section and some conclusions. 

 

2.  Background 

A great deal of wide ranging research has been carried out on similarity and shape 
matching and much of this is covered in survey papers such as [12], [13].   Many 
approaches involve the use of pre-determined features such as edges, colour, location, 
texture and functions dependent on pixel values e.g. [14].  Mikolajczyk et al [15] use 
edge models to obtain correspondences with similar objects.  Hidden Markov Models 
derived from shape boundary features are employed by Almageed et al [16] to classify 
silhouettes.  Dao et al [17] obtain measures of similarity between shape boundaries 
through the use of potential functions borrowed from electrostatics.  Thinning algorithms 
are applied to shapes by Sebastian et al [18] and Iyer et al [19] to obtain graphical 
features that can be more easily transformed between similar shapes.   

The selection of features dependent upon the spatial arrangement of sets of points 
sampled from shapes is a strategy used by several authors to obtain some of the best 
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results to date such as [20].  However, all the approaches use pre-determined point 
selection rules and metrics that can limit performance on unseen data.  Viola et al [21] 
restrict themselves to a specific type of rectangle feature which works well in their face 
recognition application, but may not perform as well on data that is not suited to this 
feature. 

Increasingly research is turning to models of perception in order to reflect the 
behaviour of the human visual system in measures of similarity.  Mojsilovic et al [22] use 
perceptually important colours to construct a feature vector for similarity measurement, 
and overcome the problem of close colours occupying different quantization bins.  Super 
[23] defines critical points of high curvature on boundaries and normalises the shape for 
rotation and scale before calculating a distance measure.  Law et al [24] introduce a 
measure of saliency in their development of a feature selection and clustering algorithm.  
A feature is deemed irrelevant if its distribution is independent of class labels.  Visual 
attention models by Itti [25] are used by Frintrop et al [26] to focus computational 
resource and recognise 3D objects.  Shape contours are detected by Grigorescu et al [27] 
using a model of human visual surround suppression that identifies perceptually 
significant edges. 

 

3.  Visual Attention 

Studies in neurobiology [28] are suggesting that human visual attention is enhanced 
through a process of competing interactions among neurons representing all of the stimuli 
present in the visual field.  The competition results in the selection of a few points of 
attention and the suppression of irrelevant material.  It means that people and animals are 
able to spot anomalies in a scene no part of which they have seen before and attention is 
drawn in general to the anomalous object in a scene.   

Treisman [29]  describes experiments that reveal pre-attentive behaviour in human 
vision.  She points out a “masking effect” that depends upon the presence elsewhere of 
other elements sharing the local distinctive property.  A locally salient feature can be 
suppressed by more distant structures in the image.  Single distinctive features such as 
colour or orientation promote immediate saliency, but if these properties are cojoined the 
search for a target is more difficult.  Triesman describes several examples of images that 
exhibit pop out some of which behave asymmetrically.  Treisman suggests that there are 
separate maps for a few properties such as colour, orientation, and brightness, but does 
not offer a mechanism for their implementation. 

Tsotsos [30] presents a pyramidal processing attention model as a means of reducing 
the complexity arising from a large number of selected features.  A winner takes all 
strategy is imposed on the processing layers in the pyramid so that the more salient 
objects are identified by location and features at the top of the pyramid.  Provision is 
made to offset a boundary effect in the pyramidal structure that lays emphasis on central 
items even if they are less significant that peripheral items.  Tsotsos highlights features 
such as size, luminance, edge contrast and orientation as possible features for defining 
saliency in static images, but there is little guidance on how these might be selected or 
combined. 

Lindenberg [31] provides a framework for detecting salient blob-like objects without 
relying on a priori information.  He stresses that not all significant image structures are 
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blobs.  His research makes the assumption that structures that are significant in scale-
space will also be perceptually significant.  Although this may be true for some blob 
configurations it does not apply to all, as for example, no provision is made for the 
attention suppressing effect of surrounding similar configurations as demonstrated by 
Treisman [29].   

The model of attention [32] used in this paper makes the assumption that an image 
region is salient if it possesses few features in common with other regions in the image.  
It follows Lindberg in not making use of a priori information regarding the images, but 
goes further in not making assumptions about the choice of feature measurements as 
suggested by Treisman [29], Tsotsos [30] and Itti [25].  Such assumptions can force the 
model to emphasise saliency as determined by colour and orientation, for example, but 
ignore texture if that did not happen to be a measured feature.  As attention is concerned 
with surprise rather than the expected, this issue is of critical importance. 

Let a set of measurements ax = (ax1, ax2, ax3)correspond to a pixel x = (x1, x2)  
Consider a neighbourhood N of x where 

{x' ∈ N iff  |xi - x'i| < εi ∀ i}  
Select a set of m random pixels Sx in N (which we call a fork) where  

Sx = {x'1, x'2, x'3, ..., x'm}. 
Select another random pixel y. 
Define the set Sy = {y'1, y'2, y'3, ..., y'm} where   

x - x'i =   y - y'i . 
In other words y and y'j are in the same spatial relationship to each other as  x is to x'j. 
The fork centred on x is said to match that of y if 

jyjxj aa δ≤−  and jiaa jjyjx ii
,∀≤− ′′ δ  

So if all the colour values of corresponding pixels in Sx and Sy are within a threshold δ of 
each other the forks will match. 

x

y

 

Fig. 1.  Fork at x mismatching at y. 
A pixel x will be worthy of attention if a sequence of M forks matches only a few other 

neighbourhoods in the space as this will reflect the uniqueness of its properties and hence 
the saliency.  To illustrate the algorithm in the case of a still image (Fig. 1), a fork of 3 
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pixels x' is shown in the neighbourhood of a pixel x.  Each of the pixels might possess 
three colour intensities, so  a = (r,g,b).   The neighbourhood of a second pixel y matches 
the first if the colour intensities of all m + 1 corresponding pixels have values within δ of 
each other.  The attention score for each pixel x is incremented each time a mismatch 
occurs in the sequence of fork comparisons.  Pixels x that obtain frequent mismatches 
over a range of M forks Sx and pixels y are assigned a high  visual attention score.  This 
means, for example, that regions possessing novel colour values that do not occur 
elsewhere in the image will be assigned high scores.  It also means that neighbourhoods 
that span different coloured regions (e.g. edges) are naturally given high scores if those 
colour adjacencies only occur rarely in the scene.   

The gain of the scoring mechanism is increased significantly by retaining the forks Sx 
if a mismatch is detected, and re-using Sx for comparison with the next of the t 
neighbourhoods.  If however, Sx subsequently matches another neighbourhood, the score 
is not incremented, and an entirely new fork Sx is generated ready for the next 
comparison.  In this way competing forks are selected against in a competitive fashion if 
they contain little novelty and turn out to represent structure that is common throughout 
the image.  Indeed it is likely that if a mismatching fork is generated, it will mismatch 
again elsewhere in the image, and this fork once found, will accelerate the rise of the 
visual attention score. 

If some of the distinguishing characteristics of anomalous objects are known it would 
be sensible to constrain or even fix the selection of forks Sx rather than generate them 
randomly  For example, a horizontal bar against a background of vertical bars would be 
optimally identified as salient by a +shaped fork:  Sx = {(-1,0),(0,-1),(0,1),(1,0)} with m = 
4 and ε = 1.  A completely filled 3x3 patch with m = 8 would also function well.  
However, larger values of m lead to higher frequencies of mismatching on more complex 
images that obscure the most salient objects.  This may be offset by introducing a 
measure of correlation and a threshold to obtain a match, but again there is no guarantee 
that a particular correlation measure will place the correct weighting on any content that 
may be encountered within the patch and there is a danger that in general saliency will be 
masked. 

The model described above uses a simple translation to obtain the fork Sy to test for a 
match or mismatch.   This may be generalised to enable invariance to orientation and 
other attentional properties by mapping the pixels in Sy according to the appropriate 
transform before testing for a match.  In the case of the orientation property a rotation by 
a random angle θ  is given by  

yS  = {y1, y2, y3, ..., ym}  where  yi – y1  = Rθ[  xi – x1]      ∀ i 

  and 








−
=

θθ
θθ

θ cossin

sincos
R ,   

The attention score V(x) for each pixel x is computed in the following steps: 

1. k = 0;  V(x) = 0 

2. Generate a fork  Sx of maximum radius ε. 

3. Select a random pixel y. 

4. k = k+1;  if k > M then stop 

5. Transform fork Sx to produce fork Sy 
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6. If Sy mismatches then V(x) = V(x) + 1 and loop to 3 retaining same fork. 

7. Loop to 2. 
 
This model possesses many of the characteristics of low level visual neurons with 

centre-surround receptive fields where cell responses are affected by surrounding cells 
simultaneously responding to the same signals.  Similarities between stimuli within the 
receptive field and outside inhibit responses, whereas differences do not have this effect 
[33].  The fork matching and mismatching procedure described above captures aspects of 
this mechanism. 

This model has been shown to identify saliency as indicated in many of the 
behavioural examples given by Treisman.  Saliency determined by a single feature such 
as colour or orientation is identified strongly by the model.   Targets defined by the 
conjunction of features are identified less strongly and is dependent on the diversity of 
the distractors [34].  Treisman [29] reports, for example, that a parallel line pair is salient 
against a background of single lines of various orientations, but the reverse is not the case.  
This asymmetry is reproduced in our attention model where the attention scores for the 
pixels belonging to the parallel lines are much greater than for the surrounding randomly 
oriented single lines.  On the other hand the attention scores for the target single line are 
lower than the background parallel pairs indicating no pop out.  Fig. 2 and 3 show the 
high scoring black pixels in both cases. 

 

   

Fig. 2. Target parallel line pair and corresponding high attention scoring pixels 

   

Fig. 3.  Target single line and corresponding high attention scoring pixels 
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4.  Similarity Measure 

The model of similarity [35] used in this paper is the dual of that for attention and 
makes the assumption that two images are similar if they possess many features in 
common.  As before no use is made of a priori information in the choice of features.  It is 
to be expected that many features that are shared will be unique to that pair of images.  
This means that it is never possible to pre-select features in a way that will reflect all 
aspects of the relationships between a set of objects or the similarity of pairs of images in 
a database unless complete knowledge of the database is known beforehand.  As with the 
measure of attention described above, the similarity measure proposed here generates 
features on a competitive basis as part of the calculation of the measure.   The features 
take the form of forks and similarity is dependent upon the number of such forks that can 
be found to match pairs of images. 

Consider two images X and Y containing pixels x and y with colour values  
ax = (ax1, ax2, ax3) and ay = (ay1, ay2, ay3), respectively. 

A fork of m random points Sx is defined as a set of any pixel positions in image X where  
Sx = {x1, x2, x3, ..., xm}. 

A randomly positioned fork of m pixels yS  is defined in image Y where 

yS  = {y1, y2, y3, ..., ym} and xi - xj =   yi - yj  ∀ i,j   

In other words pixels yj are a randomly translated version of the xj.   

The fork yS  matches image Y if  jyjxj aa δ≤−  ∀ j. 

The similarity measure R of image X to Image Y is computed in the following steps: 

1. RXY  = 0;  k = 0 

2. Generate a random fork Sx 

3. k = k+1;  if  k > M then stop 

4. p = 0 

5. Transform fork Sx to produce fork Sy  
6. If Sy matches Y then RXY = RXY + 1 and loop to 2. 

7. p = p+1; if p > P then go to step 9 (generate new Sx) 

8. Loop to 4 (no match so try another transform).  

9. Loop to step 2  

10. Repeat with X and Y reversed. Similarity measure R = RXY + RYX 
 

High similarity scores are obtained when many forks in image X are found to 
correspond and match transformed forks in image Y.  If all the forks match a maximum 
score of M will be obtained.   

It is necessary for a high score that forks in image Y correspond to forks in image X, 
otherwise, for example, cropped versions of images would be classified as being very 
similar to the whole, although this may be a requirement in some applications.   The 
similarity score R is therefore made symmetric by summing the number of matching 
forks in both directions.    
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Image X     Image Y 

Fig. 4.  Fork from Image X matching Image Y. 
 

Fig. 4 shows a 3 pixel fork covering one black pixel and two white pixels from image 
X matching in a position in image Y.  In general each of the pixels will possess three 
colour parameters, so a(x)= (r, g, b) and the fork will fit image Y if the colour parameters 
of all m corresponding pixels have values within δ of each other.  A series of M forks 
from image X are tested for a match at some position in image Y and the number of such 
matches forms the similarity measure of image X to image Y. 

 

 

Fig. 5.  Shapes possessing similarity measures that do not satisfy the triangle inequality. 
 
The measure does not necessarily satisfy the triangle inequality and is therefore not a 

metric. In practice there is no requirement for the triangle inequality to be satisfied in 
terms of human perception and indeed this may be a damaging constraint on the distance 
measure. A pattern B may contain features in common with A and C and be similar to 
both.  However, A and C may have no features in common at all, and no conclusion 
regarding A and C can necessarily be inferred from the similarities of AB and BC (Fig. 5). 

 

4.1.  Translation, Rotation and Scale 

The similarity algorithm makes up to P attempts to discover a match in image Y for 
each of M transformed forks that are generated.  The distribution of locations of high 
attention scoring pixels in forks that fit both images gives an indication of the location of 
those regions in both images that hold the features that largely determine the overall 
image similarity. 
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The centroids of pixels in images X and Y that are present in the M ′  pairs of forks 
k
xS , k

yS k = 1, …,M ′  that match is given by x  and y  where 

∑
∈

′=
k
xi Sxk

i
M

xx
,

        ∑
∈
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k
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The extent of the region of similarity around x  and y  may be estimated by the standard 

deviation of ix and iy where  
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In general an affine relationship between a shape in image X and image Y may be 
identified by allowing the forks xS to be randomly rotated between α±  and scaled in x 

and y by s to produce the yS and studying the distribution of angles and scales of pixel 

co-ordinates of forks that fit both images. 

In this case the transform applied to pixels in xS  is given by 

yS  = {y1, y2, y3, ..., ym}  where  yi – y1  =s Rθ[  xi – x1]      ∀ i 

 and 








−
=

θθ
θθ

θ cossin

sincos
R    

As with the attention measure described in section 3 there is every justification for 
tailoring the processing as much as possible before further analysis if sufficient is known 
about the data to be sure that this improves performance and does not destroy information.  
This applies to the normalization of image data according to position, orientation and 
scale which will yield good results if the data is well behaved within the rules followed 
by the normalisation process.  However, as before there is no guarantee that this is the 
case and a particular normalization process may not be appropriate to all items in a 
dataset and may cause information to be lost especially in complex and noisy data.  The 
approach described here makes no assumptions about the properties of the data but rather 
relies upon evidence in the form of mappings (matching forks) discovered between image 
pixels to reflect orientation, positional and scale relationships between data items. 

 

4.2.  Parameter Sensitivity 

The behaviour of the similarity measure is clearly dependent on the values of two key 
parameters, M the number of forks generated to produce a score, and m the number of 
pixels in each fork,  M determines the volume of computation and m the precision with 
which matches are made. 
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Image X                      Image Y 
Fig. 6.  Test image pair X, Y 
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Fig. 7.   Variation in standard deviations of similarity measure against no. forks generated. 

 

M 50 100 200 400 800 1600
Standard deviation(σ) 5.90 3.66 2.90 1.79 1.25 0.95

Mean score 81.64 83.05 83.03 83.33 82.86 83.02
log(σ) 0.77 0.56 0.46 0.25 0.10 -0.02  

Table 1.  Variation in scores against numbers of forks generated (M) 
 

In order to test the stability and the statistical confidence of the similarity measure, a 
number of repeated calculations were carried out on the same pair of patterns (Fig. 6) for 
each of several values of M with m = 10.  100 calculations of the similarity measure were 
computed for values of M from 50 to 1600 and the results are shown in Table 1 and Fig. 7.  
The standard deviation decreases with M approximately as the power of -0.6 in this range 
indicating that the precision of the similarity measure increases with increasing 
computation. 

          
Image X                   Image Y1                   Image Y2                   Image Y3 
Fig. 8.  Original (X), shifted (Y1), rotated (Y2) and scaled (Y3) shapes. 
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Fig. 8 shows image X transformed by translation (Y1), rotation (Y2) and scale (Y3).  
Histograms of x,y values of the centroids of forks fitting image Y1 are shown in Fig. 9 
and reflect the upward movement of the shape by about 27 pixels by a corresponding 
shift to the left of the peak in the y histogram.  In a similar fashion Fig. 10 shows a 
histogram of the angles of rotation of forks that fit image Y2 with a peak at +45º which is 
a good indication of the angular displacement in image Y2.  Image Y3 is a 20% isotropic 
reduction of image X which is again reflected in the histogram of scale values of forks 
that fit Y3 which has a peak at about 0.8 (Fig. 10).  Parameter values used were m = 10 
and M = 2000. 
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Fig. 9.   x and y histograms of forks fitting image Y1 (m=10, M = 2000). 
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Fig. 10.  Rotation and scale histograms of forks fitting images Y2 and Y3, respectively 

(m=10, M = 2000). 
 
The calculations were repeated for several numbers of fork pixels (m) on each of the 

three images with M=2000 to determine the effect on the stability of the results (Tables 
2-4).  In all cases the standard deviations of the estimates of position, angle and scale 
decrease as extra pixels are added to the forks.  In addition the peakiness (kurtosis) of the 
distributions increases with the fork pixel number (m).  Increased accuracy and precision 
is achieved at the expense of additional computation which increases with m. 

m max σ kurtosis
2 -27.4 34.93 0.41
4 -27.2 19.87 4.44
6 -27.2 14.07 10.65
8 -26.6 9.50 12.62
10 -27.1 7.10 20.08
12 -26.9 5.72 43.91  

Table 2.  Variation in y shift estimate against number of fork pixels (m). M=2000 
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m max° σ (rad) kurtosis
4 45 0.86 -1.00
6 45 0.88 -0.92
8 54 0.85 -0.48

10 50 0.75 0.36
12 41 0.72 1.22
14 45 0.69 1.91  

Table 3.  Variation in angle estimate against number of fork pixels (m). M=2000 

 

m max σ kurtosis
2 0.76 0.26 -0.72
4 0.78 0.21 0.18
6 0.74 0.19 0.38
8 0.76 0.16 0.69
10 0.77 0.15 0.85
12 0.76 0.14 1.04  

Table 4.  Variation in scale estimate against number of fork pixels (m). M=2000 
 
The results show that it is possible to extract relationships between patterns without 

making specific pre-defined measurements.  Location, orientation and size can all be 
measured indirectly without placing a ruler on the object being measured.  Structure that 
is common between pairs of patterns may be identified by observing the statistics of 
randomly generated transformed forks that have few rules for their production.   

  

5.  Similarity Tests 

  In order to test how the triangle inequality might be violated by the similarity 
measure, the three shapes in Fig. 5 were processed.  The similarity scores are shown in 
Table 5.  The composite shape B is rated as similar to A and less so to C with scores 374 
and 58, respectively.  However, A possesses few features in common with C and is given 
the much lower score of 10.  The higher similarity between A and B than between B and 
C is due to the length of the lines in common. 

A 1388
B 374 1530
C 10 58 564

A B C  

Table 5.  Similarity scores of shapes in figure 5. 
 
The similarity calculation may be repeated on the same pair of images, but with greater 

constraints placed on the transform parameters so that random selections are made in a 
range that yields the best results.  This means that if, for example, a peak in fork fitting 
frequency is identified at an orientation of 27º, the calculation is repeated selecting forks 
within the range of rotations [ ]αα +°−° 27,27  where α  is a small angle before being 
applied to image B.  In this way rotations are constrained to lie within a smaller range 
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allowed in the first iteration.  In a similar fashion forks may be constrained in location 
during the second iteration by requiring pixels to lie within a distance D of  ( )yx,  and in 
effect focusing the computation on the region of highest similarity.  These strategies have 
the effect of enhancing the likelihood of finding forks that fit a pair of similar patterns by 
focusing attention in the vicinity of the correct transform parameter value.  

 

 

 

 

 

 

 

 

 

 

Fig. 11.  18 MPEG-7 shapes. 
 
18 distinct binary shapes (200x200) were taken from the MPEG-7 set [18] (Fig. 11) 

and the similarity measure R calculated between all pattern pairs with m=10 and M=800.  
Forks were allowed to be rotated randomly between 4/π±  with  D = 150.  Patterns 
matched against themselves obtain the highest scores.  Pattern pairs showing strong 
similarity include (3,7), (5,7), (7,18),  and (5,18) (Table 6). 

1 968
2 47 744
3 513 41 1038
4 507 94 452 844
5 431 73 753 406 928
6 255 169 60 221 67 960
7 384 71 734 369 859 58 904
8 517 68 449 545 443 288 439 1392
9 281 120 183 475 208 536 174 518 1086

10 314 12 423 276 412 40 389 244 123 1546
11 445 41 695 407 699 192 617 465 326 335 988
12 240 87 302 395 241 276 276 315 414 197 169 810
13 214 42 338 225 371 30 334 213 86 262 238 142 716
14 511 63 554 569 493 200 482 644 383 300 456 266 251 1394
15 412 45 568 333 522 91 478 324 157 495 435 156 477 406 1548
16 336 72 190 470 225 322 210 563 692 148 313 359 130 384 192 1072
17 415 122 352 469 412 229 371 695 503 202 442 255 154 595 284 519 882
18 341 115 609 351 742 117 708 485 248 324 498 219 323 473 473 252 444 940

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18  

Table 6.  Similarity scores of shapes in Fig. 10. 
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Figure 12.  Cluster of similar shapes 

 

1 926
2 961 996
3 895 886 746
4 813 802 901 886
5 846 785 859 796 896
6 803 904 892 797 777 918
7 858 932 876 694 786 810 842
8 842 882 828 746 766 796 822 1464
9 880 889 846 764 784 719 784 801 916

10 827 800 770 734 709 773 749 736 780 712
11 625 682 589 677 593 632 590 571 545 624 1534
12 939 825 752 843 852 751 750 791 764 755 703 886

1 2 3 4 5 6 7 8 9 10 11 12  

Table 7.  Similarity scores of shapes in Fig. 11. 
 
To be sure of a successful and rapid search through a database of shapes a hierarchy of 

such clusters have to be identified in which intra-cluster similarities are much larger than 
those between different clusters.  With this in mind a cluster of very similar shapes to 
pattern 12 in Fig. 11 shown in Fig. 12 were analysed to determine how well the similarity 
measure would reflect the tightness of the cluster.  Pattern 12 in Fig. 11 is in fact identical 
to pattern 1 in Fig. 12.  Similarity measures were obtained under the same conditions as 
before and are shown in Table 7.  The lowest similarity to pattern 1 with a score of 625 
occurs with pattern 11 and significantly exceeds the highest similarity to pattern 12 in 
Table 6 which took a value of 414 with pattern 9.  This means that it would be unlikely 
for any of the shapes in figure 12 and any other unseen variants to be confused with the 
wrong ‘vantage’ shape in Fig. 11. 

The similarity scores for the very similar shapes in Fig. 12 are generally much higher 
than those for the dissimilar shapes in Fig. 11.  This reflects the “tightness” of the cluster 
of similar shapes in comparison with the significant differences indicated in Table 6 by 
the wide range of scores. 
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6.  Discussion 

The results presented here only refer to black and white shapes, but the mechanisms 
also apply to colour images.  Pixel matching for colour requires that all three colour 
components independently have values within δj of each other.  However, preliminary 
experiments indicate that the additional discriminatory information in the colour requires 
that the number of pixels in forks be reduced from 10 to 3 or 4 to facilitate matching.  
This also reduces processing time.  

A symmetry transform used with the attention model above has been successful in 
extracting reflective symmetry from colour images [36].  This suggests that additional 
invariance in the similarity measure may be obtained when comparing shapes that are 
similar with respect to a given operation.  Invariance under different illuminations is a 
further possibility building upon results using a colour transform in a similar fashion to 
obtain colour constancy in images [37].  Extracting such parameters simultaneously by 
applying all the transforms to each fork before testing for a fit may require an impractical 
increase in the number of forks generated (M) to obtain statistical significance.  On the 
other hand extracting the parameters separately is consistent with the understanding that 
early visual analysis results in separate maps for separate properties [29].  These pre-
attentive properties include orientation [38], size [39], and colour [40] which do not 
perform well in conjunction. 

The “curse of dimensionality” is avoided in this approach because the similarity 
measure is not dependent upon vectors derived from a n-dimensional feature space.  
Instead features specific to each pattern pair are extracted as part of the similarity 
calculation itself and these features may bear no relation to other patterns in the database.  
On the other hand conventional approaches are forced to limit the numbers of features 
either because of constraints on the size of training sets, or because of decreasing 
performance due to the lack of independence amongst larger feature sets [41]. 

The approach to measuring similarity is based on a trial and error process of 
generating features (forks) that are present in pairs of patterns.  No guidance is given 
during this process as this would inevitably damage the performance on certain classes of 
shapes by precluding relevant features from being produced.  The negative effects of such 
guidance cannot be predicted in advance of experiment and would not be discovered until 
sufficient data is explored. 

The matching of forks can be carried out in parallel as each operation is independent of 
the next.  However, although the computational steps are very simple there are a large 
number of them and a shape comparison takes about 1 second on a 1.8GHz machine 
running in C++.  In fact the computations are inappropriate for a serial machine which is 
designed to carry out fast arithmetic operations with little opportunity to harness parallel 
architecture. 

The human vision system possesses a clever attention mechanism that protects us from 
danger and gives considerable evolutionary advantage.  It is tempting to speculate that 
those features that distinguish foreground from background are remembered and help us 
to recognise important objects in a scene at a later date.  Of course fresh scenes do not 
appear exactly as they did in the past and it is necessary to match new inputs onto stored 
data in ways that preserve the notion of similarity.   Desimone at al [42] suggest that this 
is achieved by favouring inputs competitively that match the description of the 
information currently needed.  It is also interesting to suggest that a form of surround 
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suppression operates in time and space throughout the brain.  Indeed there is no reason to 
believe that different parts of the brain including vision use different computational tools 
[43].  Signals in the cortex that vary may be suppressed locally if they constitute a 
background that possesses a certain self-similarity.  On the other hand signals that are 
locally anomalous are not so inhibited.  Signals that create peaks of activity by resonating 
with a stored response that was retained as a result of earlier anomalous activity will 
again be anomalous and the activity will be reinforced by the surround suppression and 
represent an act of recognition. 

 

7.  Conclusions 

This paper has described a measure of similarity between patterns that does not require 
the prior specification of features on which that measure is based.  The approach is 
derived from an attention model that identifies saliency by comparing regions in a single 
image and recognising differences.  Similarity is measured by applying the dual operation 
to two images and seeking features in common.  The similarity calculation represents an 
unsupervised learning process in which pattern clusters are identified without requiring 
pattern class labels or numbers of clusters. Large numbers of features are generated 
without guidance and their presence in pairs of patterns determines the similarity measure.   

More results are needed to prove the effectiveness of the measure for shape indexing 
and retrieval in a large database.  However,  the approach has the significant advantages 
that training sets are not required and problem solutions are not precluded by the a priori 
selection of features.  It is shown that this measure is stable and is not constrained by the 
triangle inequality which can prevent proper discrimination.  Greater precision may be 
obtained with more computation using larger forks or increased numbers of forks.  The 
measure provides a plausible mechanism for comparing shapes and other patterns which 
focuses computation on optimising transform parameters that expose similarity. 

Future work will be directed at larger sets of shapes and natural images where it is 
proposed that attention based similarity measures can be used in Content Based Image 
Retrieval and copy detection applications. 
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