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Abstract—Management operations performed by Content De-
livery Network (CDN) providers consist mainly in controlling the
placement of contents at different storage locations and deciding
where to serve client requests from. Configuration decisions are
usually taken by using only limited information about the carrier
networks, and this can adversely affect network usage. In this
work we propose an approach by which ISPs can have more
control over their resources. This involves the deployment of
caching points within their network, which can allow them to
implement their own content placement strategies. The work
presented in this paper investigates lightweight strategies that
can be used by the ISPs to manage the placement of contents in
the various network caching locations according to user demand
characteristics. The proposed strategies differ in terms of the
volume and nature of the information required to determine the
new caching configurations. We evaluate the performance of the
proposed strategies, in terms of network resource utilization, based
on a wide range of user demand profiles and we compare the
obtained performance according to metrics we define to char-
acterize the demand. The results demonstrate that the proposed
metrics can provide useful indications regarding the performance
one strategy can achieve over another and, as such, can be used
by the ISP to improve the utilization of network resources.

I. INTRODUCTION

Content Delivery Networks (CDNs) have been the prevalent
method for the efficient delivery of rich content across the
Internet. In order to meet the growing demand for content, CDN
providers deploy massively distributed storage infrastructures
that host content copies of contracting content providers and
maintain business relationships with ISPs. Surrogate servers are
strategically placed and connected to ISP network edges [1] so
that content can be closer to clients, thus reducing both access
latency and the consumption of network bandwidth for content
delivery.

Current content delivery services operated by large CDN
providers like Akamai [2] and Limelight [3] can exert enormous
strain on ISP networks [4]. This is mainly attributed to the fact
that CDN providers control both the placement of content in
surrogate servers spanning different geographic locations, as
well as the decision on where to serve client requests from
(i.e. server selection) [5]. These decisions are taken without
knowledge of the precise network topology and state in terms of
traffic load and may result in network performance degradation.

In this work we propose a cache management approach with
which ISPs can have more control over their network resources.
Exploiting the decreasing cost of storage modules, our approach
involves operating a limited capacity CDN service within ISP

networks by deploying caches at the network edges (Fig.1).
These can be external storage modules attached to routers or,
with the advent of flash drive technology, integrated within
routers. Such a service can cache popular contents, specific
to an ISP, and serve most client requests from within the
network instead of fetching content items from surrogate/origin
servers. Empowering ISPs with caching capabilities can allow
them to implement their own content placement and server
selection strategies which will result in better utilization of
network resources. In addition, there are economic incentives
for an ISP to adopt this approach given that traffic on inter-
domain links can decrease significantly. In order to deploy
such an approach, new interaction models between ISP and
CDN providers may need to be defined. These would address
issues relating to the resolution of content requests and the
exchange of necessary information, e.g. content items to cache,
their popularity and size. An alternative solution for obtain-
ing content popularity/size information would involve the ISP
maintaining records of previous user requests from which it
can infer future demand. This prediction could be enhanced
with information from other sources like other ISPs as well as
CDNI [6]. Although these are challenging issues, in this paper
we focus on resource management mechanisms and we plan to
investigate these issues in the future.

While the utilization of network resources is affected by
both content placement and server selection operations, this
work concentrates on the former. Research CDNs, such as
Coral [7], have proposed distributed management approaches
[8]. However, commercial CDNs have been traditionally using
centralized models for managing the placement of content in
distributed surrogate servers. Complex algorithms are executed
in an off-line fashion for determining the optimal placement of
content copies for the next configuration period (typically in the
order of days). With the objective of keeping the cost and the
complexity of the approach low, we employ in this study simple
strategies to decide on the placement of content copies in the
various caching points. Such strategies do not incur significant
processing and communication overhead among distributed
decision points and their functionality can thus be realized
by commodity hardware components. In contrast to the ISP-
centric caching approaches proposed in [9] and [10], which
exclude CDNs from the delivery chain, our solution maintains
the CDN presence but only for the purpose of providing content
which is not locally cached by an ISP. This will ensure content
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Fig. 1. Overview of the proposed caching infrastructure.

availability given the global footprint of large CDN providers.
A distributed in-network cache management approach

has also been proposed in [11], which focuses on content
replacement strategies operated at short time-scales. Our
approach is more geared towards longer re-configuration
periods (in the order of hours) and can be complemented by
online solutions that optimize the inital content placement
configuration in the face of dynamic changes in user demand.
We propose two categories of strategies that can be used by
an ISP to control the placement of content at the different
network caches. In the first category, only information about
the demand from locally connected users is used to determine
the configuration of each of the caches, whereas in the second
knowledge about global content popularity and interests in
the different caching locations is required. In order to analyze
how the proposed strategies can be affected by user demand,
we define specific metrics to characterize the user demand
profile. We evaluate the performance of the different strategies
in terms of network resource utilization according to the
proposed metrics and discuss the performance obtained over a
wide range of profiles.

The rest of the paper is organized as follows. Section II pro-
vides an overview of the proposed approach and introduces the
main modeling assumptions of this work. Section III presents
the details of two categories of content placement strategies.
Section IV describes the methodology used to evaluate the per-
formance of the proposed strategies and analyzes the evaluation
results. Section V discusses related work. A summary of the
work and future directions is finally presented in Section VI.

II. CONTENT DISTRIBUTION MANAGEMENT

A. Problem Statement

The scenario considered in this paper is depicted in Fig.1.
A set of caches are deployed at the network edges, so that a
cache is associated with every network edge node. In addition,
each cache is locally controlled by a cache manager which is
responsible for enforcing caching decisions.

Unlike the heavyweight caching infrastructure maintained by
CDN providers, the proposed solution allows the ISP to operate
a simpler and lightweight caching service. In this case, the
total caching space available in the network may not permit in
practice to store all possible contents provided by the CDN. A

subset of the contents that the ISP wishes to cache in its network
(for instance the most popular ones) need therefore to be pre-
selected, so that the volume of selected contents is smaller or
equal than the total caching capacity. In this work we assume
that information about the content items (e.g. popularity, size)
could be available to the ISP, which could be provided by the
CDN or directly inferred by the ISP. Since the total number of
contents that can be stored in each cache depends on the cache
capacity, it may not be possible to accommodate all the contents
at each individual caching location. In this case, the contents
are distributed across the different caching locations, so that
each content is stored in at least one cache in the network. As
a result, user requests for content can be served from within
the network instead of being redirected to CDN servers. As
depicted in Fig.1, if a request for content x1 is received at
edge node 4 and content x1 is available in the local cache, it
is served locally. Otherwise, the request is redirected to one of
the caches in the network where x1 is stored. For instance, a
request for content x1 received at node 3 is redirected to and
served by node 4.

Serving a content request from the same location as the
request directly from the access node (i.e. locally) does not
affect the utilization of network resources. Retrieving, however,
a content from a remote caching location generates network
traffic. Intelligently managing the placement of the contents in
the different caches, under specific user demand characteristics,
can therefore allow an ISP to control the utilization of network
resources.

B. Intelligent Content Placement Approach

Given a set of M caches m with capacity cm, and a list of X
contents x with size sx, controlling the placement of contents
consists in determining the configuration of each of the caches,
according to the current user demand, so that the network
resources can be used more effectively. More specifically, the
placement problem is to determine the number of copies of
each content to store in the network, as well as the location of
each copy, so that the two following constraints are satisfied:
1) the placement of contents in each individual cache satisfies
the cache capacity constraint, and, 2) each content is cached in
at least one caching location. The resulting content placement
is then used as an input by a server selection algorithm
which determines how to allocate user requests to the caches.
Although simple algorithms can be used in practice (e.g. round-
robin mechanism), we use linear programming to formulate
the problem and compute the optimal request allocations. This
allows us to focus on the content placement heuristics.

Several traditional traffic engineering (TE) metrics can be
used to optimize the utilization of network resources. In this
work we focus on minimizing the maximum link utilization
(max-u), which is commonly used in the TE literature [12] [13].
As shown in previous work, determining the optimal placement
of contents that minimizes the max-u in the network is an
NP-hard problem [14]. In this paper we investigate practical
heuristics that can be used to solve this problem.
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Resource management approaches usually rely on centralized
solutions executed by a manager that has a global view of the
current conditions (e.g. user demand, average link utilization).
Although relatively simple to implement, centralized solutions
have limitations in practice. In addition to the single point of
failure issue, collecting global information about user demand
and network conditions poses scalability problems since they
can incur significant traffic overhead.

In this paper we propose an approach where, instead of re-
lying on placement decisions received from a centralized man-
ager, distributed cache managers coordinate among themselves
to decide how to efficiently use the available caching space
with the objective of better utilizing the network resources.
To achieve this objective, cache managers are organized into
an intelligent in-network substrate similar to the one we used
previously for the purpose of adaptive resource management
[15] [16]. The substrate is a logical structure used to facilitate
the communication between the cache managers, which allows
them to decide on reconfiguration actions in a coordinated
manner. The frequency of content placement decisions is in
the order of hours.

C. Modeling Choices

Several factors can affect the performance of a placement
strategy, such as the user demand and the cache size. Selecting
the strategy to apply is therefore a challenging issue. In this
paper we focus on the influence of user demand characteristics
on the performance of the proposed placement strategies. In
order to limit the influence of other factors, we make the
following modeling choices and assumptions.

We define the total volume of contents to cache in the
network, VX , as the sum of the size of each content x, so
that VX =

∑
x sx. We also define the total caching space

available in the network, VM , as the sum of the capacity of each
cache m, so that VM =

∑
m cm. By design, VM is chosen so

that each content can be stored in at least one of the network
caches, i.e. VX ≤ VM . In order to uncorrelate the influence
of the size of the contents, we assume that all the contents
have the same size. In addition, we assume that all caches have
the same capacity. The size of a cache at a particular location
can depend for instance on several topological factors (e.g.
node centrality). Determining the correlation between content
size and user interest for the content, as well as taking into
account different cache sizes, are challenging research issues
but are outside the scope of this paper in which we simplify
the problem formulation in order to limit the influence of other
factors. We characterize the user demand by a) the total volume
of requests for each content in the network (i.e. global content
popularity - GCP), and b) the number of caching locations
where each content is requested (i.e. geographic distribution
of the interests - GDI).

1) Modeling the global popularity of the contents: Given
that content popularity is long-tail distributed, it is commonly
accepted that the GCP distribution can be represented by the
Zipf law [17]. In this work, we use a Zipf distribution of pa-
rameter α (scaling-law coefficient) to model the GCP. Contents
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Fig. 2. Profile of the function fβ for three values of β.

are indexed according to their rank r in the distribution, so that
the global popularity of a content decreases when its index
increases. In the rest of the paper, we identify each content x
by its rank r, the values of the rank ranging from 1 to X .

2) Modeling the geographical distribution of interests: The
Zipf distribution does not account for the GDI. In the absence
of real traces, we design a function that gives the number
of caching locations in the network where each content r is
requested. Compared to previous methods that mainly focus
on uniform distribution (e.g. [18] [19]), the proposed model
is designed to represent a wider range of conditions. More
specifically the function is so that this number depends on the
global popularity of the content in the network. Intuitively, the
more popular a content is, the more likely it is to be requested at
a large number of different locations. Very unpopular contents,
on the other hand, are more likely to be requested from more
specific geographical locations. With the proposed function,
the minimum number of locations where a content can be
requested is 1 and the maximum is the total number of caches
in the network. In order to model various profiles of GDI (i.e.
scenarios where most of the contents are requested from a
large number of caching locations, or in contrast, from specific
locations only), we introduce a parameter β in the function.
The parameter β is a strictly positive constant that drives the
characteristics of the GDI. The proposed function fβ is then
defined as follows:

fβ (r) = 1 + (M − 1)

(
(X − r)
(X − 1)

)β
(1)

where M is the total number of caches in the network and
X is the total number of contents in the list. The profile of the
function fβ for three values of the parameter β is depicted in
Fig.2 for X = 108 and M = 12.

As it can observed, when 0 < β < 1, the function fβ exhibits
a concave profile, i.e. most of the contents are requested from
a large number of caches. The lower the value of β is, the
higher the number of caching locations for each content is on
average. The distribution of the interests is more homogeneous
between the different caches, and the homogeneity increases
as the value of β decreases. When β = 1, the function fβ
is linear. The number of locations where each content r is
requested linearly decreases with the global popularity rank of
r. When β > 1, the function fβ exhibits a convex profile, i.e.
most contents are requested from a subset of locations only.
The higher the value of β is, the lower the number of caching
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locations for each content is on average. In this case, the GDI
is more heterogeneous and the heterogeneity increases as the
value of β increases. By tuning the value of the parameter β,
different degrees of heterogeneity of the GDI can be modeled
and as such, the function fβ can be used to represent a wide
range of scenarios.

III. PLACEMENT STRATEGIES

We propose two categories of content placement strategies
that can be used by the cache managers in the access nodes.
The proposed strategies satisfy the following constraints:

C1 There is at least one copy of each content cached in the
network.

C2 A content r is copied in a cache only if there is enough
caching capacity to accommodate r.

C3 A content r is copied in a cache only if r is not already
cached at this location.

The strategies can be implemented in a decentralized fashion
through the intelligent in-network substrate, which facilitates
the exchange of information as explained in section II-B.
More specifically, the objective of the proposed strategies is to
determine the number of copies of each content to store in the
network, as well as their placement at the different possible
caching locations. The placement decisions are taken by the
cache managers that coordinate among themselves to decide
upon the most appropriate caching configurations to apply. The
cache managers do not independently decide how to use their
associated caching space (i.e. the contents stored locally), but
instead they communicate through the substrate to exchange
local information, such as the contents which are already stored
locally. The two categories differ both in terms of the volume
of information required and in terms of the characteristics of
the information to be exchanged between the managers.

The decision-making mechanism to support the proposed
placement strategies can follow an iterative approach as pro-
posed for instance in [11]. In this case, content placement
decisions are taken iteratively, so that only one cache manager
is permitted to take a placement decision at a time. The order
followed by the managers is predetermined and is provided
to each manager prior to the execution of the algorithm.
For scalability purposes, a decision-making approach that can
parallelize the decisions taken by each manager can also be
considered [20]. In this case, however, a set of carefully selected
constraints will need to be implemented at each cache manager
to avoid inconsistent configurations. Due to space limitations,
we do not elaborate on the implications of the decision-making
mechanism on the two placement strategies proposed.

A. Local-Popularity driven Strategy

The local-popularity (LP) driven strategy follows a two-phase
process. In the first phase, the cache managers collaborate to
decide where to cache a first copy of each content ensuring
that the first constraint is satisfied. In the second phase, each
manager independently profits from the potential remaining
caching space in the associated cache to replicate some of

the more locally requested contents not already cached, until
the total local space is consumed. Replicating contents locally
limits the number of redirected requests. Each cache manager
maintains the list Lpop of its locally requested contents ordered
by decreasing local popularity (i.e. local aggregated volume of
requests for each content). The list is provided to the managers
at each re-configuration cycle.

First Phase: Each content placement decisions taken by a
manager consists in selecting a single content item, from the
locally requested ones, to cache locally, so that the selected
content a) has the highest local popularity, b) is not already
cached somewhere else in the network, and c) there is enough
space to store the content. This procedure is executed until no
further decision can be taken. In order to ensure that the first
constraint is satisfied, a mechanism to check if all contents
are cached is executed at the end of this phase. If not, non-
cached contents are randomly placed in one of the caches with
enough remaining capacity. This phase always terminates since,
as explained in section II-C, VX ≤ VM by design.

Second Phase: Each manager selects a set of contents to
replicate among the locally requested ones (i.e. from Lpop), so
that the selected contents are the locally most popular ones not
already cached. The number of selected contents depends on
the remaining caching space.

With this strategy the placement decisions made by each
manager depend essentially on the local user demand. Apart
from the first phase, where information about contents previ-
ously cached in the network is exchanged/used, the managers
do not use any network-wide information to decide upon local
placements. Each new local placement is advertised to all other
managers to ensure a consistent view of which contents are
currently cached in the network.

B. Global-Popularity driven Strategy

The global-popularity (GP) driven strategy also follows a
two-phase process. While the first phase ensures that the first
constraint is satisfied, the second phase allows cache managers
to replicate contents locally. Unlike the local popularity strategy
however, collaborative decisions between the cache managers
extend to the second phase. Each manager maintains a copy
of the list of contents requested in the network ordered by
decreasing global popularity, Lpop and for each content r,
the list of caching locations where r is requested ordered by
decreasing number of requests, Lrloc. As such, all managers
have the same global knowledge about content popularity and
geographical distribution of interests in the network. The lists
are provided to the managers at each re-configuration cycle.

First Phase: The first phase of the GP strategy consists
in iteratively considering each content r in the list Lpop, so
that to decide where place the first copy of r. The cache with
the highest aggregated number of requests for r (and strictly
greater than zero), and with sufficient space is selected. If
none of the caches can satisfy these conditions, the content
is temporarily disregarded and marked as FAIL. The procedure
continues until all contents in Lpop are considered. Once the
procedure is completed, caches with sufficient capacity are
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randomly selected to store any content marked as FAIL. In a
similar fashion to the LP strategy, this phase always terminates
since VX ≤ VM by design.

Second Phase: The procedure followed is similar to the one
used in the first phase. The only difference lies in the number
of caches selected to store a copy of each content. Instead of
selecting one cache, a pre-defined number of n caches are
selected, where n is at most equal to the total number of
caches in the network. If it is not possible to find n caches
satisfying the conditions, a copy of the content is stored in
the maximum number of possible locations. The process stops
when it is not possible to find a new feasible placement. The
number n is an input of the algorithm and is provided to cache
managers prior to the execution of the algorithm.

In this approach, placement decisions are driven by the global
popularity of the contents. In addition, the algorithm tries to
store each content r in the location where the demand for
r is the highest. The number of copies of each content (i.e.
replication degree) is driven by n. As n increases, the globally
more popular contents tend to be more replicated than the
others, whereas the replication degree of each content tends
to be more uniform when n is small. The manager decisions
are coordinated throughout the process. The communication
overhead incurred by the GP strategy is therefore larger than
that of the LP strategy.

IV. EVALUATION

This section presents the evaluation of the performance of
four strategies belonging to the two categories described in
section III in terms of network resource utilization according
to various user demand characteristics. The four strategies are
the following:

1) The local-popularity driven strategy, noted LPS.
2) The global popularity driven strategy with replication

factor n = 1, noted GPS 1.
3) The global popularity driven strategy with replication

factor n = 2, noted GPS 2.
4) The global popularity driven strategy with replication

factor n = 3, noted GPS 3.

A. Experiment Settings

We use the PoP-level Abilene network [21] to simulate the
proposed caching infrastructure presented in Fig.1. The Abilene
network has 12 nodes (which are all source nodes) and 30
unidirectional links. In our simulation we associate one cache
to each network node and assign the same capacity to all links.
The total caching space is set so that twice the total volume of
contents to cache can be accommodated in the network, and is
uniformly distributed between the 12 caching locations.

In the absence of real demand traces, we generate synthetic
user demand profiles. Each profile is characterized by a pair
(α, β), as explained in section II-C. In order to evaluate a
wide range of profiles, we consider 20 values of parameter α
with α ∈ [0.1; 2] ( [17]), and 20 values of parameter β with
β ∈ [0.2; 10], i.e. a total of 400 (α, β) pairs. The values of α and

β are chosen to be representative of a wide range of possible
conditions, and as such are likely to cover realistic scenarios
as well. Each pair defines the total number of requests for each
content in the network, and for each content m, the number
of locations where m is requested. We generate 100 samples
for each pair, i.e. we randomly select different locations from
where each content is requested, and as a result, we obtain a
total of 40,000 evaluation samples. The total volume of requests
in the network is constant in all experiments. We consider a list
of approximately 100 content items to cache in the network for
the evaluation to be manageable in time.

B. Evaluation Methodology

The objective of the evaluation is to compare the relative
performance of the proposed strategies under different condi-
tions (i.e. combinations of demand characteristics). In order to
simulate various user demand profiles, we use different values
of parameters α and β. In practice, however, characterizing the
demand through α and β may not be feasible, since it may be
difficult to retrieve the actual value of the parameters given the
monitored information in the network. We define two metrics
that can be used, instead, to characterize the user demand.

1) Metric HG: The metric HG describes the heterogeneity
of the geographic distribution of interests for the different con-
tents. We note dmr the demand for content r at caching location
m. We note M the total number of caches in the network, and
X the total number of contents. For each content r, we define
a parameter h̄g (r) that characterizes the heterogeneity in terms
of geographical distribution of interests (GDI) for content r in
the network:

h̄g (r) =

√
1
M

∑
m (dmr − Em (dmr))

2∑
m dmr

. (2)

where Em (dmr) is the expectation of the demand for content
r at each caching location m, i.e. Em (dmr) = 1

M

∑
m dmr.

The parameter h̄g (r) represents the standard deviation of the
demand for content r at each cache m normalized by the total
demand for r in the network.

We then define HG as the normalized sum of the h̄g (r):

HG =
1

X

∑
r

h̄g (r) . (3)

2) Metric HP : To characterize the heterogeneity in terms of
global popularity between the different contents in the network,
we define the metric HP as follows:

HP =

√
1
X

∑
r (
∑
m dmr − E (

∑
m dmr))

2∑
r

∑
m dmr

. (4)

where E (
∑
m dmr) is the expectation of the total number

of requests for a content in the network, i.e. E (
∑
m dmr) =

1
X

∑
r

∑
m dmr and

∑
r

∑
m dmr is the total volume of

requests in the network. Therefore, parameter HP represents
the standard deviation of the total number of requests for
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each content in the network normalized by the total volume
of requests in the network.

As it can be noticed, the value of α and β is not required to
determine the value of HG and HP . These are obtained through
the knowledge of the total number of contents to cache, the
total number of caches in the network and the demand for each
content at each caching location only. These can be available in
the network, either in the form of static parameters (e.g. number
of caches), or through monitoring information (e.g. aggregated
user demand at the network edges). In order to observe the
relationship between the two metrics and the parameters α and
β, we plot in Fig.3 and Fig.4 the values of HP and HG obtained
for each of our evaluation samples against the different values
of α and β.

As it can be observed in the figures, HP is correlated to
parameter α but is independent of parameter β. On the contrary,
HG is independent of parameter α but is correlated to parameter
β. More specifically, the value of HP strictly increases with
the value of α, and, as such, a larger value of HP represents a
higher degree of heterogeneity between the global popularity of
contents in the network. In a similar fashion, the value of HG

strictly increases with the value of β, and, as such, a larger value
of HG represents a higher degree of geographic heterogeneity
(i.e. GDI) in the network. It is worth mentioning that although
there exists a correlation between the values of HP and HG

and the parameters α and β, the formulae used to determine
the actual values of the two metrics are independent of α and
β. As such, these metrics are not adapted to the current settings
only, which makes them valuable to analyze the popularity
characteristics in any content distribution scenario. In addition,
these can be directly applied to the monitored data since only
the demand for each content is required to compute the values
of these metrics.

C. Results and Analysis

We compare the performance of each of the four strategies
in terms of the maximum link utilization (max-u) resulted in
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Fig. 5. Performance of the four strategies according to different values of
HP and HG.

the network for different demand profiles. A demand profile is
characterized by a pair of values (HP ;HG). The best strategy
is the one that results in the lowest max-u.

Fig.5 shows the results for each of the 40,000 samples. For
readability purposes, the figure is divided in four windows,
one for each strategy. For each sample we determine the
best strategy by comparing the different max-u. Each point
in each strategy window means that this is the best strategy
for the relevant evaluation sample. It is important to note that
according to our experiment settings, each pair is associated to
100 samples, and as such, one point in a graph may actually
represent several samples. As it can be observed from the figure,
the performance of each strategy follows different trends. In the
region defined by the smallest values of HP and HG, strategy
GPS 1 is exclusively the best strategy. On the contrary, in the
region defined by a value of HP greater than 0.25 and value
of HG smaller than 0.7, the best strategy is always strategy
LPS. For other values of HP and HG, however, determining
which strategy can achieve the best performance depends on the
sample considered, and as such, no strategy can be exclusively
identified as the best strategy.

Due to the replication logic, all contents tend to have a
similar replication degree with strategy GPS 1. As it can
be observed from the results, such a strategy is preferable
when both the GCP and the GDI are more homogeneous,
i.e. when the values of HP and HG are low. In this case,
using a strategy that partitions the overall caching space in
a fair manner between the contents can lead to better network
resource utilization. Compared to strategy GPS 1, the content
replication degree is less uniform between the contents with
strategy GPS 2 and GPS 3. Given that the speed at which
the overall caching space is consumed is driven by the factor
n, as defined in section III-B, globally popular contents have a
significantly higher replication degree than other contents, the
difference increasing as factor n increases. When the value of
HP is low but the value of HG increases (i.e. the GDI becomes
more heterogeneous), a placement strategy that behaves in
a more discriminating fashion in terms of replication degree
achieves better performance. Due to the absence of coordination
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Fig. 6. Density graphs of the average deviation of max-u for each strategy.

during the second phase of strategy LPS, globally popular
contents tend to be significantly more replicated than the others.
As it can be observed, for large values of HP , a strategy
that aggressively increases the replication degree of the most
popular contents leads to better network resource utilization. In
this case, the volume of traffic incurred in the network is mainly
dominated by the requests for these contents. By replicating
these contents in most locations, a large volume of traffic can
thus be removed from the network, which leads to lower max-u.

In order to see how the performance of the different strategies
compare to each other, we analyze the average deviation of
the max-u obtained by each strategy with the minimum max-
u reported for each (HP ,HG) pair. The average deviation
is determined by computing, for each strategy, the deviation
from the minimum for each sample of a given (HP ,HG) and
by averaging the results over the total number of samples
considered. For each strategy, we depict the values obtained
in a density graph, as shown in Fig.6. The magnitude of the
deviation is represented by different shades of grey, the darkest
shade corresponding to a deviation of 0% and the lightest to
the maximum deviation observed in the experiments. Given
that the values obtained spanned over a large range, we use
a logarithmic scale for measuring the deviation. As it can
be observed, strategy LPS performs uniformly well for HP

greater than 0.3 and HG smaller than 0.7 since the average
deviation is close to 0. In contrast, the three other strategies
obtain poor performance on average in that region. Very good
performance are also obtained by strategy LPS for low values
of HP and large values of HG. It can also be noticed that
strategy GPS 1 performs uniformly well for the lowest values
of HP and HG < 0.5. Whereas the results in Fig.5 indicate that
the lowest max-u can be achieved with strategies GPS 2 and
GPS 3 in some cases, it can be observed in Fig.6 that these
strategies lead on average to much higher resource utilization.
The performance is therefore less predictable.

The performance of each strategy in terms of resource
utilization is influenced by the user demand. More precisely,
the evaluation results show that, in some cases, knowing HP

and HG is not enough to determine which strategy to apply
since the best performance can be achieved by several of them.
It is possible, however for certain values of HP and HG, to

identify one strategy that outperforms the others. As such, the
proposed metrics can provide useful indications regarding the
performance one strategy can achieve over another and, as such,
can be used by the ISP to improve the utilization of network
resources.

V. RELATED WORK

The placement problem has received a lot of attention from
the research community over the years and has been addressed
in different contexts. For instance [22] investigates the problem
for the selection of the most appropriate physical locations to
place web server replicas in order to minimize network cost.

Closer to our work are the approaches proposed in [18] [20]
[23] and [11], which all focussed on intelligent techniques to
replicate content across different network locations in order
to better utilize network resources. Previous work, such as
[24], has also investigated specific solutions for hierarchical
network infrastructures, which have been applied in the context
of IPTV [19] [23]. A distributed placement strategy in the
context of distributed replication groups is proposed in [20],
where nodes in the group cooperate to take replication decisions
that can minimize the overall network cost. In that work, the
authors assume the existence of a constant and uniform cost
for retrieving any content within the group, and, as such,
they do not take into account network characteristics such
as link utilization. The content placement problem has also
been tackled from the point of view of game theory in [25]
under the conditions of infinite cache capacity. An autonomic
cache management framework for information-centric networks
was presented in [11]. Three dynamic distributed replacement
algorithms with different levels of cooperation between the
caches and complexity were evaluated. These could comple-
ment our approach by optimizing the initial content placement
configuration according to the short-term dynamics of user
demand. Optimal solution structures for the combined problem
of object placement and assignment of requests to caching
locations (i.e. server selection) were investigated in [26], [27]
and [14], where the objective was to optimize the global
network cost. Although the proposed algorithms can provide
near-optimal solutions to the coupled optimization problem,
the approaches have limitations in practice. They assume, in
particular, the availability of global information about user
demand and network conditions at a centralized location, which
may incur a significant overhead and can have scalability
limitations. In addition, given that the two problems are solved
concurrently, the solution can take a long time to converge.

Given the significant impact that content delivery has on
the utilization of ISP network, some work has recently started
to investigate new models and frameworks to support the
interaction between ISPs and CDNs [4] [5] [9] [10]. In [4], the
authors highlight that CDN providers and ISPs can indirectly
influence each other, by performing server selection and traffic
engineering operations respectively, and they investigate differ-
ent models of cooperation between the two entities. In [5], the
authors propose a framework to support joint decisions between
a CDN and an ISP with respect to the server selection process.
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This framework allows the ISP and the CDN to collaborate by
exchanging some local information (network utilization from
the ISP side and server conditions from the CDN side), so that
it can result in better control of the resources. In contrast to
these approaches, our solution focuses on empowering ISPs
with caching capabilities, which can allow them to implement
their own content placement and server selection strategies.
ISP-centric caching approaches have also been considered in [9]
and [10]. However, the full-blown CDN service to be supported
by an ISP, as proposed in these approaches, can incur high
operational costs, given that ISPs will have to maintain large
storage capacities, and may thus be an economically unviable
solution.

VI. SUMMARY AND FUTURE WORK

In this paper we propose a cache management scheme by
which simple and lightweight content placement strategies can
be used by an ISP to determine the placement of content in the
various network caching points according to the characteristics
of user demand. Although the proposed ISP caching solution
may not provide the level of service that CDNs do, it is low-cost
compared to traditional CDN services which (i) require a lot
of power for operating and cooling the storage infrastructure,
(ii) have collocation costs, and (iii) require human supervision.
In contrast, our approach is automated, has smaller distributed
storage, and has simplified functionality that can be realized
by commodity hardware boxes. The deployment of such an ap-
proach can allow ISPs to manage their network resources more
effectively. This is can subsequently improve user experience
which could work towards the benefit of some CDN providers.

In future extension of this work, we plan to investigate
the influence of different content and cache sizes on the
performance of the proposed strategies. We also plan to apply
the proposed scenario to different network topologies. This
work assumes that content popularity can be determined by
an ISP and subsequently provided as input to the proposed
placement algorithms. In practice, however, determining this
information without input from the CDN is a key issue which
we plan to investigate. More generally, the cooperation model
between the ISP and CDN providers is an issue that relates to
the evolution of CDNs and the increased participation of ISPs
in this and we will both follow relevant developments in this
area and also investigate models for the interaction between the
two.
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