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Abstract—TCP remains the dominant transport protocol for
Internet traffic, but the preponderance of its congestion control
mechanisms in determining flow throughput is often disputed.
This paper analyzes the extent to which network, host and
application settings define flow throughput over time and across
autonomous systems. Drawing from a longitudinal study spanning
five years of passive traces collected from a single transit link,
our results show that continuing OS upgrades have reduced
the influence of host limitations owing both to windowscale
deployment, which by 2011 covered 80% of inbound traffic, and
increased socket buffer sizes. On the other hand, we show that for
this data set, approximately half of all inbound traffic remains
throttled by constraints beyond network capacity, challenging the
traditional model of congestion control in TCP traffic as governed
primarily by loss and delay.

I. INTRODUCTION

TCP plays a central role in mediating between application
needs and network capacity. In the absence of congestion,
TCP is responsible for increasing sending rates in a bid to
make efficient use of available bandwidth. Conversely, should
congestion arise, TCP is expected to reduce its rate. This form
of congestion control embedded in TCP is largely credited with
performing resource allocation across the Internet and averting
congestion collapse. But to what extent does this behaviour
describe TCP throughput in practice?

For some types of traffic, throughput is not strictly dictated
by the outcome of congestion control. For one, inelastic traffic
such as streaming media typically has bounds on the amount of
capacity required. Beyond a certain throughput rate, bandwidth
probing by TCP is often unnecessary and occasionally harmful.
Since TCP drives itself relentlessly towards congestion, real-
time applications may suffer from increased latency and jitter.
Furthermore, content providers may wish to avoid exceeding
the streaming rate for content which may not be consumed in
its entirety due to user behaviour, for example channel hopping
for video streaming services [19], or client limitations, such
as buffering restrictions on mobile devices [20]. Such forms
of application pacing are often also applied to elastic traffic.
In some cases, high throughput is perceived and subsequently
marketed as a value added service. One-click hosting services
such Rapidshare and Megaupload [6], [22] actively monetise
access to large amounts of content both through online adver-
tising and subscription models to bandwidth tiers. Conversely,
file sharing applications such as Bittorrent and other peer-
to-peer clients allow users to rate limit transfers in order to
reduce impact on competing traffic, or to provide incentives
for participation [10].

Even beyond such application behaviour, flows may still
be constrained by factors not pertaining directly to TCP
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congestion control. The transport layer is subject to strict
bounds within which it can operate, potentially impeded by
socket buffer sizes set by OS vendors or tuned by network
administrators. There is an upper bound on the window size
a receiver can advertise back to the sender; in the absence of
windowscale negotiation [7], no TCP connection can exceed a
64KB window. In addition, resource sharing is often subject to
local policy. In the absence of adequate methods for readjusting
how TCP distributes bandwidth, network operators and system
administrators often trade efficiency for predictability, shaping
traffic to conform to local notions of fairness or in anticipation
for expected demand [15].

Given these different potential sources of rate control, what
can we say about their relative impact on Internet traffic at
large? This paper investigates this question from the point of
view of the un-anonymised MAWI dataset [8], that comprises
a single transit link over a period of five years (from late
2006 to early 2012). By using routing information external
to MAWI, we generate a derived dataset which aggregates
flow level metrics across geographic and topological locations.
Hence, this paper sheds some light on the asymmetry in
global network performance over time and provides a valuable
counterpoint to existing US-centric vantage points.

Our main contribution is a re-evaluation of common as-
sumptions regarding Internet flow rates. We achieve this by
systematically identifying artificial constraints to TCP traffic
throughput across three categories: application pacing, host
limiting and receiver shaping. Having reconstructed individual
flows, we aggregate these results using an external routing
information dataset and relate how each aritificial constraint
arises in different contexts and affects different stakeholders
over time. This allows us to show not only that flow rates are
not typically dictated by TCP congestion control alone, but
also that TCP throughput is mostly determined by the actions
of the sender. In particular, we show that host limitations have
largely been lifted for small flows, with the windowscale option
increasing threefold to cover over 80% of all inbound traffic
by the end of 2011. Similarly, continuing operating system
updates have progressively lifted many of the limitations
inherent to socket buffer sizes. These changes have allowed
smaller flows to increase throughput at a far higher rate than
larger flows, which are more often than not affected by other
mechanisms of traffic shaping. This means that, although there
is a correlation between flow volume in bytes and throughput,
the relationship between the two is nonlinear and has changed
with time. Finally, we document the use of receiver shaping
on inbound traffic within customer networks as a response to
periods of congestion, and show that this technique has been
applied mostly on the basis of content characteristics, rather
than to high-volume traffic sources.
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The paper is structured as follows. We present previous
relevant contributions in Section II, and our dataset in Section
III. We continue by describing our methodology in Section
IV, and some of the implications of our findings in Section V.
Finally, we present our conclusions in Section VII.

II. RELATED WORK

This paper builds on a wealth of prior work on understand-
ing Internet traffic and serves as a reappraisal of significant past
contributions. Much of the underlying motivation is shared
with the landmark study by Zhang et al. [24] on the char-
acteristics of Internet flow rates. Using traces spanning both
access, peering and regional links, Zhang et al. analyse traffic
according to potential rate limiting factors. Amongst other
findings, host window limitations were found to affect over
30% of traffic for the access networks studied. Importantly,
the authors found a strong correlation between flow throughput
and flow size, postulating that this could derive from user
behaviour, with large transfers more likely to be performed
over higher bandwidth connections.

Flow characteristics and TCP behaviour at large has since
been subject to frequent reassessment. Of particular relevance
to the current work are passive studies which delve into the
inner mechanisms of TCP. In [13], Jaiswal et al. infer the
sender’s congestion window by identifying the congestion con-
trol variant from the behaviour observed during loss recovery.
The use of separate state machines for each variant however
proves unscalable given the many flavours of TCP congestion
control which have since been deployed. In [17], Lan et al.
analyse flows according to size, duration, rate and burstiness
and characterise the observed correlations for heavy-hitters
specifically, uncovering evidence of increased application in-
fluence on flow rates and burstiness and consequently suggest
treating flow size and duration as independent dimensions.

In addition to these general investigations, this paper is
equally indebted to comprehensive work of a narrower scope.
Significant portions of the observed traffic pertain to well
known applications which have been previously studied. Rao
et al. [20] survey strategies used for video streaming at
both Youtube and Netflix and characterise the properties of
interleaved block sending patterns used to pace streams. These
patterns are also the subject of [5], in which the burstiness of
Youtube traffic in particular is found to result in considerable
losses over residential connections. A large portion of the
traffic observed in the MAWI dataset originates from HTTP
file sharing services, commonly referred to as one-click hosting
websites [6]. In [22], the authors study the characteristics of
such traffic over a three month period, detailing the different
throttling strategies used by different providers.

Finally, it is important to elucidate what changes in traffic
properties are intrinsic to TCP and data transfer, and which
ones arise from large-scale changes in the AS-level topology
of the Internet. In the decade since publication of [24], the
Internet has undergone significant changes, shifting from a
broadly hierarchical form to a flatter, more interconnected
structure [16], [4]. Given the longitudinal nature of this paper
and its focus on interdomain traffic in particular, the insights
provided by these studies on the macroscopic effects of content
consolidation are discernible within our dataset, and as such
are a source of validation for many of the observations herein.
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IIT. DATASET

This section provides an overview of the datasets used in
this work and some of the data processing required before
approaching the longitudinal study of Internet traffic rate
limiting. We use the original, unanonymised traffic traces of
the MAWTI [8] dataset, a set of daily traces from the WIDE
backbone network which provides connectivity to universities
and research institutes in Japan. Traffic is captured daily for
15 minutes starting at 14:00JST. Although this dataset extends
back largely uninterrupted from late 2001, we focus on just
over five years of data following a network upgrade to the
monitored link on October 2006.

The monitored link carries mostly trans-Pacific commodity
traffic between WIDE customers and non-Japanese commercial
networks. We will refer to traffic towards WIDE as inbound
traffic, whereas traffic originating from within WIDE is re-
ferred to as outbound traffic.

TCP data Traffic (TB) Count (x10%)
Year Days flows (x10°) In Out AS Prefixes
2006 91 20.52 0.43 0.45 10.90 56.86
2007 350 102.56 2.11 2.49 17.21 113.79
2008 358 112.26 243 2.10 24.74 156.54
2009 364 113.97 2.48 2.53 19.71 143.87
2010 365 113.70 2.58 343 20.38 148.03
2011 358 114.74 3.44 5.14 19.99 140.56
Total 1886 57717.55 13.50 16.14  34.12 341.22

TABLE I: Overview of traced MAWI dataset

A preliminary overview of the dataset used is provided in
table I. In total, 5.7 billion flows containing data are traced over
five largely uninterrupted years; this represents approximately
30 terabytes of TCP traffic. For the purposes of this work,
we will focus exclusively on inbound traffic, 60% to 80%
of which originates from port 80, referring only to analysis
of outbound traffic when providing a wider context for our
findings. Given the sender side plays a critical role in shaping
traffic, analysing traffic for which the source is restricted to a
small set of networks within Japan would be of limited use
in accurately depicting traffic trends at large. We instead fix
hosts within Japan as sinks, thus sharing a similar perspective
on inbound traffic as many other networks.

A. Tracing TCP Metrics

All TCP flows are reassembled and analysed for each daily
trace. In addition to the five tuple used to define each con-
nection, we impose two additional restrictions: a contiguous
sequence number space and a three minute timeout. These
restrictions are helpful to deal with port reuse and unterminated
flows respectively. Although the total number of TCP flows
increased dramatically in 2011, the number of flows for which
data payload was seen has remained stable, averaging over
100 million data flows traced per year.

There is much prior work with regards to reconstruct-
ing TCP flow from passive measurements and using this
information to understand the end-to-end properties of traffic
[18], [14], [21], [23]. However, the MAWI traces impose two
constraints which require careful consideration, and ultimately
led to the use of a custom TCP tracer. The first one is the
proportion of bidirectional flows, that is flows, where both
forward and reverse path are seen. In the dataset used this
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fluctuates between 40% and 60% over five years. Most avail-
able TCP tracers either ignore or are inadequate at processing
flows for which only one direction is observed. The second
one is the short duration of each individual trace file. At only
15 minutes of line-rate data capture per day, it is wasteful to
ignore flows which are not complete. Although the number of
flows for which a SYN and FIN in either direction is observed
has remained consistently high until late 2011, these flows are
normally mice, i.e. flows that tend to be brief and which carry
little traffic individually. In contrast, most elephants (flows that
carry significant traffic individually) have durations that exceed
that of each trace file.

Loss is inferred by accounting for retransmissions in the
upstream data and out-of-order packets in downstream data;
for the remainder of the paper we will refer to the end-to-end
loss as the sum of out of order and retransmitted data bytes
over the total data bytes in a given direction. Pragmatically,
we found this to be an adequate indicator of loss — with
the exception of hanging TCP connections. In these cases
where connectivity is lost, a host will proceed to retransmit
packets while performing an exponential backoff. Although
this results in negligible overall traffic, it can significantly skew
the inferred loss ratio for uncommon destinations for which
little traffic exists. To account for these cases, we imposed a
3-second timeout on retransmissions after which we consider
the congestion feedback loop to be broken.

Each daily trace in the dataset is processed from a packet
level capture into a collection of flow level statistics. This
gives us insight into the end-to-end characteristics of traffic.
However, since a core objective of this work is to augment this
time-based information with data describing the endpoints of
each flow, aggregating by location is also required.

B. Aggregating by Location

Location information is added by mapping the original
source and destination IP addresses to its geographical and
topological counterpoints. We use the routeviews archives to
reconstruct the mapping between each IP and both AS and
network prefix; bi-hourly dumps of BGP RIBs are available in
the WIDE archives since mid 2003. We reconstruct a daily RIB
based on the views provided by contributing ASes, in particular
IIJ and APNIC. Since exact routes are not disclosed (there is
no record of local policy), we have no knowledge of the route
taken by packets; this of course does not hinder our ability
to consistently map IPs to ASes. While discrepancies in AS
destinations exist between different routeviews contributors,
we note that this happens almost exclusively on prefixes for
which no actual traffic is seen.

Mapping IP to country is done through the use of GeoLite
[3], a commercial geolocation database. While the accuracy of
this solution is often disputed, we are not overly concerned
with locating traffic at a fine granularity. We will mostly focus
on tracking traffic by country and, for larger countries such as
the U.S, by region, in order to capture shifts over time. GeoLite
proves adequate on both counts. The archive for geolocation
data only extends to 2009, before which we must rely on the
earliest match. Additionally, we verify if the destination or
source AS have maintained the same administrative mapping
up until mid 2009 in the relevant RIR (regional internet

1440

registry) archives; otherwise, we do not associate a flow to
a geographical location. After associating flows to country,
region, AS and network prefix for both source and destination
IPs, we aggregate flow statistics over each location identifier.
This generates a daily collection of location identifiers and
associated flow properties, from which we can sketch the
geographic and topological properties of the dataset over time.

IV. FLOW CLASSIFICATION

One fundamental precondition to decouple the influence
that network loss, host configuration and TCP behaviour has
on the throughput experienced by a flow is the reconstruction
of the congestion window behaviour of TCP flows on the
basis of observed data. Unfortunately, the congestion window
value is internal to the sender’s TCP state machine and may
not manifest itself in the absence of sufficient data from
the application layer. A more easily observed quantity which
serves as a reasonable proxy for the congestion window is the
number of unacknowledged bytes in flight, henceforth referred
to as the flight size, which can be derived given an accurate
estimate of the end-to-end delay. The evolution of both flight
size and RTT can in turn be used to ascertain to what extent
throughput is regulated by limitations imposed at different
layers of the networking stack.

Given a candidate RTT obtained through a similar method-
ology to the one described in [24], we can aggregate a
stream of packets with arrival times ¢1,t2,... into a stream
of flights. Intuitively, a flight is a clustered subset of a TCP
flow which exhibits its own temporal coherence; alternatively,
it can be thought of as a series of consecutive packets that were
(roughly) generated by the sender as a response to the same
protocol operation. A flight f; that begins with the jth packet
and ends with the kth is defined to have a total flight time
T; = tp41 — t;. The algorithmic selection of initial and final
packets in such a way that the resulting flights are indicative
of TCP behaviour remains an open problem. Since we assume
that the RTT provides a natural time frame for the operations
of TCP, in the algorithm presented in this work, given an initial
packet 7; and an RTT estimate 7', the kth (and final) packet is
selected to minimise the flight time error e; = |T — 7;|. This
mechanism again follows closely the methodology described in
[24], with the exception that we do not attempt to define flights
as being both adjacent and disjoint; rather, we decompose
flows into a stream of potentially overlapping flights. This
helps the algorithm mitigate the deleterious effects of small
deviations in the estimated RTT, which alters the properties
of each flight. Furthermore, since the flight size is continuous
in time, it makes little sense to restrict ourselves to a single
sample per round trip time.

Having obtained flight information from each flow, we
next consider what is the predominant factor that affects its
throughput. Within the context of TCP, we classify flows
as being artificially constrained by three distinct processes:
application pacing, host limited and receiver shaping.

A. Application Paced Flows

A flow whose throughput decreases because it has no
outstanding data to send is temporarily limited by the applica-
tion. Flights can be identified as being application limited if
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Fig. 1: Flight size over time for flows affected by different artificial constraints.

terminated with a packet smaller than the maximum segment
size (MSS) and followed by an inter-arrival time greater than
the RTT, as consistent with [24]. The underlying reason for this
defintion is that most TCP implementations will wait some
time for subsequent bytes to be written to the socket if the
next packet to be sent is smaller than the MSS, unless the
TCP_NODELAY option is set.

Unfortunately, the classification of flights as being ap-
plication limited is insufficient for our purposes. It can be
readily seen that, in practice, all flows for which the final
packet is observed contain at least one such flight. For the
purposes of our work, we are interested on identifying cases in
which throughput is predominantly determined by application
behaviour. One such example is illustrated in figure la, in
which a stream is delivered by periodically writing blocks
to the sending socket. The resulting network-level behaviour
is distinct from traditional congestion control: short bursts
are interspersed with protracted silence. Application limited
flights, which terminate on non-MSS packets, are highlighted
at the end of each burst.

This motivates our definition of an application paced flow,
which goes beyond the mere presence of application limited
flights and requires that the application play an active role
in defining the pace of data exchange. It is important to
note that this behaviour (figure la) stands in stark contrast
to that exhibited when the application simply multiplexes
distinct transfers on top of a single transport association (figure
1b). From the perspective of the network, there is little to
distinguish the traffic behaviour shown in figure 1b from
that arising from independent TCP flows. Application paced
connections such as Youtube traffic, however, exhibit a degree
of regularity which can potentially be exploited by the network
in predicting demand or smoothing bursts.

In order to identify such recurring behaviour, we identify
flows as being application paced if the period between bursts
terminated by application limited flights is consistently under
10 seconds and the standard deviation of the intermediate
pauses is under one second. This definition is purposely
designed to reject flows which exhibit long silence periods
due to user interaction, and follows closely the behaviour
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historically associated with Youtube video streaming [20], [5].

B. Host Limited Flows

Given sufficient bandwidth and traffic to send, a flow may
encounter local constraints at either end-host which caps its
throughput. For instance, the buffer space allocated on both
the sender and receiver side is often pre-configured, and it is
common practice to tune these values down on popular servers
and managed infrastructure in a bid to conserve memory or
bandwidth. A receiver is also limited in the window size it
can announce to the remote sender; if the windowscale option
[12] is not negotiated during the TCP handshake, the advertised
window cannot exceed 64KB.

In both cases, a local decision by either host can determine
the upper bound of the flow rate. These host limited cases
are characterised by a constant window size over time. The
methodology described for flight aggregation at the beginning
of this section typically generates a large number of flights,
representing many likely combinations for a given RTT esti-
mate. In order to identify the flat-lined behaviour of a host
limited flow, we first filter the flight stream to remove some
of the uncertainty derived from small fluctuations in the RTT.
We then select the maximum flight size observed for each RTT
interval, and declare a sequence of flights to be host limited
if the same maximum was observed over six consecutive
RTTs (this is twice the period suggested in [24]). In practice,
increasing the period over which the maximum window size
is tracked allows us to more accurately discern between host
limited behaviour and conservative bandwidth probing, such as
that performed during the convex phase of TCP CUBIC [11].

A flow may be host limited for only brief periods of
its lifetime, as illustrated in figure 1b. To filter out such
cases where host limitations are not the predominant factor in
defining flow throughput, we further enforce that in addition
to host-limited flights, the average window size must over a
flow lifetime be within 10% of the inferred host limit, which
is not the case in figure 1b.

In practice, flows can exhibit both application pacing and
host limitations, with bursts being sent at a capped window
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size followed by application pauses. In such cases, a flow
will still be classified as being application paced if it meets
the requirements set out in the previous section, as doing so
provides evidence that it controls throughput in spite of the
degraded performance provided further down the stack. This
line of reasoning applies equally to the occurrence of sporadic
loss; so long as block delivery is ensured within the timeframe
dictated by the application, it remains in control.

C. Receiver Shaped Flows

A flow which is neither application paced or host limited
can still be artificially constrained by flow control (rather than
by congestion control). Traditionally, in TCP the sender is re-
sponsible for regulating throughput. However, the receiver can
also shape throughput by manipulating the advertised window
announced on every acknowledgement. Such receiver-window
auto-tuning has been available on Windows operating systems
since Vista [2], and can also be leveraged by middleboxes in
order to throttle inbound traffic [1].

In order to evaluate the potential impact of such behaviour,
we propose a correlation-based heuristic to identify receiver-
shaped traffic. Figure lc displays an example of a receiver-
shaped connection, in this case throttled by an intermediate
middlebox; the correlation is in this case obvious. This is not
the case in general, however. Since the advertised window may
be fluctuating, it is not always obvious which of the many
updates were effectively applied by the sender as successive
values supersede each other. Nevertheless, for many flows in
which both directions of traffic are observed, it is possible to
correlate the evolution of the advertised window with the size
of reconstructed flights.

We classify flights as being receiver-shaped if the cross-
correlation between the advertised window size and the max-
imum flight size is statistically significant with a p-value less
than 0.05. Harnessing the same packet stream filtering process
that we used to detect host limited behaviour, we perform such
analysis over a sliding window of 10 RTT intervals. A flow is
considered to be predominantly receiver shaped if over half of
its flights are flagged as such. We do not perform this analysis
on flights which contain out-of-order or retransmitted packets.
In these cases, both the receiver and sender window sizes are
correlated by definition. In the former case, the receiver buffer
will temporarily fill expecting the next packet in sequence, in
the latter case, TCP will reduce its window.

Unfortunately, the classification of receiver shaped flows
can introduce false positives when classifying host limited
flows. This happens for flows in which the reverse path was
not observed. In these cases, the flow might be receiver shaped
in such a manner that the classification heuristic erroneously
attributes its behaviour to host limitations. In the absence of
additional evidence, this kind of misclassification is difficult
to detect explicitly. Instead, we calculate the ratio of receiver
shaped flows which would have been incorrectly identified if
the reverse path were not observed. This error rate can then
be used to evaluate the accuracy of classifier results.

V. ANALYSIS

Having processed each daily trace individually, we proceed
by aggregating results longitudinally in order to trace the
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Limitation (%)

Year Application Host Receiver Total Loss (%)
2007 49.47 18.58 0.55 68.60 1.29
2008 49.55 17.80 0.69 68.04 1.37
2009 47.10 14.50 2.57 64.17 1.44
2010 36.78 20.44 3.21 60.43 1.22
2011 46.10 13.49 0.60 60.20 0.82

TABLE II: Percentage of traffic bytes affected by each con-
straint by year.

evolution of constraints affecting TCP across both time and
spatial/topological dimensions. We frame our analysis as a re-
visiting of four commonly held assumptions regarding Internet
throughput. Our aim in so doing is to provide much a needed
factual verification of these assumptions, which itself can lead
to a re-appraisal of Internet throughput modelling efforts.
Although all models require simplifying assumptions in the
name of analytic tractability, our aim is to inform on which
are the best assumptions to make if one is setting out to use
or develop an Internet traffic throughput model.

Assumption A. Throughput is primarily shaped by TCP

Internet flow rates are commonly viewed as the output of
congestion control embedded at the transport layer. While it is
often convenient to model flow throughput according to the
steady state behaviour of such algorithms, there are many
potential caveats. For one, there is an implicit assumption
that the network is the bottleneck. Under such conditions,
TCP acts as a distributed optimisation algorithm in allocating
capacity to flows. Section IV however presents several cases
where such an assumption does not hold. The prevalence of
application pacing, host limitations or receiver shaping can all
condition the accuracy of models which assume only elastic
traffic adjusting to network conditions alone.

Table II displays the extent to which each of these limita-
tions affects inbound traffic in the MAWI dataset over time.
The bulk of the volume in bytes is either conditioned by host
limits or application pacing. The use of receiver shaping on
the other hand is both small in scale and temporally confined
to 2009 and 2010. Over five years, the overall effect of the
three selected constraints has dropped by close to 10%.

To understand where these dynamics stem from, table
III further breaks down these findings by autonomous sys-
tem, listing the effect of each limitation for the five most
significant traffic sources per year. Over the observed five
years, traffic remains similarly consolidated: approximately
90% of all inbound traffic is sourced from the top 100 ASes.
However, the weight of the most significant sources changes
considerably. In 2007 and 2008, a considerable proportion of
the traffic exchanged over the interdomain link was content
hosted within Japan (NTT, Limelight). From 2009 onwards,
most of these local sources established peering connections,
bypassing the observed link entirely. This accounts not only
for the significant drop of traffic from NTT, but also its altered
nature: after 2009 traffic from NTT travelled from further away
and was less likely to be application paced.

As the weight of traditional carriers such as Cogent and
NTT has waned, ASes known to harbour one-click hosting
services such as Choopa, Webazilla, WZ Communications,
Carpathia and LeaseWeb have gained significance. Since many
websites hosted in these ASes facilitate the distribution of
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Traffic Limitation (%)

Year ASN AS Name (%) Application ~ Host Receiver
2914  NTT 28.34 65.29 14.68 0.39
36561 Youtube 15.16 77.41 11.19 0.11
2007 22822  Limelight 8.12 55.11 21.90 1.37
15169  Google 3.72 24.11 10.29 0.08
174  Cogent 2.87 47.65 32.22 0.76
2914  NTT 17.16 62.40 13.71 1.03
22822  Limelight 10.57 65.40 21.48 0.52
2008 36561 Youtube 9.15 72.48 12.16 0.09
2518  BIGLOBE NEC 5.06 84.34 5.84 0.10
15169  Google 3.52 52.98 17.13 0.18
3462  HiNet 9.93 60.07 4.82 0.05
15169  Google 8.78 74.79 12.16 0.02
2009 43515  Google (Youtube) 8.08 83.46 9.83 0.14
2914  NTT 5.69 39.76 8.37 0.16
46742 Carpathia (LAX) 4.27 41.04 48.01 2.03
2914  NTT 7.39 21.80 491 0.00
31976  Red Hat 7.03 9.62 41.63 0.00
2010 7366  Lemuria 5.88 51.95 15.72 5.85
43515  Google (Youtube) 5.22 77.76 8.41 0.14
46742 Carpathia (LAX) 4.69 33.06 42.71 421
2914  NTT 10.37 50.33 8.19 0.18
20473  Choopa 8.92 54.03 19.24 0.21
2011 43515  Google (Youtube) 8.69 69.71 7.56 0.16
35415  Webazilla 6.05 40.02 11.23 0.95
40824  WZ Comm. 4.83 42.08 17.43 0.05

TABLE III: AS-Level analysis of throughput limiting.

copyrighted content, they have an incentive to continue using
hosted infrastructure rather than deploying their own and risk-
ing prosecution. Furthermore, these domains are more likely
to host applications which resort to capping the maximum
window size as a means of throttling traffic. The increased
weight of ASes which resort to these methods, such as Red
Hat and Carpathia, significantly contributes to the unexpected
increase of host limitations for 2010 displayed in table II.

Overall, we find that flow rates are not typically
dictated by TCP congestion control alone. While the impact
of application pacing and host limitations on rate control is
decreasing, as of early 2012 we find that less than 40% of
all inbound traffic had TCP congestion control as the primary
rate control mechanism. The reduction of application pacing
however may reflect the nature of the observed link, as many
traditional streaming providers have migrated towards peering
or CDNs, bypassing interdomain links entirely. As such we
expect the effect of application pacing to be more pronounced
when considering traffic beyond transit. By 2011, successive
capacity upgrades have led to a less congested network, but one
where predicting how bandwidth is shared is fundamentally
harder due to the influence of stakeholders such as content
providers and operating system vendors.

Assumption B. Throughput is primarily sender driven

A more widely held and less frequently enunciated as-
sumption is that flow throughput is primarily determined at
the sender side. Intuitively, it is in a receiver’s best inter-
ests to maximize the flow rate, while the sender bears the
responsibility for sharing network capacity and reducing the
overhead incurred due to losses. The Internet architecture
however confers the receiver the ability to throttle rates through
flow control. From answering the previous assumption, it is
clear that throughput is mostly determined by the actions of
the sender: receiver shaping and host limitations together affect
at most 24% of all traffic. Despite this it is worth understanding
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the nature of these host limitations in particular, and towards
which direction flow control is swinging.

A critical component in determining the upperbound for
the congestion window size is the negotiation of the TCP win-
dowscale option during the initial handshake. In its absence,
a sender cannot have more than 64KB in flight. Furthermore,
the default buffer size on either end of the connection can also
limit the size to which the congestion window can increase.
Both settings are primarily subject to operating system config-
uration. Given that throughput conditions on the receiver side
improve as OS upgrades are rolled out, and that the user base
within Japan covered by MAWI has remained relatively stable
over time, all things being equal we would expect the whole
region to exhibit improvements as time progresses. Hence, if
we find significant degradation in host limitations, we reason
that it most probably does not stem from OS rollbacks or
large sets of users with outdated OSes joining the Japanese
networks. Instead, we hypothesise that it will be a product of
macroscopic shifts in routing or application popularity which
lead to a change in where traffic originates from.

We test this hypothesis by first verifying windowscale
deployment over time. Figure 2a shows the ratio of traffic
and flows for which windowscale was successfully negotiated.
Results are calculated solely over traffic where the initial hand-
shake was observed. For added context, data for the outbound
direction is also displayed. The first result that stands out is
the steady increase over time of windowscale usage, rising
from 25% of all inbound bytes in early 2007 to almost 80%
by late 2011. Furthermore, the effects of content consolidation
manifest themselves in the disproportionate coverage of bytes
when compared to flows. With the reduced stake of large ISPs
in inbound traffic, transit traffic has become dominated by a
small set of centrally managed stakeholders such as Google,
lowering the effective barrier for deployment of protocol
extensions. Conversely, the temporary drop in windowscale
adoption for inbound flows in 2009 is due to the increase of
traffic from Asian sources, in particular HiNet.

Given the prevalence of windowscaling, the primary source
of host limitation should therefore be the configuration of
socket buffer sizes. Figure 2b shows the distribution of the
average window size for flows which are flagged as being host
limited. While the 64KB limit intrinsic to TCP is a common
upperbound on window size, other defaults are apparent and
have shifted over time. The use of 16KB and 32KB buffer sizes
(default buffer sizes for Windows XP and Vista respectively)
was progressively phased out over the five year period. In
addition to traditional power-of-two increments of the window
size, different limits are apparent amongst hosting providers:
50KB, 100KB (The Planet), 160KB (Limelight) and 200KB
(SoftLayer), reflecting the overall weight such ASes can have
in shaping transit traffic. The influx of Asian traffic in 2009
led to an increase in observed host windows beneath 16KB.

While figure 2b demonstrates that host limitations for
inbound traffic have been lifted over time, it still does not
adequately answer on what side of the connection they are
imposed. Table IV breaks down the proportion of host limited
traffic over time for both inbound and outbound direction. In
addition to presenting the ratio of flows and bytes affected by
host limitations, the relative proportion of traffic identified as
being conditioned by the receiver side is also displayed. In
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Fig. 2: Longitudinal evolution of TCP
window parameters.

Total (%) Receiver (%)
Year Flows Bytes Flows Bytes
2007 0.32 18.58 69.01 7431
2008 030 17.80 67.70 71.14
2009 027  14.50 60.51 62.80
2010 025 2044 5234 64.63
2011 0.19 1349 50.49 60.81

(a) Inbound traffic.

Total (%) Receiver (%)
Year Flows Bytes Flows Bytes
2007 1.25 2250 74.62 82.46
2008 1.58  30.21 68.32  84.36
2009 1.25 27.83 60.74 84.20
2010  0.65 2470 73.75 88.03
2011 0.81 24.23 71.18 85.90

(b) Outbound traffic.

TABLE IV: Percentage of host limited traffic over time by
total number of flows and bytes. The proportion for which the
receiver side was the bottleneck is also shown.

either direction a very small fraction of flows are affected.
Small flows are both numerous and unlikely to last long
enough for window limits to be reached or reliably detected.
The affected flows therefore tend to be large, and as such can
translate into a significant amount of traffic. The proportion
of flows and bytes for which the receiver side imposed the
maximum window size dropped by 20% and 15% respectively
over five years for inbound traffic, reflecting the successive
OS upgrades performed for hosts within WIDE. Interestingly,
these trends do not surface for outbound traffic: hosts outside
Japan were consistently more likely to dictate the maximum
window size. In part, this reflects the different nature of the
traffic under observation: outbound traffic for this dataset is
more geographically and topologically diverse, with content

Fig. 3: Median throughput for inbound
traffic by flow size.

Fig. 4: CDF of the average window
size by flow size by year.

in many cases being retrieved from Japan by residential hosts
from within Asia.

The endpoint which ends up dictating the maximum
achievable throughput through flow control is typically a
function of the OS adoption cycle. With the windowscale
option covering 80% of all inbound traffic, the main source of
host level constraints are now conservative buffer sizes. For this
dataset, hosts internal to WIDE have seemingly been upgraded
at a faster rate, or less conservatively, than their remote
counterpoints. As such, throughput has become increasingly
sender driven over time for inbound traffic.

Assumption C. Throughput is correlated with flow size

Given host limitations are most likely to affect large
flows, it’s worth considering whether other constraints are
applied disproportionately across flow sizes. A commonly held
assumption is that throughput is correlated with flow size,
which has been verified empirically in previous studies [9],
[24]. Much of the data used in these studies however precedes
the widespread adoption of high bandwidth connections and
use of streaming media, both of which can impact the extent
to which contention occurs in the network.

Figure 3 shows the median throughput as a function of
flow size, by year. In figure 3a, flow throughput is calculated
as the ratio between the mean TCP window size (in bytes)
and the mean flight length (in seconds). Compared to the more
commonly used ratio of flow size by flow duration, displayed
in figure 3b, this method is less susceptible to application
behaviour and as such provides a more accurate estimate of
the achievable rate. In both cases, flows are binned by size on
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Limitation (%) Limitation (%) of total
Year Application Host Receiver Total Loss (%) Year ASN  AS Name Receiver Bytes Rexmt
2007 14.65 245 0.10 20.20 1.9 8071  Microsoft 4.61 0.69 0.17
2008 14.99 5.37 0.09 20.44 2.27 ‘ i
41690  DailyMotion 2.57 0.52 0.13
2009 15.66 3.83 0.55 20.03 2.39 )
2007 20940  Akamai 1.50 1.49 0.90
2010 10.55 4.18 0.36 15.09 2.15 am
5011 1113 553 0.05 1B 119 22822 Limelight 1.37 8.12 5.01
: - : : : 19166  ACRONOC 0.81 1.40 1.22
(a) Flows under 10MB. 21844  The Planet 243 0.76 0.82
174 Cogent 2.02 1.89 1.39
Limitation (%) 2008 19166 ~ ACRONOC 1.61 2.02 1.16
Year Application Host Receiver Total Loss (%) 1299 TeliaNet 1.25 1.25 1.59
2007 61.62 23.07 0.71 85.40 0.96 2914  NTT 1.03 17.16 13.24
2008 61.49 21.94 0.92 84.35 0.88 16276 OVH 31.97 126 029
2009 57.86 17.70 3.28 78.85 0.98
3356 Level 3 6.24 2.18 1.50
2010 43.97 24.45 4.03 72.45 0.71 eve
2011 52.95 15.55 071 69.21 0.62 2009 22822 Limelight 5.92 1.60 0.88
174 Cogent 5.49 1.30 0.91
(b) Flows over 10MB. 16265  LeaseWeb 5.09 1.98 1.06
. 1299  TeliaNet 25.67 1.31 143
TABLE V: Percentage of traffic in bytes affected by each 3356 Level 3 17.33 271 316
constraint by year, along with aggregate retransmission ratio. 2010 16276 OVH 15.28 1.84 0.32
16265  LeaseWeb 7.70 3.23 2.16
. . . . 29748  Carpathia (Ashbi 7.46 2.62 1.30
a logarithmic scale, with median throughput calculated across ‘"p‘lA“( shburn)
each bin. Due to routing changes and increased congestion, e EZEL;& (LAY ol o o
overall throughput in 2009 is lower than other years given 2011 46179  Mediafire 1.20 1.54 0.82
there is a greater proportion of traffic from Asian neighbours, 29748 Carpathia (Ashburn) 1.08 2.06 1.27
35415  Webazilla 0.95 6.05 333

particularly over smaller flow sizes. For reference the through-
put for traffic from the US alone is plotted for 2009,in which
case a more natural yearly progression becomes apparent. For
both plots, a clear disparity is visible across flows sizes: for
flows in the 10MB to 100MB range, although throughput has
consistently increased with time, it has done so at a lower pace
than for flows under 10MB.

Our results confirm the notion that the highest throughputs
are attained by the largest flows, but they also show that
improvements in throughput do not apply equally to all flow
sizes. Whereas throughput has consistently improved for low-
volume traffic, it has not done so for high-volume traffic.
Hence, these findings suggest an increased differentiation
between high-value, low-volume traffic whose throughput has
markedly increased, and low-value, high-volume traffic whose
throughput has stagnated. Although the reported flow sizes are
not a reliable predictor of the overall traffic volume amassed
over a flow’s lifetime given the short time span of each daily
trace, this seemingly subverts the notion that flow rates are
strongly correlated with flow size in a simple, proportional
fashion. This is expounded by further analysing the average
window sizes across flow sizes, displayed in Figure 4. In
2007, there is a visible correlation, with larger flows attaining
higher window sizes. Furthermore, the distributions cluster
prominently around 64KB due to a low rate of windowscale
negotiation. By 2011, this clustering is less pronounced, with
window sizes increasing across the board, but with larger flows
often outpaced by shorter counterparts.

Clearly, the extent to which rates are constrained is closely
tied to flow size. In table V we break down the results from
table II by flow size. Most limitations will invariably affect
larger flows, as applications which shift more traffic, such
as streaming media or bulk file transfers, are more likely to
either attain or self-impose constraints on flow throughput.
Many small flows on the other hand never exit slow start,
in which case none of the studied constraints will be reached
or readily identified. This dichotomy is reflected on loss rates,
which will be higher for flows be regulated by TCP congestion
control. Additionally, the discrepancy in loss rates is further
exacerbated by geographic properties: traffic exchanged over
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TABLE VI: AS-Level analysis of throughput limiting.

poor infrastructure tends to be smaller, with flows from China
exhibiting particularly high end-to-end loss rates.

These results suggest that network upgrades are un-
likely to improve performance for significant proportions
of traffic. This is most visible in figure 3, where improvements
in capacity for coping with higher bursts of activity (figure
3a) has outpaced the actual delivery rate set by applications
(figure 3b). Given the popularity of emulating a constant bit
rate service over TCP, that no such abstraction is provided at
the socket level API is unfortunate.

Assumption D. Throttling primarily affects heavy hitters

We have so far observed that flow throughput is subjugated
from TCP by external stakeholders. A third important element
in the ensuing tussle is in understanding the role operators can
play in imposing their own preferences upon traffic. As such,
we now provide a brief overview of the extent, and under what
circumstances, customer networks resorted to receiver shaping
over the duration of the dataset. From preliminary inspection
of table V, it is apparent that receiver shaping was limited in
both scope, affecting at most 4% of bytes, and time, being
primarily concentrated within 2009 and 2010. A breakdown
of receiver shaping by traffic source is provided in table VI,
listing for each year the five most affected stakeholders within
the top twenty ASes, and their respective contribution to the
overall traffic and retransmissions observed yearly.

Prior to 2009, receiver shaping mostly targeted flows which
attained the highest throughput, and may have in part been
performed by hosts. In addition to affecting Microsoft, which
distributes Windows updates using the same flow control
mechanisms exploited by middleboxes, some CDN traffic was
also reined in. By 2009, and likely as a reaction to increased
contention within their networks, the network-level footprint of
receiver side throttling shifts from shaping by rate, to shaping
by volume. Specific targets start to emerge within OVH, Co-
gent and Level 3 and TeliaNet, all of which hosted significant
file-sharing websites at the time which would continue to be
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affected throughout 2010. By 2011, receiver shaping mostly
subsided, affecting primarily Lemuria (HotFile) and Medi-
afire. In the presence of increased contention, some customer
networks felt obliged to curb traffic which in many cases
was already limited by the source. The selected targets of
shaping however were neither the biggest contributors in terms
of volume, nor the most aggressive senders as reflected by
the relative proportion of retransmissions, most likely being
singled out instead based on the perceived legality of the
content downloaded. When consulting the overall popularity
of these targets in table III, it is apparent that some of the
most throttled ASes such as Carpathia and Lemuria had been
far more popular in previous years, suggesting that users may
migrate to other content providers when confronted with lower
rates. While successive bandwidth upgrades alleviated the need
for throttling, it is unclear whether the middleboxes responsible
were discontinued, or limits were merely raised to the extent
where the sender side would once again become the bottleneck.

Conventionally, it is assumed that it is in the best interest of
content providers to use network resources as fully as possible,
whereas ISPs have it in their best interest to police resource
usage and control flow rates. However, as shown here, current
business practices can create an alignment of incentives where
both content providers and ISPs choose to limit the throughput
of a particular class of traffic, leading to quality degradation. In
these cases, the combination of multiple rate control techniques
being applied by different stakeholders may result in a traffic
profile whose rate behaves in a manner quite removed from
the commonly assumed TCP dynamics.
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VII. CONCLUSIONS

The focus of this work has been on elucidating the main
factors that affect flow throughput, but which escape traditional
TCP modelling based on end-to-end loss and delay. In partic-
ular, we explore the changing role of host limiting, application
pacing and receiver shaping in defining flow rates across five
years of transit traces. Our results show that for the observed
link, over half of all inbound TCP traffic can be ascribed to one
of the aforementioned constraints. We show that continuing
OS upgrades have progressively lifted the artificial throughput
constraints imposed by the host stack. In particular, windows-
cale negotiation for inbound traffic increased threefold in the
observed period, covering over 80% of all observed bytes by
2012; in addition, we show that buffer sizes have also shown
continuing increases over time.

These developments have significantly improved through-
put, in particular for smaller flows. However, we also found
evidence of throughput limiting effects independent from
available end-to-end capacity. This means that no amount of
bandwidth will directly improve TCP rates for a considerable
amount of traffic. We show that application-driven techniques
for chunked transfer are widely used, accounting for 40% of
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inbound traffic observed in 2011, and uncover evidence of re-
ceiver traffic shaping prior to 2011 based on the modification of
the receiver advertised window in a bid to curtail congestion.
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