
A Northbound Interface
for Software-based Networks

Daphne Tuncer, Marinos Charalambides, Gioacchino Tangari, George Pavlou
Department of Electronic and Electrical Engineering, University College London, UK

Abstract—The current shift from traditional network architec-
tures to software-based solutions is offering new opportunities to
allow network functionality to be managed in a flexible way.
Substantial efforts have been invested in the recent years in
the development of new network management approaches taking
advantage of emerging paradigms such as software-defined net-
working and network function virtualization. Until now however
there has not been much progress in the development of a north-
bound interface (NBI) linking high-level requirements (HLRs)
capturing business objectives to management operations. This is
a crucial functionality to facilitate faster service deployment and
realization of business objectives. In this paper we extend the
efforts towards the development of a NBI and propose a novel
approach for the automatic decomposition of HLRs to network
management operations. We demonstrate its functionality based
on representative use cases and evaluate its feasibility through
prototype implementation. The results obtained show that our
solution can translate new technical requirements to network
configurations in the order of a few seconds, as such enabling
management of network functionality and services in short
timescales.

I. INTRODUCTION

The configuration of network devices is a result of high-
level requirements (HLRs) that capture business objectives.
These are usually communicated through human channels and
find their way to network administrators who are responsible
for configuring the network in a way that, according to their
knowledge, best meets the objectives. This process is time-
consuming but also error-prone, given the large set of config-
uration parameters and the wide range of services supported
by the network. Automating the decomposition of HLRs to
configuration settings is a key feature that network and service
providers alike would desire to be supported by their systems.

Recent trends are showing a shift from the current rigid
network architecture and largely manual configuration pro-
cesses towards software-based solutions. This is evidenced by
the large body of work on virtualized network functions and
their orchestration [1][2], as well as the standardization of
the southbound interface for software-defined infrastructures
[3]. Jointly, these technologies can allow the development of
platforms through which network functionality can be flexibly
managed and programmed. Despite these efforts, there has
not been much progress in the development of a northbound
interface (NBI), which links the HLRs to the management and
control functions/algorithms that compute operational param-
eters. Such an interface would not only facilitate faster service
deployment / realization of business objectives, and reduced

OPEX (due to less human involvement), it would also allow
more frequent changes in the HLRs ensuring the fulfillment
of service level agreements.

The functionality offered by the NBI interface has been
recently dubbed intent-based networking (IBN), in which an
intent (of declarative nature) is translated to a form that
lower-level entities, such as SDN controllers, can understand.
Preliminary work by the Open Networking Foundation (ONF)
[4] described the basic properties and structure of the NBI
including an engine that is responsible for the translation.
The latter is based on mapping tables that can potentially
take various sources of information into account. Although
useful, this work can only be considered as a set of guide-
lines for realizing the interface. A more specific solution
for the translation of intents has been proposed in [9], but
this is limited to the selection and chaining of virtualized
network functions. Looking back in the research timeline,
IBN has its roots in policy-based management systems and
more specifically policy refinement. Several mechanisms have
been developed in the past, e.g., [10] and [11], which can be
useful in guiding the design of the NBI. Their main limitations
however, include the dependence on differentiated services
configuration parameters, the tight relation to specific QoS
architectures, and the need for domain-specific libraries.

In this paper we extend the efforts towards the development
of a NBI and propose an approach that facilitates the automatic
decomposition of HLRs to network management operations.
The core part of the approach is based on mapping function-
ality that associates HLRs to services offered by the network
operator and functions that manage the network resources.
This is realized through matching procedures with the support
of operator-defined descriptors that encode distinct features
and uniquely identify services and functions. A key attribute
of the approach is the use of different abstraction levels for
representing information with clear separation of concerns.
This allows (i) a global view of the infrastructure for decision
making by the functions of a network management system,
(ii) simple mapping procedures by the NBI that are generic
to multiple functions and services, and (iii) compact and
human-friendly representation of HLRs. We demonstrate the
functionality of our approach based on representative use cases
and evaluate its feasibility through prototype implementation.

The rest of the paper is structured as follows. Sect. II
provides an overview of the problem addressed together with
representative examples. Sect. III presents the proposed ap-

proach, while Sect. IV focuses on the mapping functionality
of the interface. Sect. V describes the use cases considered
and Sect. VI presents the evaluation settings and results. Sect.
VII discusses related work and Sect. VIII concludes the paper
and provides future directions.

II. DECOMPOSING HIGH-LEVEL REQUIREMENTS

In this section, we present an overview of the problem of de-
composing high-level technical requirements into management
operations and introduce the main challenges in developing the
functionality of a NBI.

A. Problem Overview
Network operators have two main goals when managing

their infrastructure. On one hand they need to ensure that they
meet their agreements with respect to the services offered to
their customers over their infrastructure. These services are
diverse and range from basic operational services, such as
connectivity between end points, to over-the top services with
rich functionality, such as video on demand. On the other hand
they strive to make the most out of their infrastructure in order
to enhance their offer while accommodating ever growing
needs in terms of demand and service quality.

From an operational perspective, these goals translate to
technical requirements that can be classified as either client-
facing or operator-facing. The former are concerned with
performance guarantees with respect to the offered services
(e.g., delay guarantees when delivering traffic), whereas the
latter relate to internal operational requirements (e.g., in terms
of energy-savings). To meet these requirements, appropriate
operational parameters that define how resources in the in-
frastructure are configured and commodities are regulated have
to be computed. More specifically, each requirement can be
associated with a specific operational procedure that dictates
what is needed from a network perspective to satisfy the
requirement. This includes the type of functionality required
to provide the service (e.g., forwarding, storage), the type
of resources (e.g., switch, link, cache), but also the type of
commodities (e.g., traffic, content).

Decisions on the value of the operational parameters are the
responsibility of management functions. These are software
programs implemented and executed in a network management
system. They realize the necessary logic for deciding on
resource configurations using real-time information from the
underlying network infrastructure. Examples of such functions
include adaptive traffic load-balancing, server selection, and
virtual machine placement. To drive management decisions
in a way such that configurations satisfy high-level technical
requirements, the management functions need to be made
aware of these requirements. Given that management functions
operate at a lower level of abstraction, e.g., representation of
resources and actions, a mechanisms needs to be in place to
decompose/translate the high-level requirements.

B. Illustrative Examples
We illustrate the requirements decomposition problem

through the following two examples.

MANAGEMENT FUNCTION

ORCHESTRATOR

MANAGEMENT FUNCTION MAPPER

High-level requirement

………... Management
Function 1

SERVICE MAPPER

Knowledge

Base

SOUTHBOUND INTERFACE

Service

Descriptors

Management

Function

Descriptors

Management
Function N

Network

Model

Repository

Northbound Interface

Network Management System

Operation

Representation

Mapping

Table

Resource

Representation

Mapping

Table

Fig. 1. Architecture.

Example 1 In this example, we consider the case of a
new customer request for a connectivity service between two
sites (e.g., between two of the customer premises) with delay
guarantees. From an operational point of view, this consti-
tutes a new client-facing technical requirement. To satisfy
the requirement, a procedure needs to be triggered that first
identifies the necessary functionality (forwarding in this case)
and subsequently configures the associated resources (i.e.,
switches) in the infrastructure. From a network management
perspective, it necessitates the execution of two functions: one
that determines available paths (i.e., path computation) and
one that decides on the path(s) to use for routing the traffic
(i.e., path selection). Path computation is based on the relevant
end points that map to the two customer sites, whereas path
selection uses the delay constraint extracted from the high-
level requirement, as well as the type of customer traffic.

Example 2 In this second example, we take the case of a
network operator that decides to apply additional processing to
the traffic flowing over its infrastructure and, as such, requires
traffic between any pair of end points to be redirected to a
server that hosts a virtual network function (VNF) realizing
the appropriate traffic processing, e.g., for intrusion detection.
From an operational perspective, this can be expressed as an
operator-facing requirement that will result in first selecting
forwarding as the functionality between the relevant network
entities but also processing for the corresponding VNF, and
then configuring the associated resources (i.e., switches and
server). In this case, three types of decisions from three
different management functions need to be computed: i) the
server to redirect the traffic to (server selection), ii) available
paths between the relevant end points (path computation),
and iii) path(s) to use for routing the traffic (path selection).
Constraints on the type of traffic as well as the end points
involved are extracted from the high-level requirement (in the
example, all traffic and any pair of end points) and used by the
management functions for computing the new configurations.

III. PROPOSED APPROACH

A key challenge is to enable the decomposition of high-
level technical requirements in an automated fashion without

TABLE I
HIGH-LEVEL REQUIREMENT EXAMPLE

Forward traffic from client1 between A and B with delay lower than 20 ms

Predicate Forward
Commodity Traffic
Target Resource A → Resource B
Constraint Delay lower than 20ms
Condition Traffic from client1

the oprator’s involvement. From a system perspective, such
a process needs to implement translation functionality linking
HLRs to management functions through a NBI. In this section
we present a novel approach to realize such functionality.

A. System Architecture

The process of decomposing HLRs to management deci-
sions involves two main operations. First, it needs to identify
the best set of management functions to invoke, among avail-
able options, that satisfy the requirements. It then needs to
instruct and execute the selected functions with the appropriate
inputs derived from the requirements.

An overview of the proposed approach is depicted in the
architecture of Fig. 1, which relies on two main components.
The northbound interface implements the functionality to map
the high-level technical requirements to network management
functions. In particular, this interface provides an intermediate
common abstraction based on which it is possible to, on
one hand, parse and express technical requirements and, on
the other, expose properties and attributes of management
functions so that the mapping from one to the other can be
easily realized. It encompasses two main functions that are
responsible for (i) determining the association of a HLR to
the relevant service offered by the provider and (ii) selecting
the set of management functions to execute so as to satisfy
the technical requirements of that service.

The second component is the network management system,
which hosts management functions realizing the management
functionality. These are usually implemented in a modular
fashion [12] along with an orchestration entity that supervises
their operation. To decide on the configurations (i.e., manage-
ment decisions), each function takes into account values of
long-lived parameters, such as static infrastructure attributes
(e.g., link/storage/processing capacity etc.), as well as short-
lived parameters, representing the context dynamics (e.g.,
resource utilization, demand etc.). These are defined based on
an abstracted view of the network infrastructure (including
topology and paths) that is maintained in a network model
repository. Compared to the NBI, management functions op-
erate at a lower level of abstraction.

Based on this information, each function analyzes the con-
text in which it is operating, decides on the adjustments to
perform and computes the new configurations that will need
to be enforced on the underlying infrastructure, e.g., new
traffic splitting ratios. The resulting configuration decisions
are translated into sets of commands and are communicated
to the network equipment through a southbound interface (e.g.,

Resource

Firewall

IDS

NAT

Link

Switch

Server

Cache

Middlebox

Commodity

Flow

Request

Content

VM

Task

Traffic

Fig. 2. Snapshot of the NBI network environment model.

OpenFlow for forwarding devices), which defines the sequence
of actions to be enforced for updating the network parameters.

B. High-Level Requirements

High-level requirements represent directives specified by
the network operator regarding what must be achieved in the
infrastructure so as to satisfy business objectives. As explained
in Section II-A, these can be either client-facing or operator-
facing. In our system, high-level requirements are expressed in
a structured way using a general format inspired by the high-
level intent examples discussed in [4] and [5]. The proposed
format is based on the following five attributes:

1) Predicate: represents the type of actions to be executed.
Examples include forward, store, process, etc.

2) Commodity: defines the type of commodity regulated by
the actions, for instance traffic, video content, etc.

3) Target: identities the network resources involved in the
execution of the relevant actions.

4) Constraint: stipulates constraints on the actions to exe-
cute and by extension on the configurations to enforce.

5) Condition: defines the circumstances under which the
predicate applies. For instance, this field is used to
specify the value of the associated commodities.

An example of a high-level requirement and its representa-
tion by the five attributes is shown in Table I.

C. Northbound Interface

The NBI acts as the interface between the high-level
technical requirements and the network management system.
It provides a common abstraction model of the network
environment based on which the attributes of services and
management functions can be expressed. In our system, the
network environment is represented through a taxonomy of
generic types of resources and commodities available in the
infrastructure, e.g., switch, server, cache, traffic, request, which
is defined by the operator. A snapshot of the NBI network
environment model used in this paper is shown in Fig. 2.

From a functional point of view, the NBI has two com-
ponents: the service mapper and the management function
mapper. Their objective is to associate the received HLR to
the relevant service and management functions using map-
ping procedures. These work by comparing available services

TABLE II
SERVICE DESCRIPTOR EXAMPLE

Service Name Connectivity
OP Forward

IR CO Traffic
RS Switch;Link

TS
CO All traffic
RS Resource A → Resource B

CST Delay lower than 20 ms
PAF Dominated by delay connectivity

and management functions against the attributes of high-
level requirements, based on small set of generic descriptive
features that are encoded in service and management function
descriptors. The descriptors are defined by the operator for
each service and management function based on the NBI
abstraction model. Details on their structure are provided in
Sections IV-A1 and IV-A2.

The service mapper is responsible for associating a high-
level requirement with a specific service and subsequently
updating the technical specifications of that service with the re-
ceived input. The objective of the management function map-
per is to determine, among the set of functions implemented by
the network management system, the ones whose configuration
decisions contribute in meeting the technical requirements of
the identified service. To aid the selection, the management
function mapper makes use of prior knowledge derived from
the operator expertise and past experience with respect to
management operation best practices. This is represented in
the form of rules encoded in a knowledge base.

D. Interface to Network Management System

Information about the selected management functions is
passed to the network management system where it is pro-
cessed by the management function orchestrator. This compo-
nent is responsible for supervising the execution of the relevant
functions. More specifically, it performs two main tasks. It
first instructs the relevant management functions about the new
execution parameters derived from the HLRs (e.g., constraint
values, pair of end points). Given that technical specifications
are expressed using a different abstraction model than that
used by management functions, a preliminary step involves
resolving the correspondence between the two different views.
This is done through a resource representation mapping table
(Fig. 1) that associates each network resource and commodity
to their counterpart in the network model repository. The
second task of the orchestrator is to supervise the execution of
each function, which, depending on the implementation, can
be sequential or parallel.

The orchestrator is also responsible for collecting feedback
about the execution outcome of each function, i.e., whether
feasible configurations could be computed given the current
HLR. Such information is essential for updating the knowledge
base, but also for informing the operator in case a HLR cannot
be satisfied given current operating conditions.

TABLE III
MANAGEMENT FUNCTION DESCRIPTOR EXAMPLE

Function Name Path Selection
CO Traffic
RS Switch;Link

FCT Allocate(end points,delay constraint)
OPE delay connectivity

IV. SERVICE AND MANAGEMENT FUNCTION MAPPERS

In this section, we elaborate on the functionality of the
northbound interface providing details on the service mapper
and management function mapper components.

A. Descriptors

As explained in Section III-C, HLRs are associated to
services and management functions using mapping procedures
that compare their representative attributes based on the com-
mon abstraction model offered by the NBI. These attributes are
captured in templates, called descriptors, which are defined for
each service and management function. From a content point
of view, descriptors are rich enough to enable each service and
management function to be uniquely identified and sufficiently
concise to allow for a simple matching procedure.

1) Service Descriptor: It contains four main fields.
Operation (OP): generic description of the basic function-

ality required to provide the service. It is expressed in the form
of one, or a combination of active verbs. Examples include
Forward for a basic connectivity service, Store for a storage
service, and Process+Forward for a connectivity service in-
volving traffic processing (e.g., through a middlebox).

Infrastructure Requirements (IRs): definition of what is
needed in the infrastructure for the service to be operated. This
is decomposed into the type of commodities regulated by the
service (IR.CO), for instance traffic, and the type of resources
involved (IR.RS), for instance a switch. Both commodity and
resource types are defined based on the abstraction model of
the NBI. IRs are derived at the design phase of a service and,
as such, can be represented as static parameters.

Technical Specifications (TSs): specifications based on
which the service must be operated. In contrast to IRs, TSs are
defined at the deployment phase of a service and periodically
updated as new HLRs are specified. They include specifi-
cations of the actual commodities regulated by the service
(TS.CO), for instance traffic from client1, the resources on
which the service is deployed (TS.RS), for instance Resource
A → Resource B, and constraints specific to the service
performance (TS.CST), for instance end-to-end delay.

Performance Affecting Factors (PAF): specification of
dominating factors affecting the performance of the service.
These are derived by the operator based on past experience;
for instance the delay experienced by a service is mostly im-
putable to transportation delay. In case no predominant factors
can be identified, the field is left empty. Information on PAF
is particularly useful for identifying the set of management
functions that have the potential to make the best configuration

Service

Descriptors

RESOLVER

INSTANTIATOR

High-level requirement

Service Mapper

Selected service descriptor

Operation

Representation

Mapping

Table

Fig. 3. Service mapper functions.

decisions with respect to satisfying the service requirement,
e.g., a function that has a direct positive impact on delay.

An example descriptor for a basic connectivity service is
shown in Table II.

2) Management Function Descriptor: In a similar fashion
to the offered services, each management function comes with
an abstract representation of its characteristics based on a
restricted number of generic features. This representation does
not expose any details pertaining to the logic of the function
(algorithm, decision variables, etc.). Management function
descriptors capture the following information.

Commodities (CO): definition of the type of commodities
regulated through the actions derived from the decisions of the
management function.

Resources (RS): definition of the type of resources whose
configurations are computed by the management function.

Function (FCT): generic description of the operations
performed by the management function on the associated
commodities and resources. It is expressed in the form
function name(arguments). While the function name
signifies the actual operations (e.g., allocate, order, fetch, etc.),
the arguments are the parameters used by the management
function to compute resource configurations. These are quan-
tified according to the high-level technical requirements (e.g.,
delay constraint value, pair of end points, etc.).

Operation Effects (OPE): specification of the performance
factors affected by the decisions of the management function.
This can include different performance factors such as con-
nectivity delay or compute delay.

An example of descriptor for a path selection management
function is shown in Table III.

B. Service Mapper

Given that HLRs specify guidelines on how services should
be operated and perform, the first step in the decomposition
process is to identify the associated service so that its technical
specification can be updated. This is realized by the service
mapper, which, as shown in Fig. 3, has two components: the
resolver and the instantiator.

The objective of the resolver is to extract from the library
of service descriptors the template of the service matching
a HLR. This is achieved by resolving the correspondence
between the predicate attribute of a HLR and the operation
field the service descriptors using the operation representation

Selected service descriptor

RESOLVER

SELECTOR

Management Function Mapper

Management

Function

Descriptors

Knowledge

Base

Set of selected management functions

Fig. 4. Management function mapper functions.

mapping table. More specifically, each entry in the table
is defined as a <key,value> pair where keys correspond
to possible predicates and values to service operations. The
table is initialized by the operator based on existing services
deployed in its infrastructure. The selected template is the one
with a matching operation field.

Once selected, a service template is passed to the in-
stantiator, which is responsible for updating the technical
specifications of the service. This involves amending the TS
sub-fields with the value of the commodities, targets and
constraints retrieved from the HLR. The instantiated template
is returned as output and passed to the management function
mapper.

C. Management Function Mapper

Having selected a service along with the associated tech-
nical specifications, the second step of the decomposition
process is to determine the best set of functions to execute
so as to satisfy the given requirements. This is realized by the
management function mapper, which, as shown in Fig. 4, has
two components: the resolver and the selector.

In a similar fashion to the resolver of the service mapper,
the resolver of the management function mapper executes a
resolution function. The objective of the resolver is to extract
from the library of management function descriptors the tem-
plate of functions matching the technical requirements of the
service selected by the service mapper. This is achived using
a matching procedure that compares attributes of the selected
service against those of available management functions. More
specifically, a management function is said to be relevant to
the satisfaction of the service technical requirement if the
following three conditions are met:

• function CO field matches service IR.CO field
• function RS field matches service IR.RS field
• function OPE field matches service PAF field
The templates of the matching functions are passed to

the selector whose objective is to revise the initial choice
of functions using additional knowledge extracted from the
knowledge base. For instance, the selector can discard a
selected function if previous experience has shown that it only
has a marginal effect in meeting the requirements. It can also
associate the functions with different priority levels, which can
be further used to guide their execution (e.g., according to a
specific order). The set of the selected functions along with

After receiving the high-level requirement

N1 N6

Client c1

Client c2

c1 + c2 Initial configuration

N2 N3

N4

N5

Client c1

Client c2

c1

c2

N1 N6

N2 N3

N4

N5

Path p1 (delay 60ms)

Path p2 (delay 40ms)

Path p3 (delay 50ms)

20ms

20ms

20ms

20ms 20ms

20ms 30ms

Fig. 5. Use case 1.

their descriptors are sent to the network management system
for their execution, as described in Section III-D.

V. USE CASES

In this section, we demonstrate the functionality of the
proposed approach based on three realistic use cases. The first
two use cases are based on the examples presented in Section
II-B. The third use case concerns an on-demand gaming
service. In all cases, we assume a SDN-based environment.
Initial network configurations need to be updated to reflect new
operator- or client-facing high-level technical requirements.
For the sake of demonstration, all scenarios are based on a
toy network topology.

A. Use case 1: connectivity service with delay constraints
The scenario is depicted in Fig. 5 where traffic from two

clients c1 and c2 is forwarded from nodes N1 to N6. Three
paths p1, p2 and p3 with different delay can be used to forward
the traffic. Initially both c1 and c2 request a basic connectivity
service with no delay requirements. Operational parameters
are thus set so that all traffic between N1 and N6 is routed on
p1 with 60 ms delay. At time t, c2 decides to subscribe to a
better connectivity service with delay guarantees of less than
40 ms. To comply with the client’s request, new operational
parameters need to be computed so as to direct c2 traffic to a
path satisfying the delay constraints.

To enforce new network configurations, a high-level require-
ment is in the form forward traffic from client c2 between N1
and N6 with less than 40ms delay is passed to the network
management system through the NBI. Given that all paths
between N1 and N6 are already instantiated, this results in the
selection of only one management function: path selection.
Its objective is to select for each client the path(s) on which
traffic between the pair of end points is forwarded. While the
assignment of c1 to p1 is unchanged, c2 is moved to p2 that
satisfies the 40ms delay requirement.

The decisions are enforced in the infrastructure through the
southbound interface.

B. Use case 2: traffic redirection through a virtual network
function

The scenario is depicted in Fig. 6. Two servers S1 and S2,
connected to nodes N4 and N5, respectively, are deployed in

Client c1

Client c2

c1 + c2 Initial configuration

After receiving the high-level requirement

Client c1

Client c2

N1 N6

N2 N3

N4

N5

N1 N6

N2 N3

N4

N5

c1 + c2

GA

DPI

Path p1

Path p2

Path p3

S1

S2

S2

GA
S1

Fig. 6. Use case 2.

the network to host virtual network functions (VNFs). Initially
only one VNF is instantiated in the network on S1 that runs
an online-gaming application, and two paths, p1 and p2, from
nodes N1 to N6 are installed, with all traffic between the two
nodes forwarded on p1.

At time t, the operator decides that additional processing
should be performed on the traffic routed over its infrastructure
and, as such, requests all traffic entering its network to be
redirected to a VNF performing deep packet inspection (DPI)
before reaching its destination. New operational parameters are
therefore needed so that an instance of the appropriate VNF is
instantiated on at least one of the servers and all traffic from
N1 to N6 is redirected to the relevant server(s) for processing.

To enforce the new network configurations, a high-level
requirement in the form apply DPI to traffic from N1 to N6 is
passed to the network management system through the NBI.
This results in the selection of four management functions:
VNF placement, server selection, path computation and path
selection. VNF placement determines on which server(s) to
instantiate the DPI VNF. Two servers can be chosen and the
function selects the one with the lowest CPU utilization, i.e.,
S2 since no VNF instances are currently running on that server.
Server selection selects the server(s) hosting the relevant VNF
to use for processing the redirected traffic. There is only one
option in this scenario, i.e., S2. Path computation determines
the set of paths between, on one hand, N1 and the server(s)
hosting one instance of the DPI VFN, and on the other, this
server(s) and N6 (i.e., path p3 in the figure). Finally path
selection selects the path(s) to use for redirecting the traffic to
the selected server, i.e., path p3 here.

An aspect of the proposed approach that comes into play in
this scenario is the mode of execution of the four management
functions. We use here a simple rule by which functions are
executed in a sequential manner as follows: VNF placement,
server selection, path computation and path selection1. The
rule is retrieved from the knowledge base by the management
function mapper that computes priorities for the selected
functions. These are passed to the orchestrator component in

1This order is chosen for the sole purpose of demonstration. In practice,
more complex methods involving the parallel execution of the functions could
be used, for instance to achieve some performance trade-off between the
decisions of the different functions.

the network management system that supervises the execution
of the four functions.

C. Use case 3: traffic redirection through a virtual network
function

In this use case, we consider a scenario where an on-
demand gaming (cloud gaming) service is offered by the
network provider/operator, in a similar fashion to well-known
platforms such as Gaikai [6]. To offer such a service, special-
ized hardware resources, such as GPUs and fast memory, are
deployed in the operator’s infrastructure, so as to support the
computation required for the user game experience, which is
offloaded from the end-user devices. The use case scenario is
depicted in Fig. 7.

We assume that two different service classes are available:
a basic class and a premium class providing personalized
user gaming experience. Requests of clients subscribing to
the basic class are served from a server supporting standard
gaming experience, i.e., server S1 attached to node N3, while
requests for the premium service are directed to a server with
higher processing capabilities supporting enhanced gaming
experience, i.e., server S2 attached to node N6. Initially, two
clients c1 and c2 subscribe to the basic service class and their
requests are directed to S1 on path p1. At time t, c2 decides to
upgrade his subscription to the premium service. Operational
parameters are updated so that c2 can be served from S2.

A new high-level requirement in the form serve requests
from client c2 from the server supporting enhanced gaming
experience is formulated, which results in the selection of three
management functions: server selection, path computation and
path selection. Server selection selects the appropriate server
for each client, i.e., S1 for c1 and S2 for c2. Path computation
determines the set of paths between the clients and the servers.
In this case, only the paths between c2 and S2 need to be
computed, i.e., paths p2 and p3. Finally path selection selects
the path(s) to use for routing client requests to the relevant
servers. In case multiple paths are available, all requests are
initially routed on the same path until a utilization threshold
is reached, in which case a new path is used. This results
in the selection of p1 for c1 and p2 for c2. In a similar
fashion to use case 2, management functions are executed in
a sequential manner with server selection taking precedence
over path computation, followed by path selection.

VI. PROOF-OF-CONCEPT

We evaluate the feasibility of our approach for the automatic
decomposition of HLRs to management decisions based on the
three use case scenarios and network topology described in
Sect. V. Our objective is to show that the proposed approach
is applicable to different types of services and technical
requirements, as well as management functions.

A. Implementation

We developed a prototype implementation of the different
components of the NBI and network management system,
including each management function module, in Java. To

Initial configuration

After receiving the high-level requirement

Client c1

Client c2

c1 + c2

N1 N6

N2 N3

N4

N5

Path p1

Path p2

Path p3

S1

S2

Client c1

Client c2

c1

N1 N6

N2 N3

N4

N5

S2

c2

S1

Fig. 7. Use case 3.

emulate the network topology, including hosts (i.e., clients
and servers), as well as OpenFlow switches, we used the
Mininet environment. The network management system is
interfaced to Mininet via a REST API. In addition, we reused
a small set of APIs from the SDN controller POX [7] to
implement the southbound interface functionality. High-level
requirements, service descriptors and management function
descriptors are encoded in the JSON file format. All links
in the topology have 10Mbps bandwidth and latency between
20 ms and 30 ms as shown in Fig. 5. In all use cases, c1
and c2 are attached to N1. In use case 2, servers S1 and S2
are attached to nodes N4 and N5, respectively, and to nodes
N3 and N6, in use case 3. In use cases 1 and 2, we use
fixed-rate UDP flows generated with Iperf to emulate clients
traffic. In the case of cloud gaming (use case 3) we emulate the
corresponding network traffic by generating separate client and
server-originated packet streams, with characteristics based on
the results reported in [8].

B. Evaluation

In each experiment, the JSON file of the corresponding HLR
is given as input to the NBI where the relevant operations are
performed to select the management functions to invoke. These
are instructed with the new input parameters and executed
through the management system. Decisions are passed to the
controller where they are translated into instruction commands
to be enforced in the switches (i.e., new flow rules).

The result of this process is shown in Fig. 8 for the three use
cases, where the traffic load over time on the different paths
is reported. In all cases, the time at which the requirement
is passed to the NBI is marked by a dotted vertical line.
As observed in Fig. 8a for use case 1, the receipt of the
requirement at time t=21s results in traffic from c2 on p1 to
be shifted to p2. The load on p3 remains 0 as no traffic is
redirected to that path. In the case of use case 2 (Fig. 8b), the
received requirement at time t=24s leads to the instantiation
of a new path (p3) and the redirection of all traffic from p1 to
that path. Path p2 is not used and its load is 0 throughout the
experiment. Finally Fig. 8c depicts the result of the receipt of
the requirement in use case 3. Two new paths, p2 and p3, are
instantiated after time t=75s with p2 only receiving c2 traffic
originally assigned to p1.

0 20 40 60 80 100 120
0.0
0.5
1.0
1.5

Path 1

0 20 40 60 80 100 120
0.0
0.5
1.0
1.5 Path 2

0 20 40 60 80 100 120
Time [s]

0.0
0.5
1.0
1.5

Pa

th
 lo

ad
 [M

bp
s]

Path 3

(a) Use Case 1.

0 20 40 60
0.0
0.5
1.0
1.5 Path 1

0 20 40 60
0.0
0.5
1.0
1.5 Path 2

0 20 40 60
Time [s]

0.0
0.5
1.0
1.5

 P

at
h

lo
ad

 [M
bp

s]

Path 3

(b) Use Case 2.

0 50 100 150
0
1
2 Path 1

0 50 100 150
0
1
2 Path 2

0 50 100 150
Time [s]

0
1
2

 P

at
h

lo
ad

 [M
bp

s]

Path 3

(c) Use Case 3.

Fig. 8. Result on network configurations of new high-level requirements.

In all cases, it should be noted that the time between
receiving the high-level requirement and enforcing the new
network configurations is less than few seconds. This time is
composed of three main factors: the time to execute mapping
procedures in the NBI, the time for management functions
to compute new configurations and the time to enforce the
new configurations in the network devices, with the latter
being the dominating factor in our evaluation (i.e., time for
the SDN controller to update flow rules in the switches). In
the proposed approach, the time-complexity of the mapping
procedures performed by the NBI is constant with the number
of services and management functions. As such, it can be
inferred that in practice the NBI time will always be dominated
by the two other factors.

VII. RELATED WORK

The problem of decomposing high-level goals to network
configuration parameters was initially studied in the context of
policy-based management. This is known as policy refinement
and a number of solutions have been proposed in the literature.
The authors of [13] and [10] base their approach on goal
elaboration and formal reasoning techniques, where so called
operational policies are derived through strategies that can
achieve a given high-level goal. Another approach, which is
described in [15][14] and [11], is based on the same goal elab-
oration method, but uses model checking instead, to verify that
low-level policies fulfil the objectives. Despite their novelty at
the time, both approaches are based on application-specific
policy refinement patterns, which limit their applicability. Not
only did they target policies specific to the QoS domain, they
also relied of a specific QoS provisioning architecture and
associated network technologies. The authors of [16] proposed
an approach that is not bound to a specific application domain.
However, part of their solution is based on predefined static
transformation rules for each of the high-level goals, which
cannot flexibly accommodate new administrative goals. Also,
the case-based reasoning part of the solution, where table look-
ups are used for decomposing the goals, is limited to cases for
which it is feasible to build a database of the requirements and
configuration parameters.

In the context of software-based networking, a number
of initiatives have focused on the issue of consistent policy

composition [17][18][19], where the objective is to combine
multiple independent and potentially conflicting policies into
a unique global policy satisfying both individual requirements
and infrastructure invariant. These initiatives are complemen-
tary to the problem addressed in this paper. In particular, the
proposed approaches could be used upstream of the NBI for
checking the coherence between multiple high-level technical
requirements and harmonize them in case of incompatibility.

Finally related to the work presented in this paper are the
research efforts reported in [20][21][22][23] that focused on
the development of common abstraction models to enable
the smooth integration and co-execution of independently
developed SDN control/application modules (i.e.,, for instance
implemented in different languages). These approaches are
particularly relevant to support the modular implementation
of management functions in the network management system.

VIII. CONCLUSIONS

In this paper, we propose a novel approach for the decom-
position of high-level technical requirements to management
operations. A key feature of the proposed approach resides in
the functionality of a NBI that automatically associates HLRs
to network management functions. We developed a prototype
implementation of the proposed approach and demonstrated
its functionality based on three use cases. We showed that
with our solution, new technical requirements can be translated
to new network configurations in the order of few seconds,
as such enabling management of network functionality and
services in short timescales. Our approach is simple - all
components of the architecture were implemented with less
than ∼1000 lines of code. In addition, it is lightweight. It
relies on simple mapping procedures with the time-complexity
being constant with the number of services and management
functions. Finally, it uses simple forms to represent technical
requirements so that the communication overhead towards
both the NBI and the network management system is small,
and as such, does not consume substantial amount of re-
sources. In the future, we plan to extend this work by taking
into account other use case scenarios, in particular security
management and network monitoring, and apply the solution
to realistic network topologies.

REFERENCES

[1] ETSI GS NFV-MAN 001,“Network Functions Virtualisation (NFV);
Management and Orchestration,” http://www.etsi.org/, December 2014,
ETSI Industry Specification Group (ISG).

[2] R. Mijumbi, et. al, “Orchestration Challenges in Network Function
Virtualization”, IEEE Communications, Topics in Network and Service
Management, Vol. 54, No. 1, pp. 98-105, January 2016.

[3] ONF TS-025,“OpenFlow Specifications v.1.5.1”, http://www.
opennetworking.org/images//openflow-switch-v1.5.1.pdf [Online;
accessed 22-Jun 2018].

[4] ONF TR-523,“Intent NBI Definition and Principles”, https:
//www.opennetworking.org/images/stories/downloads/sdn-resources/
technical-reports/TR-523 Intent Definition Principles.pdf [Online;
accessed 22-Jun 2018].

[5] Huawei Developer, “Intent NBI for Software Defined Networking”, http://
developer.huawei.com/ict/en/site-sdn/article/08 [Online; accessed 22-Jun
2018].

[6] Gaikai video game streaming platform, https://www.playstation.com/
en-us/explore/playstation-now/ [Online; accessed 22-Jun 2018].

[7] POX OpenFlow controller, http://www.noxrepo.org [Online; accessed 22-
Jun 2018].

[8] M. Manzano, J.A. Hernandez, M. Uruena, E. Calle, “An empirical study
of Cloud Gaming,” in Proc. Netgames, Venice, Italy, Nov. 2012.

[9] E.J. Scheid, et. al, “INSpIRE: Integrated NFV-baSed Intent Refinement
Environment,” in Proc. IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), Lisbon, Portugal, May 2017.

[10] A.K Bandara, et al.,“Policy Refinement for IP Differentiated Services
Quality of Service Management,” IEEE Transactions on Network and
Service Management (TNSM), Vol. 2, No. 2, 2006.

[11] J. Rubio-Loyola, et al.,“A Methodological Approach toward the Refine-
ment Problem in Policy-Based Management Systems,” IEEE Communi-
cations, Topics in Network and Service Management, Vol. 44, No. 10,
October 2006.

[12] D. Tuncer, M. Charalambides, S. Clayman, G. Pavlou, “Adaptive Re-
source Management and Control in Software Defined Networks,” IEEE
Transactions on Network and Service Management (TNSM), Vol. 12, No.
1, pp. 18-33, March 2015.

[13] A.K Bandara, et al., “Policy refinement for DiffServ quality of service
management,” Proceedings of 9th IEEE/IFIP Int. Symposium on Inte-
grated Network Management (IM 2005), Nice, France, May 2005.

[14] J. Rubio-Loyola, et al.,“Using linear temporal model checking for goal-
oriented policy refinement frameworks,” Proc. of 6th IEEE Workshop on
Policies for Distributed Systems and Networks (Policy 2005), Stockholm,
Sweden, June 2005.

[15] J. Rubio-Loyola, et al.,“A Functional Solution for Goal-oriented Policy
Refinement,” Proceedings of 7th IEEE Workshop on Policies for Dis-
tributed Systems and Networks (Policy 2006), Ontario, Canada, June 2006.

[16] J. Rubio-Loyola, et al.,“Policy Transformation Techniques in Policy-
based Systems Management,” Proceedings of 5th IEEE Workshop on
Policies for Distributed Systems and Networks (Policy 2004), New York,
USA, June 2004.

[17] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing Software Defined Networks,” in Proc. NSDI, vol. 13, pp. 1-13.
2013.

[18] C. Prakash, et al., “PGA: Using graphs to express and automatically
reconcile network policies,” ACM SIGCOMM Computer Communication
Review, vol. 45, no. 4, pp. 29-42, 2015.

[19] A. Abhashkumar, et al., “Supporting Diverse Dynamic Intent-based
Policies using Janus,” in Proc.of the ACM 13th International Conference
on emerging Networking EXperiments and Technologies, Nov. 2017, pp.
296-309.

[20] R. Soulé, S. Basu, R. Kleinberg, E.G. Sirer, and N. Foster, “Managing
the network with Merlin,” in Proc. of the 12th ACM Workshop on Hot
Topics in Networks, Nov. 2013.

[21] M. Aouadj, E. Lavinal, T. Desprats, and M. Sibilla, “Towards a mod-
ular and flexible SDN control language,” in Proc. Global Information
Infrastructure and Networking Symposium-GIIS, Sept. 2014.

[22] X. Jin, J. Gossels, J. Rexford, and D. Walker, “CoVisor: A Composi-
tional Hypervisor for Software-Defined Networks,” in Proc. NSDI, May
2015, vol. 15, pp. 87-101.

[23] V. Heorhiadi, M.K. Reiter, and V. Sekar, “Simplifying Software-Defined
Network Optimization Using SOL,” in Proc. NSDI, Mar 2016, pp. 223-
237.

