
Keyword-Based Mobile Application Sharing

I. Psaras, S. Reñé, K. V. Katsaros V.
Sourlas, G. Pavlou

UCL, UK
{i.psaras, s.rene, k.katsaros, v.sourlas,

g.pavlou}@ucl.ac.uk

N. Bezirgiannidis, S. Diamantopoulos, I.
Komnios, V. Tsaoussidis

Democritus University of Thrace, Xanthi, Greece
{nbezirgi, sdiaman, ikomnios,

vtsaousi}@ee.duth.gr

ABSTRACT
The advent and wide adoption of smartphones in the sec-
ond half of ’00s has completely changed our everyday mo-
bile computing experience. Tens of applications are being
introduced every day in the application markets. Given
the technology progress and the fact that mobile devices
are becoming strong computing devices, mobile applications
are expected to follow suit and become computation-heavy,
bandwidth-hungry and latency-sensitive. In this paper, we
introduce a new mobile computing paradigm to alleviate
some of the network stress that mobile applications are al-
ready putting into the network, e.g., in case of crowded areas
and events, where the mobile network effectively collapses.
According to this paradigm, users can share the applications
that they have on their mobile devices with nearby users that
want access to processed information, which their own ap-
plications cannot provide. In a sense, then, the client ap-
plication instance is also acting as a server instance in or-
der to serve requests from nearby users. A representative
example is a route-finder application in a busy station, air-
port, stadium or festival, or a gaming application onboard
a flight. Our paradigm builds on Information-Centric Net-
working (ICN) and uses keyword-based requests to discover
shared applications in the vicinity.

1. INTRODUCTION
Mobile computing is currently led by smartphones and is

largely application-centric. Users increasingly rely on appli-
cations to gain access to information, e.g., the top-100 appli-
cations in most popular application markets are responsible
for almost 90% of the access time and 80% of the traffic vol-
ume [1]. Through applications, users normally gain access
to processed information, e.g., finding a route, searching for
restaurants, getting personalised social networking or news
feeds, etc., instead of only asking for static content. Al-
though modern mobile devices possess remarkable comput-
ing capabilities, the required resources for application pro-
cessing are primarily provided by the cloud. Subsequently,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiArch’16, October 03-07, 2016, New York City, NY, USA
c⃝ 2016 ACM. ISBN 978-1-4503-4257-5/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2980137.2980141

using smart applications and the corresponding cloud-based
service components, e.g., Facebook, depends on the avail-
ability of Internet access, increasingly stressing the network
infrastructure.

However, access to the cloud is in some cases not neces-
sarily the best option, or not always possible. It is not un-
common the case where connectivity and access to the Inter-
net is challenged in overcrowded areas (e.g., airport lounges,
festivals, stadiums, big conference-like events), due to equip-
ment failure (e.g., in case of natural disasters), or complete
absence of available connectivity (e.g., onboard a flight, or in
a train while in tunnel), or even due to high roaming costs.
It is important to understand, however, that in those cases,
a very big proportion of the services that users are interested
in do not actually require access to the global network, but
are rather targeting non-personalised services or processed
information related to the local event itself. For instance,
while in a festival, users are more likely to be interested in
finding information on local restaurants, train times or local
maps, rather than requiring VPN connection to their work
email. Although the situation can be quite different in a
conference-style, business-oriented event, we argue that the
demand for local services is still far from negligible [2]. In
all cases, from a resource management point of view, dealing
with demand for local services locally, increases the avail-
ability of Internet resources to those who do require access
to remote services. In [3] the authors claim that enabling
content-sharing between devices in sport events decreases
bandwidth consumption by ∼50%.

To this end, several solutions have been proposed to share
information between mobile devices bypassing the Internet
infrastructure, e.g., FireChat1. A significant body of work
has focused on mobile ad-hoc networks, however inheriting
the drawbacks of the underlying host-centric IP paradigm
i.e., location-identity coupling. Taking a data-centric ap-
proach, Haggle [4] first proposed a data-centric network ori-
ented to sharing content in local mobile networks that en-
abled seamless network connectivity and application func-
tionality in dynamic mobile environments, separating appli-
cation logic from transport bindings so that applications can
be communication-agnostic. Trying to overcome IP limita-
tions, other proposals focused on the Information-Centric
Networking (ICN) paradigm, e.g., [5]. In [3], the authors
propose Krowd to enable content sharing between users in
crowded live events by realising a key-value store abstrac-
tion for applications, providing single-hop content discovery
and sharing with the participation of local access points.

1http://opengarden.com/firechat

1

Other approaches have been based on Delay-Tolerant Net-
works (DTN), exploiting both its inherent capability to ex-
change data in opportunistic environments, and its in-network
storage functionality. For instance, a DTN-based content
storage and retrieval platform is proposed in [6], enabling
applications to make caching and forwarding decisions. In [7]
maps of disaster areas are generated and shared over a dis-
tributed DTN-based computing system. Similarly, the Float-
ing Content [8] concept leverages ad-hoc communications
among mobile users to share local information. According
to [8], message and information replication is limited in time
and space.

The proposed solutions so far aim at either enabling IP-
based connectivity in mobile environments, or supporting
the generic, application-agnostic exchange of content and
computations often employing ICN primitives, e.g., name-
based routing and forwarding [9]. Named Function Network-
ing (NFN) [10] extends the resolution-by-name ICN primi-
tives providing in-network data computations, but without
enabling application sharing in mobile environments. Last,
but not least, the recent trend towards “distributed edge-
mobile or fog computing” is pushing application logic closer
to the end user [11]. Although still in its early days, the con-
cept of fog computing attempts to bring computation and
processing of information (i.e., the cloud) closer to the end-
user. The main benefit of this paradigm is more efficient use
of resources and reduced response latency.

In this article, we take a step further from content shar-
ing, host-centric communications and fog computing and fo-
cus on the prevailing application-centric computation and
communication model. The proposed framework explicitly
enables access to the desired processed and non-personalised
information through the concept of application sharing, ef-
fectively leveraging on a pool of application resources. Namely,
we leverage application-centrism to facilitate information
discovery through application-driven and application-defined,
hierarchical namespaces. Given the ad-hoc nature of the
proposed computation framework, our approach further ex-
tends these namespaces by introducing the concept of key-
words. This enables the description, discovery and retrieval
of processed information, further supporting variable accu-
racy results, instead of only exact matches, e.g., a search
result that does not contain all search terms. Note that the
invocation of remote processing (in co-located smartphone
or WiFi AP devices) is central to our framework, as opposed
to previous work on retrieving static content from nearby de-
vices. Our keyword-based mobile application sharing frame-
work (KEBAPP), manages connectivity in an application-
centric way, i.e., coupling connectivity options and opportu-
nities to applications and their namespaces. KEBAPP ex-
tends existing ICN primitives, namely CCN/NDN [12], thus
resulting in a generic solution across different applications
and overcoming the pitfalls of IP.

2. THE KEBAPP FRAMEWORK
We present KEBAPP, a new application-centric informa-

tion sharing framework oriented to support opportunistic
computing between mobile devices. Our approach targets
scenarios where large numbers of mobile devices are co-
located, presenting the opportunity for localised, collective
computing with a special focus on application sharing and
information processing. In this context, KEBAPP employs
application-centrism to facilitate and enable (i) the exchange

,Q 1DPH 2XW

,QWHUQDO�
IDFH����

�D�E�F�W��W�� %66,'�

%66,'� �G�H�I�W��W�� ,QWHUQDO�
IDFH���

'DWD�&KXQFN 1DPH

�D�E��H��I�EG����� �G�H�I�W��W�

3UHIL[%66,')DFH

�D�E�F� %66,'� ,QWHUQDO�
IDFH���

�G�H�I� %66,'� ,QWHUQDO�
IDFH���

&RQWHQW�6WRUH� 3,7��),%

Figure 1: KEBAPP-enabled host

of processed information, in contrast to merely static con-
tent, and (ii) the discovery and delivery of information to
satisfy user interests.

Figure 1, presents the structure of a KEBAPP-enabled
host. KEBAPP provides a new layer between the appli-
cation and the link layers exhibiting three major design
features: (i) application-centric naming, where applications
share common name-spaces and further support the use of
keywords (Section 2.1), (ii) application-centric connectivity
management (KEBAPP WiFi Manager), where applications
manage connectivity by defining and/or joining WiFi broad-
cast domains (Section 2.2), and (iii) information-centric for-
warding, extending CCN/NDN primitives (Section 2.3).

2.1 Naming
The discovery and invocation of services/applications in

the networking vicinity of a user builds on a naming scheme
that enables the fine-grained description of the desired pro-
cessed information. To this end, KEBAPP builds on the
observation that mobile computing is largely application-
centric, i.e., users tend to access information using purpose-
built applications, rather than web-browsers. Applications
present the important characteristics of inherently: (i) sup-
porting the structuring of the namespace within their se-
mantic context and (ii) being used for computation, enabling
the (lightweight) processing of information, e.g., searching,
sorting data or computing a route.

Hierarchical
Part︷ ︸︸ ︷

/a/b/c/︸ ︷︷ ︸
App Market
App Developer

⊕
Hash Tags︷ ︸︸ ︷

#tag1, #tag2︸ ︷︷ ︸
App Developer

Figure 2: Keyword-based Names

Taking these features into account, KEBAPP names are
composed of two main parts (see Figure 2):
Fixed Hierarchical Part. It follows the hierarchical nam-
ing scheme of CCN/NDN and its purpose is to guarantee
compatibility between instances of the same or different ser-
vices/applications. Application developers can define their
own hierarchical namespaces, enabling communication be-
tween different instances of the same (or similar) applica-
tion, such as categories in a news application., e.g., /News-
App/politics/international.

2

�^^/�ϯ
ͬDǇEĞǁƐ�ƉƉ

�^^/�ϭ
ͬZŽƵƚĞ&ŝŶĚĞƌ

�^^/�Ϯ
ͬDǇdƌĂǀĞů�ĚǀŝƐŽƌ

(a) AP-assisted scenario

�^^/�ϭ

�^^/�Ϯ

�^^/�ϯ
ͬDǇEĞǁƐ�ƉƉ

ͬZŽƵƚĞ&ŝŶĚĞƌ

ͬDǇdƌĂǀĞů�ĚǀŝƐŽƌ

(b) WiFi Direct scenario

Figure 3: Connectivity Options

Moreover, application developers can also define suffixes
corresponding to specific functionalities within their appli-
cations (in addition to static content), enabling this way
the sharing of computation, e.g., the name /MyTravelAd-
visor/Top10Restaurants is used to identify the list of the
top-10 restaurants in a certain area.

According to our initial design the hierarchical part of
the name will have to be an exact (longest prefix) match in
order for a request to be served. It is noted though, that
this matching is performed by the KEBAPP layer, with the
user simply interacting with the application GUI, i.e., users
need not be aware of the exact naming conventions.
Hashtags. The second part of the name comprises of hashtag-
like free keywords, which the application developer can add
to the application. The exact semantics of the hashtags de-
pend on whether the fixed hierarchical part of the name cor-
responds to static content or an application function(ality).
In the former case, these keywords are used to semantically
annotate the static content. This feature enables the par-
tial matching of requests, in contrast with the longest pre-
fix match used in NDN, with the available cache or rout-
ing/forwarding entries, i.e., given an exact match in the
fixed hierarchical part of the name, hashtags can be used to
support approximate matching, in turn enabling the search
of information in nearby devices.

When the fixed part of the name identifies a certain appli-
cation function(ality), the hashtag part of the name enables
the passing of adequate parameters. In the aforementioned
example of the MyTravelAdvisor application, the complete
name included in a user request can have the fixed hierar-
chical part /MyTravelAdvisor/Top10Restaurants and the
hashtags #userrating, #London, #indian indicating that
the user is interested in the top-10 of the indian restaurants
in London, according to users ratings. The submission of
hashtag values is guided by the application GUI and can in-
clude both predefined value ranges, e.g., the sorting criteria
for the top-10 restaurants, and free text fields, e.g., a user
requests /MyNewsApp/politics/search #Syria #negotia-
tions to use the search function of MyNewsApp and find
anything related to negotiations for Syria.

2.2 Connectivity Management
Connectivity management plays a vital role in KEBAPP.

In this work we focus on WiFi-enabled (IEEE 802.11) con-
nectivity. This also includes WiFi Direct, which enables
mobile devices to act as access points (APs) by forming

communication groups. In KEBAPP, we propose the cre-
ation and use of 802.11 broadcast domains for the support
of particular applications, i.e., KEBAPP-enabled hosts or
APs advertise one or more Basic Service Set(s) (BSSs) for
the support of one or more application(s). The creation of
application-specific BSSs aims at enabling mobile devices
to connect only when their counterparts support the same
application and/or namespace. Within a BSS, hosts com-
municate employing CCN/NDN primitives, as described in
Section 2.3.

The advertising AP or host, through aWiFi Direct Group,
acts as a mediator to connect different users willing to share
the same application in a single broadcast domain. In the
case of APs, functionalities such as access control, associa-
tion, encryption, etc., can be supported without imposing
computation and/or battery overheads to mobile devices.
Note however, that APs in this case need not provide ac-
cess to the Internet. Figure 3a represents an AP-assisted
scenario where different users share different applications.

The creation of an application-specific BSS requires the
ability of mobile devices to identify the mapping between
the BSS and the corresponding application. The recently
announced WiFi Neighbour Awareness Networking (NAN)
protocol [13] can support this requirement. Namely, WiFi
NAN supports a low energy consumption device discovery
mechanism enhanced with publish/subscribe primitives that
can serve to retrieve what application is available in a cer-
tain BSS. Other technical approaches are also possible, e.g.,
employing the Access Network Query Protocol (ANQP) of
IEEE 802.11u or using pre-defined SSIDs. It is noted that a
device can be connected to more than one BSSs at the same
time (e.g., [14]), thus acquiring or providing information
across several applications (Figure 3b).

2.3 Forwarding Operation
The basic forwarding operation of a KEBAPP node is a

modified version of Named Data Networking (NDN) archi-
tecture [12]. The KEBAPP modifications aim at reflecting
the forwarding of messages within the various BSSs a node
may participate. As explained in the following, since we con-
sider single-hop broadcasting domains, forwarding decisions
lead to either the broadcasting of a message in the BSS or its
delivery to a local application instance. As such, broadcast
domains are considered as (inter)faces of a KEBAPP node.2

The KEBAPP forwarding scheme, similarly to NDN, has
three main data structures: FIB (Forwarding Information
Base), CS (Content Store) and PIT (Pending Interest Ta-
ble). The FIB is used to forward Interest packets toward
potential sources of matching data. The WiFi manager
(see Figure 1) populates the FIB table with the name pre-
fixes (hierarchical part of the name scheme detailed in Sec-
tion 2.1) advertised by the wireless networks in the vicinity,
e.g., through WiFi NAN. As in NDN, a FIB entry comprises
the name prefix and a list of output face(s). In KEBAPP,
the latter list (of output faces) includes the Basic Service
Set IDentifiers (BSSIDs) advertised by other nodes. More-
over, when a KEBAPP node acts as information producer,
providing information to other nodes, the output face list is
further augmented with the Internal_Face, which enables
a node to forward an Interest message to the local instance

2We focus on the KEBAPP functionality; details relating to
the coexistence of KEBAPP with original NDN are out of
the scope of this paper.

3

of the application (i.e., the device that acts as a server).
The second main data structure, the CS, is responsible

of caching the information requested by the users, providing
fast fetching for popular information and avoiding to recom-
pute information already requested by other users. Replace-
ment policies of the CS is out of the scope of this paper. We
note, however, that in the context of KEBAPP, caching hap-
pens in terms of processed information, as opposed to static
content and therefore, cache hits happen only in case of
requests with similar processing requirements (e.g., restau-
rants within the same geographical boundaries).

Finally, the third data structure of a KEBAPP-enabled
node, the PIT, keeps track of Interests, containing the full
name, forwarded to any BSS. KEBAPP keeps a PIT en-
try for every application request. Depending on whether an
Interest message comes from the local application instance
or another node in the corresponding BSS, the Requesting
Faces list contains a handle to the local application instance
(i.e., the Internal_Face) or the BSSID of the correspond-
ing BSS. In order to support delay tolerant communications,
KEBAPP extends NDN’s functionality, by allowing the cre-
ation of PIT entries even when no suitable destination, i.e.,
forwarding entry, has been found for the Interest message.
At the same time, a PIT entry is extended to further indicate
the Destination Face, i.e., the BSSID, it has been broadcast
to or the corresponding Internal_Face. This serves the
purpose of (re-)issuing Interest messages upon the discovery
of a BSS that is associated with a matching name (in the
FIB).

Figure 4: Forwarding operations

Figure 4 provides a representation of the KEBAPP packet
forwarding engine. In the following, we detail the operation
of KEBAPP framework for an information requester :

1. The application requesting for information creates a
new Interest.

2. The application looks for the information in the local
CS. If the information exists locally, the data is sent
to the application.

3. If the information is not found in the CS, the KEBAPP
layer inserts an entry in the PIT (<Internal_Face,
name_prefix + keyword_list, null >). As in NDN,
we use the term “Internal Face” to point to the local
application involved in the transaction (either as re-
quester or as provider).

4. The KEBAPP (network) layer checks if there is a BSSID
entry in the FIB matching the name_prefix of the

PIT.3 If an entry for the requested name prefix exists,
the WiFi manager connects the WiFi interface to the
BSSID in the FIB and broadcasts the Interest message
with a corresponding time-out value.

5. Each time a new FIB entry is added because a new
prefix name is discovered on a new BSS (e.g., through
WiFi NAN), the KEBAPP layer checks if a pending
PIT entry for this prefix exists. As mentioned above,
this corresponds to PIT entries created for Interest
messages that could not be forwarded. In case an entry
exists, the Interest is sent through the recently added
BSSID, and the entry is updated with the BSSID value.

6. When a response is received with the information re-
quested, the KEBAPP layer looks for the internal face
that points to the application in the corresponding PIT
entry and fordwards the response to it. The PIT entry
is removed and the information requested is cached.

Next, we describe the operation of the KEBAPP frame-
work for an information provider :

1. The user receives an Interest through the interface con-
nected to a certain BSS related to an application.

2. The KEBAPP layer checks the CS for matching en-
tries.

3. In case there is no entry in the CS matching the In-
terest, a PIT entry is first created. This entry allows
the provider device to serve multiple, concurrently ar-
riving, identical requests with a single message, i.e.,
applying multicast, as in original CCN/NDN. In this
case, the Requesting Face list of the entry includes the
BSSID of the current BSS. Subsequently, the FIB table
is looked up and the Internal_Face is used to forward
the Interest message to the corresponding application.
For completeness, the Internal_Face is also added to
the PIT entry as an output face.

4. The response from the application is cached in the CS
and sent back to the broadcast domain indicated by
the BSSID value of the local PIT entry, which is sub-
sequently removed.

3. PRELIMINARY RESULTS

3.1 Use Case: RouteFinder App
For the evaluation of the proposed framework, we con-

sider a RouteFinder application that provides information
on train lines and their respective schedule, as well as real-
time information regarding delays, closed stations etc. When
realising a RouteFinder application, the KEBAPP frame-
work will have to deal with one of the two following cases.
The first case is when some other device (either a client de-
vice or an AP) has previously setup a BSS, using WiFi in
the case of an AP, or a WiFi Direct group in the case of
a client device, advertising the corresponding application.
The second case, is when no other BSS advertising the ser-
vice required can be detected in the vicinity. In this second
case, the user sets up a new BSS with the service required

3Note that a local “Internal Face” will never be used since
this is a local request.

4

and waits for other users willing to connect to the BSS to
share the requested application/service (see Sec. 2.3 - pend-
ing PIT entries).

3.2 Evaluation framework
For the evaluation of the viability and the benefits of the

proposed framework, we study a proof-of-concept perfor-
mance of the KEBAPP RouteFinder app using a custom-
built Java simulator. To realistically simulate user mobility,
we employ a relevant mobility trace, which corresponds to
3300 users at a subway station in downtown Stockholm4.

In particular, we assume that only a subset of the 3300
users that enter the station within one hour are KEBAPP
users (which reflects the KEBAPP penetration rate) and
we examine to what extent route calculation requests are
successfully responded by apps in other user devices. We
randomly select a subset of the trace nodes as the KEBAPP
users, and randomly generate one route calculation request
per user during their short stay in the station. In Fig. 5,
we assume that 10 percent of the overall user population
are KEBAPP users and show that, on average, only 18 KE-
BAPP users co-exist in the subway station at any given mo-
ment. We assume that not all KEBAPP users can perform
the required computations (i.e., possess the RouteFinder
app), so a request can be successfully responded by only
a small percentage (1%, 5%, or 10%) of the other KEBAPP
users, which are also selected at random. We also assume
that if two users are in the station within the same slot, they
are also within range of each other. We elaborate and relax
this assumption later on.

Figure 5: Number of co-located KEBAPP users

All sets of simulations are repeated 1000 times. We mea-
sure the successful responses of route calculation requests in
terms of response probability and response time. In partic-
ular, we measure: i) the average Response Ratio (RR), i.e.,
the fraction of the total generated requests that receive a
successful reply, ii) the average First Response Time (FRT),
which is the average time between issuing a request and re-
ceiving the first reply (for those requests that are success-
fully responded), and iii) the average Response Time (RT),
which is the average response time considering all success-
ful responses. In order to incorporate application compute
time and protocol-specific delays in our simulation, in the
last set of experiments we induce a transmission and com-
putation delay to each response and study the corresponding
Failure Rate (FR). The Failure Rate is the fraction of the
total requests that cannot be successfully responded due to

4Trace was obtained from
http://crawdad.org/kth/walkers/20140505/

the movement of nodes (i.e., the responding node received
the request but moved out of range of the requesting node
immediately after).

3.3 Evaluation results
Our evaluation results show that, as expected, the re-

sponse ratio increases with the KEBAPP-enabled applica-
tion penetration rate, as well as with the percentage of shar-
ing users. Overall, we see that even with a 5% penetration
rate, (i.e., when only 165 out of the 3300 commuters are
KEBAPP users), the KEBAPP users have a chance to get a
successful response. As shown in Fig. 6, the lowest response
ratio of 16.8% is achieved when only 1% of the 165 KE-
BAPP users are simultaneously present in the station and
can successfully respond to the users’ requests. The proba-
bility of a successful response gets significantly higher when
more users are willing to share their resources; this prob-
ability is increased from 16.8% with only one user sharing
resources to 76.7% with 10% of users sharing resources out
of 165 KEBAPP users - see first set of bars in Fig. 6. As
the number of KEBAPP-users increases, the response ratio
approaches 100%.

Figure 6: Average Response Ratio for increasing
number of KEBAPP users

As far as the average response time is concerned we notice,
in Fig. 7, that first response time decreases as the number
of users that are sharing resources increases. In particular,
the maximum average delay is observed for the lowest shar-
ing ratio of 1%, and it spans from 17-29 seconds. For more
realistic sharing ratios of around 10%, we observe a user re-
quest can almost immediately find a match (i.e., within a
couple of seconds). Note that in a future scenario where
mobile application sharing is widespread, the response rates
and times from other devices could be comparable to nowa-
days cloud-based services. This is a very encouraging result,
which naturally leads us to investigate the failure rates of
connections and the failure to complete requests for pro-
cessed information.

In order to evaluate the proposed framework in a more
realistic setup, we add one more feature to our simulation
setup. In particular, we add extra processing delay between
issuing a request and receiving a response. This delay ac-
counts for signalling, computation and transmission between
the two communicating nodes. Recall our assumption that
if two nodes are inside the station during the same time
period, then they are also within range of each other. This
might not always be realistic, as stations are normally spread
across many floors, covering areas in the order of a few
hundred square meters. That said, the co-ordination be-
tween requesting and responding devices might need to be

5

Figure 7: First Response Time for increasing num-
ber of KEBAPP users

handled by some central controller or WiFi access point.
In turn, such co-ordination would inevitably add extra sig-
nalling overhead which we try to incorporate in our simula-
tions in this last scenario.

In order to realise the above concerns, we induce 1-5 secs
of extra delay to each response and study the corresponding
Failure Rate (FR) when 5% of KEBAPP users possess the
application in question and can therefore reply to incoming
requests. Given the high mobility of users in such an en-
vironment, the failure rate denotes the percentage of users
that have moved out of the station by the time a response is
back. As shown in Fig. 8, failure rates range between 0.5%
to 3.5% of all requests. As expected, failure rates increase as
the extra delay to respond to incoming requests increases,
i.e., failure rate is less than 1% when the extra processing
delay is 1s and increases to approximately 3.5% when the ex-
tra delay is 5s. Although one would expect the failure rate to
decrease as the percentage of KEBAPP users increases (on
the x-axis of Fig. 8), we note that as the KEBAPP users
increase, so does the incoming requests. Therefore, the sta-
bility of the result in Fig. 8 proves the stability of the system
over time.

Figure 8: Failure Rate for increasing number of KE-
BAPP users

4. CONCLUSIONS
We have introduced the concept of Keyword-Based Mo-

bile Application Sharing (KEBAPP), according to which
applications installed in users’ devices act both as clients
(requesting for some service) and as servers (responding to
incoming requests). In that sense, smartphone apps of col-
located devices act as a pool of applications available to
all users in the area. In turn, clients can make use of ap-
plications in nearby devices without the need to necessar-

ily reach out to the cloud to retrieve processed information.
KEBAPP builds on ICN principles and forms requests based
on keywords and hashtags in order to invoke computation
in nearby devices. As a last step, processed information is
returned to the requesting client.

In realising such a framework, a number of issues still
remain open. Such issues include backward compatibility
studies (i.e., provision for as little disruption to the current
application market as possible), authentication (i.e., who
authenticates and how that the responding application is the
application that it claims it is) and security against attacks
(i.e., how to avoid users flooding other devices with bogus
requests). Despite the long list of issues, we believe that
KEBAPP is a promising direction towards edge-computing
resource pooling.

Acknowledgments
This work has been supported by the EC H2020 UMOBILE
project (GA no. 645124) and the EPSRC INSP Early Career
Fellowship (no. EP/M003787/1). V. Sourlas is supported by
the European Commission through the FP7-PEOPLE-IEF
INTENT project, (GA no. 628360).

5. REFERENCES
[1] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and

S. Venkataraman, “Identifying diverse usage behaviors of
smartphone apps,” in ACM ICN’11, pp. 329–344.

[2] I. Wakeman, S. Naicken, J. Rimmer, D. Chalmers, and
C. Fisher, “The fans united will always be connected: building
a practical dtn in a football stadium,” in ADHOCNETS 2013.

[3] U. Drolia, N. Mickulicz, R. Gandhi, and P. Narasimhan,
“Krowd: A key-value store for crowded venues,” in MobiArch
2015, pp. 20–25.

[4] J. Scott, P. Hui, J. Crowcroft, and C. Diot, “Haggle: A
networking architecture designed around mobile users,” in
WONS 2006).

[5] C. Anastasiades, T. Braun, and V. Siris, “Information-centric
networking in mobile and opportunistic networks,” in Wireless
Networking for Moving Objects, pp. 14–30, 2014.

[6] J. Ott and M. J. Pitkanen, “Dtn-based content storage and
retrieval,” in IEEE WoWMoM 2007.

[7] E. Trono, Y. Arakawa, M. Tamai, and K. Yasumoto, “Dtn
mapex: Disaster area mapping through distributed computing
over a delay tolerant network,” in ICMU 2015.

[8] J. Ott, E. Hyytia, P. Lassila, T. Vaegs, and J. Kangasharju,
“Floating content: Information sharing in urban areas,” in
IEEE PerCom 2011.

[9] G. Xylomenos and et al., “A survey of information-centric
networking research,”Communications Surveys Tutorials,
IEEE, vol. 16, no. 2, 2014.

[10] M. Sifalakis, B. Kohler, C. Scherb, and C. Tschudin, “An
information centric network for computing the distribution of
computations,” in ACM ICN 2014.

[11] Y. Coady, O. Hohlfeld, J. Kempf, R. McGeer, and S. Schmid,
“Distributed cloud computing: Applications, status quo, and
challenges,” SIGCOMM CCR, vol. 45, Apr. 2015.

[12] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass,
N. H. Briggs, and R. L. Braynard, “Networking named
content,” in ACM CoNEXT’09.

[13] D. Camps-Mur and et al., “Enabling always on service
discovery: Wifi neighbor awareness networking,”Wireless
Communications, IEEE, vol. 22, pp. 118–125, April 2015.

[14] A. J. Nicholson, S. Wolchok, and B. D. Noble, “Juggler: Virtual
Networks for Fun and Profit,” IEEE Transactions on Mobile
Computing, vol. 9, pp. 31–43, Jan. 2010.

6

