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ABSTRACT

This paper addresses the problem of face recogniiging a graphical representation to identify gtite that is
common to pairs of images. Matching graphs aresttocted where nodes correspond to image locatindsdges are
dependent on the relative orientation of the nod&milarity is determined from the size of maximaahtching cliques in
pattern pairs. The method uses a single referfameeimage to obtain recognition without a traingtgge. The Yale
Face Database A is used to compare performance esither work on faces containing variations in mgsion,
illumination, occlusion and pose and for the ftisie obtains a 100% correct recognition result.
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1. INTRODUCTION

The use of intuitively plausible features to redsgrfaces is a powerful approach that yields gasillts on certain
datasets. Where it is possible to obtain a trdyresentative set of data for training and adjgstiecognition

parameters, optimal performance can be attainedweMer, when facial images are distorted by illuation, pose,
occlusion, expression and other factors, some festtbecome inappropriate and contribute noise éadtbcrimination

on unseen data. Indeed it can never be knownviaree what distortions will be present in unseethamrestricted data
and so features that are applied universally &edyiito reduce performance at some point.

Many approaches to face recognition are reportdfigniterature [1,2]Graph matching approaches provide attractive
alternatives to the feature space solutions in edempvision. ldentifying correspondences betwearttepns can
potentially cope with non-rigid distortions such egression changes, pose angle and occlusionswewér, graph
matching is an NP-complete problem and much oferurresearch is aimed at solving the associatechetational
difficulties.

SIFT feature descriptors are used by Leordeand E8]do construct spectral representations of egljgy matrices
whose nodes are feature pair correspondences andseare dependent on feature separations. Gbjactow

resolution images are recognised by matching cooregences against a set of pre-trained modelszeR&twalb et al
[4] also match a graphical model of specific olgetti images in which parts are matched accordingntenergy
function dependent on colour difference and redatdrientation, size and separation. Fergus etglajoid the

computational complexity of a fully connected shapedel by adopting a “star” model that uses “land¢chparts. The
model is trained using specific feature types agwbgnition is obtained by matching appearance tiessif model
parts. Kim et al [6] reduces the computational deds by first segmenting one of the images. Eaglon is mapped
using SIFT descriptors and a function dependentistortion, ordering, appearance and displacengntinimised to
obtain appropriate candidate points and regionespondence.

A more general approach by Duchenne et al [7] gsagh matching to encode the spatial informatiospzfrse codes
for pairs of images. An energy function is maxietisusing a graph cuts strategy that is dependemiode feature
correlation, reduced node displacement and disginganode crossing. Duchenne et al [8] also usesnsor based
algorithm to match hypergraphs in which corresporde are identified between groups of nodes anarbyges
linking them. The method is illustrated by matchtwo similar faces using triples of SIFT descriptoCeliktutan et al
[9] also match hypergraphs connecting node triplethe spatial-temporal domain by minimizing an rgiyefunction.
Computation is reduced by considering a singleesafpoint in each video frame and limiting connasi along the time
dimension.

Kolmogorov et al [10] present a graph-cut algoritfon determining disparities that ensures that Isimgxels in one
image are assigned single pixels in the second énzagl occlusions are handled correctly. An enduoggtion is



employed that is minimised by reducing the intgnsiifference between pixels, by penalizing pixetlasions, and
requiring neighbouring pixels to have similar dispes.

Berg et al [11] sets up correspondences by identifgdge feature locations and measuring theirlaiityi by using the
correlation between feature descriptions and tetodion arising from local changes in length aathtive orientation.
An approximate version of Integer Quadratic Progréng is used to detect faces. Cho et al [12] psepa method for
growing matching graphs where nodes represent ressatand edges the geometric relationships. Then&yric

Transfer Error is used to measure the similaritpade pairs and the reweighted random walk algoriith match nodes.

Shape driven graphical approaches [13-15] inclydintive appearance models assign fiducial pomteades and
maximise a similarity function to obtain recognitiof candidate images.

This paper makes use of a fully connected graplehiad representation in order to measure the siityilaf pairs of
patterns. Nodes are raw pixels and edges takevdhee of the relative orientation of the two pixels Patterns
represented by graphs being compared match ibdlk fieatures and edge values match. This simgheciwork has the
advantage that the graph matching process is nasthrfbecause it can be reasonably assumed theaifnode edges
match, the relative orientation of more distante®dill not vary significantly within that localitgnd will therefore also
match.

2. PROPOSED APPROACH

The approach taken in this paper detects struthateis common between pairs of images and usesxteait of such
structure to measure similarity. In this casedize of the largest structure found to match baetiepns is the number of
nodes in the corresponding fully connected maxignaph or clique.

A pictorial structure is represented as a collectiof parts and by a graplc = (V,E) where the vertices

V ={v,,...,v,} correspond to the parts and there is an e@ge\/j)T E for each pair of connected parésand V; .
An image partV, is specified by a locatiorx; . In this paper part¥; correspond to individual pixels. Given a set of

vertices VV* :{Vll,...,vln} in image 1 that correspond to a set of vertiké%:{vf,...,v,f} in image 2 the following
conditions are met by all parts to form a clique

dg(Xil) = dg (Xiz) (1)
A, (1) - dy(x)| £ & 2)
d.0¢.%)- d,(¢x) £ ij Tt @
where d, () is the grey level gradient direction &, d,(X)is the intensity atx , and d,(X,X;)is the angle

subtended by the point pa(lxi , Xj). Clique generation begins with the selection oadom pair of pixel%)(il, le)

from reference image 1 and a r(adf, XJZ) from candidate image 2 that satisfy (1,2,3). Avipair of points(xlf, XE) is
added where

dqy (Xc) = dg (%) (@)
d, () - d,(x2)| £ & (5)
d, (%, %) - d,0¢,%¢)| £ &, (6)

where Xi has not already been selected anhis the closest point t}&; from those already selected from reference
image 1

— il vl 1
m= argmpln‘xp - Xk‘



It is noted that all points further away from& than Xrlnin image 1 are very likely to satisfy the conditi@®) and

therefore do not need to be tested according tesdige condition. It is assumed therefore txéis a member of the
cligue by satisfying conditions (4,5,6).

New candidate pointéxi, le) are selected randomly and added to the cliqueniflitions (4,5,6) are satisfied. UpMb

attempts are made to find a new point after whighdurrent clique is completed and the construatioa new clique
started. The search proceeds on a trial and basis and the selection is not guided by addititiealristics as these
have always been found to damage performance. r &fte generation oP cliques the largest is retained. Let the

number of nodes in the maximal clique extractedvbeh the reference image for clasand candidate imagebe nic.

The classification of imageis given byC, where
C, =argmaxn;
Cc

The process allows more than one point in the ifinsige to be mapped into the same point in thergkonage, but not
the reverse. This gives the search more freedomavmate around occlusions in both images witlmwbducing node
crossing. The relationship between points is ngieddent upon their separation or absolute poséiahtherefore the
similarity measure is translation and scale invarialt also means that there is no special comstdaced on the
disparity of points that is dependent on their safian. The measure is partially invariant to tbtation of the images

to within the angle,. It should also be noted that although the ckoaee maximal in terms of the algorithm, there is

no guarantee that the cliques extracted are tlgedaitheoretically possible; the solution of an dtifaplete problem
would be necessary to confirm this.

3. YALE FACE DATABASE

In order to make a assessment of performance, #ie Face Database A [16] is used in this paperis @htabase
consist of 11 categories of expression and lighfiegn 15 individuals. The categories are Normahpply, Glasses,
Surprised Wink, Sad, Sleepy, No Glasses, Left LiGentre Light, and Right Light (Fig. 1).
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Figure 1. Subject 1 expressions plus left, cemicergght illuminations
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Figure 2. Reference faces — Normal category

A great variety of face recognition techniques hideen applied to the Yale database ranging frorheFisinear
Discriminant to PCA and SIFT features and publishedormance figures are given in Table 1. Theremrates shown
are for the performance using the smallest trairsagused in the method. Within some approache®rpsgnce
improves with the size of the training set but wiie potential of introducing the effects of ovaiting that can affect
generalization to unseen data.



Images from the Yale Faces database were reducsizénto 100x76 pixels. The category Normal wasduas a
reference set (Fig. 2) when measuring the simylarftthe 15 faces in the expression, illuminatiow aew occlusion
categories. The background in the 15 referencg@mavere was manually erased and set to white. r@maining
candidate images were not changed and the backijmeas left intact.

Table 1. Performances reported on the Yale Fatabae A

Reference Test set error rate Size of training set
Tjahyadi [17] 11.6% 1
Sellahewa [18] 18.0% 1
Pozo-Banos [19] 4.34% 2
Ruiz-del-Solar [20] 7.7% 2
Aly [21] 9.9% 2
Liu [22] 29.0% 3
Cheng [23] 16.84% 3
Du [24] 33.55% 3
Li [25] 24.5% 4
Quintiliano [26] 17.0% 4
Rziza[27] 6.67% 5
Gudivada [28] 5.16% 5
Lu[29] 5.0% 5
Aroussi [30] 2.22% 5
Qi [31] 7.78% 5
Xia [32] 11.3% 6
Hua [33] 34.2% 8
Tang [34] 13.9% 10

Grey Ievelsdg (Xl) are in the range of 0-255 and match if values diffeno more tharg, =160. The threshold on the

angular difference between matching pairs of pdimtsach image i€, =19°. The grey level gradient is quantized
into the four directions 0°, 90°, 180° and 270°% td N=100 attempts are made to add new points to aeckaqalP=100
cliques are generated for each imaghe maximal clique identified, and the classtiica C, determined. This defined

a fixed framework for clique extraction but withréle very broad thresholds thereby enabling moratpdo become
candidates for inclusion in a clique. There ig¢fiere less emphasis placed on the informationgssesl by individual
pixel properties than that contained in the stmattrelationships between the points forming theus.

4. FACE RECOGNITION RESULTS
4.1 Expressions

The seven expressions Happy, Glasses, Surprised, \8iad, Sleepy, and Noglasses for the 15 subjeete wll
compared with the reference faces (Fig. 2) and malxcliques extracted. Fig 3a shows the sizesafimal cliques for
each subject that ranged from 1265 to 2860 nodésre were no errors, that is, the largest cliqas always formed
with the correct reference. Fig. 3b shows theld¢atficlique sizes for each category and refldutsaverall distortion of
the expression from the references. The Noglassegory contains several faces that are almostiaé to those in
the Normal category as indicated by high scorgss th the Noglasses category for subjects 8 andré3lue to their
wearing glasses in the references. The two pe#kssubject 4 in the Sad category and subjecttBarGlasses category
are due to identical copies of reference (NornraBdes for those subjects being present in the ctégperale Database
A categories.

Fig. 4 shows a 1985 node maximal cliqgue extraateth fthe subject 1 reference and the same subjmtttihe Surprise
category. Graph edges are only shown betweenotiveclosest nodes for clarity. Fig. 5 shows araegdd portion
around the mouth region in which the grey levebgrat direction is indicated by red radial lines.
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Figure 3. a) Sizes of maximal matching cliquesgach subject and expression. b) Clique size tfitaksach expression

Figure 5.

Close-up of mouth region in Fig. 4
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Figure 6. a) Sizes of maximal matching cliquesgfach subject and illumination. b) Clique size ®fal each category
4.2 lllumination Changes

lllumination changes significantly distort the infieation available for subsequent processing asfleated in Fig. 1.
The direction of illumination affects the gradiatitections in certain regions of the face and pnévgoints in these
regions from being candidates for comparison withreference face. The maximal cliques sizes generally lower
than those obtained with the 7 expressions (Fig. Baces illuminated by Centrelight obtain the ligthdegree of
similarity whilst Left and Right illuminations yidlsimilar lower performances (Fig. 6). Fig. 9bwka maximal clique
matching the Left Light subject 1 face and ignorihg background. There were no errors in the ithation categories
and it was noted that despite subject 14 weariagsgis but not in the reference, this face wasifitabsorrectly.

4.3 Occlusions

Figure 7. Subject 1 Surprised Top, Bottom, Left Right sections

Occlusion is an important distortion that can cdesibly degrade recognition performance. Somédursimilarity
measurements have been carried out using jusbthdottom, left and right halves of the Surprisetiof faces (Fig. 7).
The areas of the images were smaller and the velaffect of noise was therefore greater and sadlative angular

thresholdg, was increased to 20°.
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Table 2. Error rates on occluded faces

Top Bottom Left Right

% error 0.0 40.0 0.0 13.3

The top sections of the Surprised set of facesl e largest cliques in common with the refereseteand the Bottom
sections the lowest (Fig. 8a). Left and Right is&st obtain intermediate scores and follow a sinplattern perhaps
reflecting the symmetrical nature of facial imagEgy. 8b). Subjects 2 and 8 amongst the Right isegd gave rise to
errors and there were 6 errors in the Bottom sseprigroup (Table 2). This result is consistenh\witman performance
which finds the recognition of facial identity easif the eyes and top half of the face are visiblat not if they are
obscured. Fig. 9a illustrates how the top hathefface was located in the reference with no paimitched in the lower
half of the face.

. -
Figure 9. Matching maximal cliques for a) top h&fliSurprised face. b) Left Light face
4.4 Pose

Pose is another important aspect of facial recagnitA set of poses from MIT [35] (Fig. 10) wearalysed for a single
subject taking right, forward and left facing posssreferences (Fig. 11). Again the noise levegevhigher in this data
and the relative angular threshold was increas@®to

The highest similarities were obtained near theulamgocations of the reference poses with sintisidropping off as
distances increase (Fig. 12). An analysis of éta&tive shifts of corresponding points in matchifigues would provide
information on the pose position.
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Figure 10. 20 poses taken from MIT database

Figure 11. Right, Forward and Left facing refereposes
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4.5 Clique Structure

The generation of matching maximal cliques in fhaper does not guarantee that the cliques areetfieadty maximal

or that the internode relationships are all sattkfietween patterns. The suboptimal size is aablkepif performance is
also acceptable, but the reliability of the struatwcorrespondence could be uncertain. As destiibesection 3 it is
assumed that more distant angular relationshipsdeet nodes will be satisfied if the closest pafraades satisfy the
matching threshold.

Fig. 13 shows the distribution of the maximum riglatangle differences between each node and aretin a typical
pair of maximal matching cliques with 1985 pointalthough not visible in the chart, there is justecinstance of a
relative angle of 27° that exceeds the thresholtéf
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Figure 13. Distribution of maximum relative angulalationships

5. DISCUSSION

The similarity measure used in this paper idergtifiFucture that is common to pairs of patternsis heans that pattern
classes can be accommodated that contain patteh®nly possess features in common with just sofrthe other
class members. Some patterns can therefore be engmbthe same class but have no features in comansituation
that is not permitted by several feature basedaguties that are dependent on a metric.



The framework employed here requires a minimal nemd representative pattern samples to obtaingmtion. This

reduces the likelihood of overtraining effects @meralisation. In addition the two parametegs, €,) that define the
operation of the cligue matching process are indépet of the pattern content and were unchangecdh \whecessing
Yale faces. The values @& and €, were chosen by looking at a single pair of imaged found not to be critical to

performance. Increasing the number of cliques g¢aé P) and the number of attempts to add new nodesctimae
(N) increases the likelihood of discovering largeiguwes. However, currently the search for maximiidues
automatically obtains registration aRdandN therefore could be significantly reduced (with #ssociated reduction in
processing) given prior information on the registna of the pattern pairs.

The clique extraction process is scale independsns illustrated by the flexible matching in Fig. However, at the

same time the magnitude of the similarity score@pendent on the size of the area of interesténintage and the
structural information available and therefore wedo definition image will yield a lower similaritgcore despite scale
independent matching. As with changes in the ogge, smaller clique sizes reflect less structnreommon and

indicate the lower recognition reliability arisifgpm smaller images. The recognition is also largeddependent of

brightness; a very wide threshold (160/255) is udathg pixel matching. Illumination direction, Wwever, changes not
only the brightness but also the gradients in variparts of the face. Nevertheless, unaffectetbmegand low level

indirect lighting of other parts of the face séllowed useful matching to take place in thoseaegiand obtained correct
recognition.

It has been shown that common structure can gtildbntified if only part of the candidate imageisilable. This has
benefits when patterns are occluded, but agaiintage size is reduced and the reliability of theogmition is reduced.
This also applies to changes in pose angle wheyedgrarts of the frontal view are obscured by thtation. It is
possible in future work that the pose angle coudd determined from the information contained in thede
correspondences between the maximal cliques ifrahéal reference image and the posed image.

Earlier research on modelling visual attentionhia human visual system has employed maximal clituetetermine
the similarity of regions within theamepattern [36]. This has enabled the backgroundninmage to be recognised
thereby isolating and identifying salient objecthe operation of the model corresponds with huberaviour in many
examples. In addition the maximal clique similamteasure has been shown to fail in the same mawt#re human
visual system on the Poggendorff illusion [37].

The computation takes approximately a minute inldeto compare two grey level images (100x76).sTime is much
less for face pairs that differ significantly besatsearches are abandoned while cliques arenséill,ut is larger if the
images are very similar. This may be reduced ssudsed above with prior registration. Howeveg, éhtraction of
each clique is an independent operation and magftre be conducted in parallel both for each mfeec and theP
attempts at maximal clique construction. Furtheenparallel operations could also be introducedinduigraph
matching itself by allowing additional nodes todmtled simultaneously at different locations. Titipossible because
the conditions for addition are dependent only @cal node properties. This means that the ovewtintial for a
speedup of many orders of magnitude is possibémiappropriate implementation.

6. CONCLUSIONS

This paper has demonstrated the existence of nmatctigue-like structures that obtain for the fitishe no errors when
applied to the classification of images in the YREce Database A and represents an improvementronrates in
earlier work. The approach requires no traininggsetand shows immunity to changes in translatiapression,
illumination and occlusion. The effect of pose lengias also explored. Although the serial impletagon is slow
there is potential for very fast parallel operation

Support for the approach is also obtained fronuéts in modelling aspects of human vision. Furtherk is necessary
on larger and more challenging datasets. Theseadgpe for including colour in the clique node pmtips as well as
increasing the image resolution to improve disanaion on more difficult images.
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