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Abstract

A similarity measure is described that does natiirecthe prior specification of features
or the need for training sets of representativa.daistead large numbers of features are
generated as part of the similarity calculation tnelextent to which features can be
found to be common to pairs of patterns determinesneasure of their similarity.
Emphasis is given to salient image regions inphigess and it is shown that the
parameters of invariant transforms may be extratted the statistics of matching
features and used to focus the similarity calcotatiSome results are shown on MPEG-7
shape data and discussed in the paper.
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1. Introduction

Similarity measures are central to most patterogsition problems not least in
computer vision and the need to access huge volofrresiitimedia content now being
broadcast and offered on the Internet. These gnabhave motivated much research
into content based image retrieval [1-4] and mamymercial and laboratory systems are
described in the literature [5-10].

The notion of similarity is elusive. Quite ofteaving selected a number of appealing
features that we believe characterises similang/soon discover that new structure in
unseen patterns does not contain the desired ésatigspite still apparently possessing a
high degree of similarity. By the same token otetterns that do satisfy the similarity
criteria seem totally dissimilar to the human eye.

This paper proposes a similarity measure that ieposly very weak assumptions on
the nature of the features used in the recognfiiooess. This approach does not make
use of a pre-defined distance metric plus featpaee in which feature values are
extracted from a query image and used to matcletfios database images, but instead
generates features on a trial and error basis gltim calculation of the similarity
measure. This has the significant advantage #aditifes that determine similarity can
match whatever image property is important in di@aar region whether it be a shape, a
texture, a colour or a combination of all threeméans that effort is expended searching
for the best feature for the region rather thareekipg that a fixed feature set will
perform optimally over the whole area of an imagd aver every image in the database.
By generating thousands of random features andg/iagpthem on a trial and error basis
as an integral part of the calculation of the samiiy value, it is shown that a consistent
measure is obtained that is not dependent upow@@yr group of specific pattern
measurements or representative training sets. &sghtem is emergent rather than
cognitivist as it does not rely upon a priori sfieation or programming, but rather
constructs its own representation as it interastsexplores the visual scene [11].

Section 2 outlines a selection of papers descriletajed research and Section 3 then
describes the visual attention model used in thpep  The next section defines the
similarity measure and Section 5 reports resultaiobd on shapes from the MPEG-7
test set. This is followed by a discussion sectind some conclusions.

2. Background

A great deal of wide ranging research has beeredaout on similarity and shape
matching and much of this is covered in survey papech as [12], [13]. Many
approaches involve the use of pre-determined featsuich as edges, colour, location,
texture and functions dependent on pixel values[#4j. Mikolajczyk et al [15] use
edge models to obtain correspondences with simidgects. Hidden Markov Models
derived from shape boundary features are employe®irhageed et al [16] to classify
silhouettes. Dao et al [17] obtain measures ofiarity between shape boundaries
through the use of potential functions borrowearfrelectrostatics. Thinning algorithms
are applied to shapes by Sebastian et al [18]yrcel al [19] to obtain graphical
features that can be more easily transformed betwiesilar shapes.

The selection of features dependent upon the $patengement of sets of points
sampled from shapes is a strategy used by sewétaira to obtain some of the best
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results to date such as [20]. However, all the@gghes use pre-determined point
selection rules and metrics that can limit perfanoeon unseen data. Viola et al [21]
restrict themselves to a specific type of rectahegeure which works well in their face
recognition application, but may not perform aslwaldata that is not suited to this
feature.

Increasingly research is turning to models of petioa in order to reflect the
behaviour of the human visual system in measurssfarity. Mojsilovic et al [22] use
perceptually important colours to construct a feamtector for similarity measurement,
and overcome the problem of close colours occupglifigrent quantization bins. Super
[23] defines critical points of high curvature ooumdaries and normalises the shape for
rotation and scale before calculating a distancasme. Law et al [24] introduce a
measure of saliency in their development of a feaselection and clustering algorithm.
A feature is deemed irrelevant if its distributierindependent of class labels. Visual
attention models by Itti [25] are used by Frintegpal [26] to focus computational
resource and recognise 3D objects. Shape cordoeiidetected by Grigorescu et al [27]
using a model of human visual surround suppreshiainidentifies perceptually
significant edges.

3. Visual Attention

Studies in neurobiology [28] are suggesting thaih&m visual attention is enhanced
through a process of competing interactions am@uwgans representing all of the stimuli
present in the visual field. The competition résul the selection of a few points of
attention and the suppression of irrelevant mdtetianeans that people and animals are
able to spot anomalies in a scene no part of wihieh have seen before and attention is
drawn in general to the anomalous object in a scene

Treisman [29] describes experiments that revealttentive behaviour in human
vision. She points out a “masking effect” that elegls upon the presence elsewhere of
other elements sharing the local distinctive prtpeA locally salient feature can be
suppressed by more distant structures in the im&gegle distinctive features such as
colour or orientation promote immediate salienay, ibthese properties are cojoined the
search for a target is more difficult. Triesmasaédes several examples of images that
exhibit pop out some of which behave asymmetricallyeisman suggests that there are
separate maps for a few properties such as calaentation, and brightness, but does
not offer a mechanism for their implementation.

Tsotsos [30] presents a pyramidal processing attentodel as a means of reducing
the complexity arising from a large number of sedddeatures. A winner takes all
strategy is imposed on the processing layers ipyin@mid so that the more salient
objects are identified by location and featurethattop of the pyramid. Provision is
made to offset a boundary effect in the pyramittaicture that lays emphasis on central
items even if they are less significant that pegiphitems. Tsotsos highlights features
such as size, luminance, edge contrast and oliemtas$ possible features for defining
saliency in static images, but there is little guide on how these might be selected or
combined.

Lindenberg [31] provides a framework for detectgagjent blob-like objects without
relying on a priori information. He stresses thatt all significant image structures are
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blobs. His research makes the assumption thattgtas that are significant in scale-
space will also be perceptually significant. Altigh this may be true for some blob
configurations it does not apply to all, as formyde, no provision is made for the
attention suppressing effect of surrounding singtamfigurations as demonstrated by
Treisman [29].

The model of attention [32] used in this paper nsake assumption that an image
region is salient if it possesses few featuremrmmon with other regions in the image.
It follows Lindberg in not making use afpriori information regarding the images, but
goes further in not making assumptions about tleécelhof feature measurements as
suggested by Treisman [29], Tsotsos [30] and28i.] Such assumptions can force the
model to emphasise saliency as determined by calodiorientation, for example, but
ignore texture if that did not happen to be a mesasiteature. As attention is concerned
with surprise rather than the expected, this issoé critical importance.

Let a set of measuremeras= (ax, aw, axz)correspond to a pixel = (X1, %)
Consider a neighbourhood Nxfvhere
{X" ONIff |x-xi|<g0Oi}
Select a set ah random pixelss in N (which we call a fork) where
Sc={X'1, X'2,X'3, ... X'm}
Select another random pixel
Define the se§, = {y'1, Y2 Y3, ....y'm} Where
X-Xi=y-Vi.
In other wordgy andy’j are in the same spatial relationship to each a@heris tox’;.
The fork centred or is said to match that gfif

a; —ayj‘sdj andja,; —ayi,j‘sdj i, j

So if all the colour values of corresponding pixelS, andS, are within a threshold of
each other the forks will match.

Fig. 1. Fork ak mismatching ay.
A pixel x will be worthy of attention if a sequenceMfforks matches only a few other
neighbourhoods in the space as this will refleetuhiqueness of its properties and hence
the saliency. To illustrate the algorithm in theese of a still image (Fig. 1), a fork of 3
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pixels X' is shown in the neighbourhood of a pixel Each of the pixels might possess
three colour intensities, sa = (r,g,b). The neighbourhood of a second pixehatches
the first if the colour intensities of all m + 1lreesponding pixels have values withdof
each other. The attention score for each pixed incremented each time a mismatch
occurs in the sequence of fork comparisons. Pixdlsat obtain frequent mismatches
over a range oM forks S, and pixelsy are assigned a high visual attention score. This
means, for example, that regions possessing naselrc values that do not occur
elsewhere in the image will be assigned high scotealso means that neighbourhoods
that span different coloured regions (e.g. edgesnaturally given high scores if those
colour adjacencies only occur rarely in the scene.

The gain of the scoring mechanism is increasedfgigntly by retaining the fork&,
if a mismatch is detected, and re-usifg for comparison with the next of the
neighbourhoods. If howeve$, subsequently matches another neighbourhood, tire sc
is not incremented, and an entirely new fdBk is generated ready for the next
comparison. In this way competing forks are sel@@gainst in a competitive fashion if
they contain little novelty and turn out to repmsstructure that is common throughout
the image. Indeed it is likely that if a mismataifork is generated, it will mismatch
again elsewhere in the image, and this fork oneedo will accelerate the rise of the
visual attention score.

If some of the distinguishing characteristics obm@alous objects are known it would
be sensible to constrain or even fix the selectibforks S, rather than generate them
randomly For example, a horizontal bar againsaekground of vertical bars would be
optimally identified as salient by a +shaped fo8¢:= {(-1,0),(0,-1),(0,1),(1,0)} withm =
4 ande = 1. A completely filled 3x3 patch witim = 8 would also function well.
However, larger values ofi lead to higher frequencies of mismatching on noomplex
images that obscure the most salient objects. Tag be offset by introducing a
measure of correlation and a threshold to obtaimatch, but again there is no guarantee
that a particular correlation measure will place torrect weighting on any content that
may be encountered within the patch and theredenger that in general saliency will be
masked.

The model described above uses a simple translatiobtain the forkS, to test for a
match or mismatch. This may be generalised tdleniavariance to orientation and
other attentional properties by mapping the pixelsS, according to the appropriate
transform before testing for a match. In the adfsthe orientation property a rotation by
a random anglé& is given by

S, ={y1, ¥2,¥3 .., Ym} Whereyi—yi = Ry[ xi—x] Ui
cosd sind

andR, =| . :

{—sme 0039}
The attention score ¥J for each pixek is computed in the following steps:

1. k=0; Vx)=0

Generate a forkS, of maximum radiug.
Select a random pixgl
k = k+1; if k> M then stop
Transform forkS, to produce fork5,

a bk own
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6. If S mismatches the¥(x) = V(x) + 1 and loop to 3 retaining same fork.
7. Loop to 2.

This model possesses many of the characteristics ofldeal visual neurons with
centre-surround receptive fields where cell respoasesaffected by surrounding cells
simultaneously responding to the same signals. Similabeéseen stimuli within the
receptive field and outside inhibit responses, whed&érences do not have this effect
[33]. The fork matching and mismatching proceduredesd above captures aspects of
this mechanism.

This model has been shown to identify saliency as indicate many of the
behavioural examples given by Treisman. Saliencyreh@ted by a single feature such
as colour or orientation is identified strongly by tmedel. Targets defined by the
conjunction of features are identified less strongly sndependent on the diversity of
the distractors [34]. Treisman [29] reports, for examiblat a parallel line pair is salient
against a background of single lines of various orientatibat the reverse is not the case.
This asymmetry is reproduced in our attention model a/liee attention scores for the
pixels belonging to the parallel lines are much grethi@n for the surrounding randomly
oriented single lines. On the other hand the atiardcores for the target single line are
lower than the background parallel pairs indicating ap put. Fig. 2 and 3 show the
high scoring black pixels in both cases.

Fig. 2. Target parallel line pair and correspondirghlattention scoring pixels

Fig. 3. Target single line and corresponding highhétia scoring pixels
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4. Similarity Measure

The model of similarity [35] used in this paper is thel of that for attention and
makes the assumption that two images are similar if tlosggss many features in
common. As before no use is made of a priori infaionain the choice of features. Itis
to be expected that many features that are sharedevilhiue to that pair of images.
This means that it is never possible to pre-select featrasway that will reflect all
aspects of the relationships between a set of objects emtiiarity of pairs of images in
a database unless complete knowledge of the databkisewn beforehand. As with the
measure of attention described above, the similarity umegsroposed here generates
features on a competitive basis as part of the aloul of the measure. The features
take the form of forks and similarity is dependent ufimnumber of such forks that can
be found to match pairs of images.

Consider two images X and Y containing pixets and y with colour values
ax = (axw, aw, &) anday = (ay1, ayp, ay3), respectively
A fork of mrandom points; is defined as a set of any pixel positions in image Xreh
Sc= {X1, X2, X3y +vey X}
A randomly positioned fork ah pixels S, is defined in image Y where
S, ={Y1, ¥2,¥3 ..., Ym} @ndxi- x= yi-y; 0]
In other words pixelg; are a randomly translated version of the

The fork S, matches image Y il1axj —ayj| <9, Uj.

The similarity measurR of image X to Image Y is computed in the followingpste
Rxy =0; k=0

Generate a random fof

k = k+1; if k> M then stop

p=0

Transform forkS; to produce forks,

If § matches Y theRxy= Rxy+ 1 and loop to 2.

p = p+1; if p > P then go to step 9 (generate n8W

Loop to 4 (no match so try another transform).

. Loop to step 2

10.Repeat with X and Y reversed. Similarity meadrre Ry + Ryx

© o N Ok ®DNE

High similarity scores are obtained when many forksnage X are found to
correspond and match transformed forks in image Mll the forks match a maximum
score ofM will be obtained.

It is necessary for a high score that forks in imag@rYespond to forks in image X,
otherwise, for example, cropped versions of imagaddvoe classified as being very
similar to the whole, although this may be a requiremestbime applications. The
similarity scoreR is therefore made symmetric by summing the numberai€hing
forks in both directions.
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Image X Image Y
Fig. 4. Fork from Image X matching Image Y.

Fig. 4 shows a 3 pixel fork covering one black pixel tamal white pixels from image
X matching in a position in image Y. In general eacthefgixels will possess three
colour parameters, s§x)= (r, g, b) and the fork will fit image Y if the colour parameters
of all m corresponding pixels have values withiof each other. A series bf forks
from image X are tested for a match at some positiamage Y and the number of such
matches forms the similarity measure of image X to enég

A B C
Fig. 5. Shapes possessing similarity measures thattdatigfy the triangle inequality.

The measure does not necessarily satisfy the triangggaiity and is therefore not a
metric. In practice there is no requirement for the ¢liamequality to be satisfied in
terms of human perception and indeed this may be aglagheonstraint on the distance
measure. A pattern B may contain features in commémnAvand C and be similar to
both. However, A and C may have no features in comat@ll, and no conclusion
regarding A and C can necessarily be inferred frtoensimilarities of AB and BC (Fig. 5).

4.1. Translation, Rotation and Scale

The similarity algorithm makes up ® attempts to discover a match in image Y for
each ofM transformed forks that are generated. The distribubiblocations of high
attention scoring pixels in forks that fit both imagg@ges an indication of the location of
those regions in both images that hold the featureslahgely determine the overall
image similarity.
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The centroids of pixels in images X and Y that are prege the M' pairs of forks
Si,Syk=1, ..M’ that match is given b¥ andy where
X = Z% y= Zf%ﬂ' M2M'>0
k,x; 0S; k,y; Sy
The extent of the region of similarity arouxdand y may be estimated by the standard
deviation ofx and y, where

el o )

In general an affine relationship between a shapenage X and image Y may be
identified by allowing the forksS to be randomly rotated betweerr and scaled ix

andy by s to produce the5 and studying the distribution of angles and scafegixel
co-ordinates of forks that fit both images.

In this case the transform applied to pixelsSnis given by
S, ={yn Y2 Ys ....ym} Whereyi—y1 =s R[ xi—x] DI

cosd sinﬁ}

andR, =
R {—sin@ cosfd

As with the attention measure described in se@itrere is every justification for
tailoring the processing as much as possible béfmtieer analysis if sufficient is known
about the data to be sure that this improves padaoce and does not destroy information.
This applies to the normalization of image dateoading to position, orientation and
scale which will yield good results if the datanisll behaved within the rules followed

by the normalisation process. However, as befueetis no guarantee that this is the
case and a particular normalization process map@&aippropriate to all items in a
dataset and may cause information to be lost easlhetri complex and noisy data. The
approach described here makes no assumptions thleguitoperties of the data but rather
relies upon evidence in the form of mappings (matgforks) discovered between image
pixels to reflect orientation, positional and saaktionships between data items.

4.2. Parameter Sensitivity

The behaviour of the similarity measure is cleadpendent on the values of two key
parametersM the number of forks generated to produce a s@@m the number of
pixels in each fork,M determines the volume of computation andhe precision with
which matches are made.

Page 9 of 19



Image X Image Y
Fig. 6. Testimage pair X, Y
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Fig. 7. Variation in standard deviations of samiy measure against no. forks generated.

M 50 100 200 400 800 1600

Standard deviation(c) 5.90 3.66 2.90 1.79 1.25 0.95
Mean score 81.64 83.05 83.03 83.33 82.86 83.02
log(o) 0.77 0.56 0.46 0.25 0.10 -0.02

Table 1. Variation in scores against numbers iisfgenerated\()

In order to test the stability and the statisticahfidence of the similarity measure, a
number of repeated calculations were carried ouhersame pair of patterns (Fig. 6) for
each of several values Bfwith m = 10 100 calculations of the similarity measure were
computed for values dfl from 50 to 1600 and the results are shown in Taladad Fig. 7.
The standard deviation decreases Witlapproximately as the power of -0.6 in this range
indicating that the precision of the similarity meee increases with increasing

computation.

Image X Image Y1 Image Y2 Image Y3
Fig. 8. Original (X), shifted (Y1), rotated (Y2hd scaled (Y3) shapes.
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Fig. 8 shows image X transformed by translation)(Yatation (Y2) and scale (Y3).
Histograms oix,y values of the centroids of forks fitting image #de shown in Fig. 9
and reflect the upward movement of the shape bwtaBd pixels by a corresponding
shift to the left of the peak in the histogram. In a similar fashion Fig. 10 shows a
histogram of the angles of rotation of forks thairhage Y2 with a peak at +45° which is
a good indication of the angular displacement ingemY2. Image Y3 is a 20% isotropic
reduction of image X which is again reflected ie thistogram of scale values of forks
that fit Y3 which has a peak at about 0.8 (Fig.. 1Barameter values used wemne= 10
andM = 2000

300 350

250 4 300

)
=1
S]

150 A

number of forks
number of forks

100 A

50

ooooooooooooooooooooo

x co-ordinate offset y co-ordinate offset

Fig. 9. xandy histograms of forks fitting image YIn&10, M = 2000.
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Fig. 10. Rotation and scale histograms of fori&gfj images Y2 and Y3, respectively
(m=10, M = 2000.

The calculations were repeated for several numblefsrk pixels () on each of the
three images wittM=2000 to determine the effect on the stability of theules (Tables
2-4). In all cases the standard deviations ofdsmates of position, angle and scale
decrease as extra pixels are added to the forkaddition the peakiness (kurtosis) of the
distributions increases with the fork pixel numfm). Increased accuracy and precision
is achieved at the expense of additional computatibich increases witi.

m max c kurtosis
2 -27.4 34.93 0.41
4 -27.2 19.87 4.44
6 -27.2 14.07 10.65
8 -26.6 9.50 12.62
10 -27.1 7.10 20.08
12 -26.9 5.72 43.91

Table 2. Variation in y shift estimate against fw@mof fork pixels in). M=2000
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m max® o (rad) | kurtosis
4 45 0.86 -1.00
6 45 0.88 -0.92
8 54 0.85 -0.48
10 50 0.75 0.36
12 41 0.72 1.22
14 45 0.69 1.91

Table 3. Variation in angle estimate against nunalbéork pixels ). M=2000

m max c kurtosis
2 0.76 0.26 -0.72
4 0.78 0.21 0.18
6 0.74 0.19 0.38
8 0.76 0.16 0.69
10 0.77 0.15 0.85
12 0.76 0.14 1.04

Table 4. Variation in scale estimate against nurobéork pixels (). M=2000

The results show that it is possible to extracitrehships between patterns without
making specific pre-defined measurements. Locatdentation and size can all be
measured indirectly without placing a ruler on digect being measured. Structure that
is common between pairs of patterns may be idedtily observing the statistics of
randomly generated transformed forks that havertdes for their production.

5. Similarity Tests

In order to test how the triangle inequality ntighe violated by the similarity
measure, the three shapes in Fig. 5 were procesHeel.similarity scores are shown in
Table 5. The composite shape B is rated as simailarand less so to C with scores 374
and 58, respectively. However, A possesses feturiesiin common with C and is given
the much lower score of 10. The higher similabigtween A and B than between B and
C is due to the length of the lines in common.

A 1388

B 374 1530

C 10 58 564
A B C

Table 5. Similarity scores of shapes in figure 5.

The similarity calculation may be repeated on #rae pair of images, but with greater
constraints placed on the transform parametersaadndom selections are made in a
range that yields the best results. This mearsfitar example, a peak in fork fitting
frequency is identified at an orientation of 2¥® talculation is repeated selecting forks
within the range of rotation@7° -q,27° + a] whereqa is a small angle before being

applied to image B. In this way rotations are ¢tsed to lie within a smaller range
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allowed in the first iteration. In a similar fashiforks may be constrained in location
during the second iteration by requiring pixeldi¢owithin a distanc® of (X, 7) and in

effect focusing the computation on the region ghleist similarity. These strategies have
the effect of enhancing the likelihood of findirgris that fit a pair of similar patterns by
focusing attention in the vicinity of the corrersform parameter value.

Va2 TN |
— Y- Bw

Fig. 11. 18 MPEG-7 shapes.

18 distinct binary shapes (200x200) were taken frioerMPEG-7 set [18] (Fig. 11)
and the similarity measufcalculated between all pattern pairs witk10 andM=800.
Forks were allowed to be rotated randomly betweery4 with D = 150. Patterns
matched against themselves obtain the highestscéattern pairs showing strong
similarity include (3,7), (5,7), (7,18), and (5)X8able 6).
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Table 6. Similarity scores of shapes in Fig. 10.
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Figure 12. Cluster of similar shapes
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Table 7. Similarity scores of shapes in Fig. 11.

To be sure of a successful and rapid search thrautgttabase of shapes a hierarchy of
such clusters have to be identified in which irghaster similarities are much larger than
those between different clusters. With this in angncluster of very similar shapes to
pattern 12 in Fig. 11 shown in Fig. 12 were analytsedetermine how well the similarity
measure would reflect the tightness of the clusiattern 12 in Fig. 11 is in fact identical
to pattern 1 in Fig. 12. Similarity measures wabp&ined under the same conditions as
before and are shown in Table 7. The lowest siityléo pattern 1 with a score of 625
occurs with pattern 11 and significantly exceedsttighest similarity to pattern 12 in
Table 6 which took a value of 414 with patternThis means that it would be unlikely
for any of the shapes in figure 12 and any otheean variants to be confused with the
wrong ‘vantage’ shape in Fig. 11.

The similarity scores for the very similar shape&ig. 12 are generally much higher
than those for the dissimilar shapes in Fig. 1his Teflects the “tightness” of the cluster
of similar shapes in comparison with the significdifferences indicated in Table 6 by
the wide range of scores.
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6. Discussion

The results presented here only refer to blackvamte shapes, but the mechanisms
also apply to colour images. Pixel matching fdoaorequires that all three colour
components independently have values withiof each other. However, preliminary
experiments indicate that the additional discrirtenainformation in the colour requires
that the number of pixels in forks be reduced fito 3 or 4 to facilitate matching.

This also reduces processing time.

A symmetry transform used with the attention mad®ve has been successful in
extracting reflective symmetry from colour imag86][ This suggests that additional
invariance in the similarity measure may be obtwben comparing shapes that are
similar with respect to a given operation. Invada under different illuminations is a
further possibility building upon results using@aur transform in a similar fashion to
obtain colour constancy in images [37]. Extractugh parameters simultaneously by
applying all the transforms to each fork befordingsfor a fit may require an impractical
increase in the number of forks generatddi o obtain statistical significance. On the
other hand extracting the parameters separatebnisistent with the understanding that
early visual analysis results in separate mapsdparate properties [29]. These pre-
attentive properties include orientation [38], 4i28], and colour [40] which do not
perform well in conjunction.

The “curse of dimensionality” is avoided in thigpapach because the similarity
measure is not dependent upon vectors derived drardimensional feature space.
Instead features specific to each pattern paiesmacted as part of the similarity
calculation itself and these features may beaetation to other patterns in the database.
On the other hand conventional approaches areddecckmit the numbers of features
either because of constraints on the size of tigisets, or because of decreasing
performance due to the lack of independence amdengr feature sets [41].

The approach to measuring similarity is based traband error process of
generating features (forks) that are present irspdipatterns. No guidance is given
during this process as this would inevitably dami@geperformance on certain classes of
shapes by precluding relevant features from beiodyred. The negative effects of such
guidance cannot be predicted in advance of expatiared would not be discovered until
sufficient data is explored.

The matching of forks can be carried out in palaléeeach operation is independent of
the next. However, although the computationalstep very simple there are a large
number of them and a shape comparison takes alsmaohd on a 1.8GHz machine
running in C++. In fact the computations are inappiate for a serial machine which is
designed to carry out fast arithmetic operatiorth \ititle opportunity to harness parallel
architecture.

The human vision system possesses a clever atiangchanism that protects us from
danger and gives considerable evolutionary advant#gs tempting to speculate that
those features that distinguish foreground fromkemund are remembered and help us
to recognise important objects in a scene at adatie. Of course fresh scenes do not
appear exactly as they did in the past and it ¢essary to match new inputs onto stored
data in ways that preserve the notion of similarifpesimone at al [42] suggest that this
is achieved by favouring inputs competitively thadtch the description of the
information currently needed. It is also intenegtio suggest that a form of surround
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suppression operates in time and space througheudrain. Indeed there is no reason to
believe that different parts of the brain includingion use different computational tools
[43]. Signals in the cortex that vary may be segped locally if they constitute a
background that possesses a certain self-simila@ty the other hand signals that are
locally anomalous are not so inhibited. Signadg tireate peaks of activity by resonating
with a stored response that was retained as & mdsedrlier anomalous activity will

again be anomalous and the activity will be reioéar by the surround suppression and
represent an act of recognition.

7. Conclusions

This paper has described a measure of similarttyden patterns that does not require
the prior specification of features on which thaasure is based. The approach is
derived from an attention model that identifiesesady by comparing regions in a single
image and recognising differences. Similarity sasured by applying the dual operation
to two images and seeking features in common. sithgarity calculation represents an
unsupervised learning process in which patternetasre identified without requiring
pattern class labels or numbers of clusters. Laugebers of features are generated
without guidance and their presence in pairs aiepas determines the similarity measure.

More results are needed to prove the effectiveokf®e measure for shape indexing
and retrieval in a large database. However, pipeaach has the significant advantages
that training sets are not required and problemt&wis are not precluded by taegoriori
selection of features. It is shown that this measistable and is not constrained by the
triangle inequality which can prevent proper disgnation. Greater precision may be
obtained with more computation using larger forkgnoreased numbers of forks. The
measure provides a plausible mechanism for compahapes and other patterns which
focuses computation on optimising transform paransehat expose similarity.

Future work will be directed at larger sets of sg®pnd natural images where it is
proposed that attention based similarity measuarde used in Content Based Image
Retrieval and copy detection applications.
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