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2. OSI Systems Management and the
Telecommunications Management
Network

2.1 Introduction

Chapter 2 of this thesis introduces first OSI Systems Management (OSI-SM) [X700][X701] and

the Telecommunications Management Network (TMN) [M3010]. It then proposes a number of

modifications and extensions to the TMN architectural framework which aim to enhance and

simplify it considerably, without sacrificing any important aspects for open interoperable

telecommunications management. These modifications and extensions are supported by relevant

analysis in this chapter and are also backed up by experimental results presented in Chapter 3.

OSI-SM is currently the base technology for the TMN, which provides the architectural

framework for telecommunications network and service management. A relevant introduction is

important since the thesis proposes a novel approach for the realisation of OSI-SM/TMN systems

through distributed object-oriented software platforms. This makes a detailed understanding of

both OSI-SM and TMN necessary for following the rest of the thesis. While this presentation is

based on the relevant standards, it tries to shed light on a number of issues, explaining the reasons

behind the various architectural choices and associating them to the underlying requirements.

This differentiates it from other presentations in the literature and, as such, it constitutes to some

extent a research contribution in its own right. The presentation of the TMN framework in

particular extends beyond the relevant standards or other presentations in the literature and

presents a number of clarifications in a way that has never been attempted before.

The last part of this chapter proposes a number of extensions and modifications to the TMN

model and architecture. These include the introduction of the OSI Directory [X500] to support

distribution and discovery services and the simplification of the framework through the removal

of the Qx and F interfaces. While the former emanates from the requirements of the TMN as a

large scale distributed system, the latter relates to the fact that Chapter 3 of the thesis shows that

full scale OSI-SM/TMN technology based on Q3 interfaces is feasible, performant and relatively
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economical to provide in terms of both required resources and development time. This obviates

the need for lightweight interfaces which necessitate special support in order to be able to cope

with the resulting heterogeneity. The architectural revision of the TMN and the clarification of a

number of related issues constitute the key research contribution of this chapter.

This chapter is organised as a “super-chapter” in a similar fashion to chapters 3 and 4 of this

thesis, in the sense that sections 2.2, 2.3 and 2.4 can be considered as “sub-chapters” within a

chapter.

Section 2.2 presents OSI-SM model. It starts by summarising relevant work in the literature and

discusses management requirements in terms of the management functional areas (section 2.2.1).

It then presents the manager-agent model (section 2.2.2), which is subsequently elaborated in

terms of the information modelling aspects (section 2.2.3) and information access aspects (section

2.2.4). Generic management functionality emanating from the management functional areas is

finally presented in section 2.2.1.

Section 2.3 presents the TMN framework and principles. It starts by summarising relevant work

in the literature and positioning the TMN in the Broadband ISDN context (section 2.3.1). It then

presents various aspects of the TMN architecture (section 2.3.2), including the functional and

physical architectures (sections 2.3.2.1 and 2.3.2.2), the logical layering aspects (section 2.3.2.3),

the interface specification methodology (section 2.3.2.4) and the decomposition of TMN

applications into constituent components (section 2.3.2.5).

Section 2.4 presents the modifications and extensions to the TMN model and architecture. It first

explains the issues behind providing distribution and discovery services using the OSI Directory

(section 2.4.1). It then discusses issues on adaptation and mediation and proposes the removal of

the Qx interface (section 2.4.2). It subsequently discusses issues on the F interface and proposes

its removal (section 2.4.3). The TMN architecture is then revisited and simplified (section 2.4.4).

The section closes with a final discussion on the TMN framework.

Finally, section 2.5 highlights the research contributions in this chapter and paves the way to

Chapter 3.
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2.2 OSI Systems Management

In this section we examine the ISO/ITU-T OSI Systems Management (OSI-SM) [X701]

approach to network management which is currently the base technology for the TMN. This is an

overview that explains the reasons for the various architectural decisions and associates them to

the relevant requirements. A basic understanding of data network principles and in particular of

the 7 layer OSI Reference Model (OSI-RM) [X200] is assumed. A good general introduction can

be found in [Tanen96].

OSI-SM was the last set of OSI application layer standards to be addressed and, as such, it

received considerable attention. The relevant standardisation effort lasted for almost a decade and

it was the first OSI application to adopt fully object-oriented information specification and access

principles. The OSI Directory [X500] was another OSI application that had adopted similar

concepts but it fell short of true object-orientation. A number of tutorial and survey papers in the

literature and also books have addressed OSI-SM, these are briefly summarised below.

[Kler88], [Jeff88], [Slum89], [Coll89] and [Smith90] all provide early descriptions of the OSI-

SM framework and the developing standards at the time. [Kler93] and [Yemi93] provide better

overviews since the relevant standards were by that time fairly mature, the first concentrating on

information modelling aspects and the second addressing the framework as a whole. A number of

books have also addressed OSI-SM. Among those, [Jeff92] addresses the subject best in the

author’s opinion. Three of the authors of that book have also contributed chapters to [Slom94].

[Lang94] covers the model and standards, [Tuck94] concentrates in the structure of management

information and [Jeff94] covers the Guidelines for the Definition of Managed Objects. [Stal94] is

another book that addresses partly the subject but it is brief in its description, concentrating

mainly on the Simple Network Management Protocol (SNMP) [SNMP].

The material in this section is based to a large extent on [Pav97a], a chapter in [Aida97] which

presents a comparative study of OSI-SM, Internet SNMP and ODP / OMG CORBA as

technologies for telecommunications network management.

2.2.1 Management Functional Areas

OSI Systems Management standardisation followed a top-down approach, with a number of

functional areas identified first. The reason for identifying those was not to describe exhaustively

all relevant types of management activity but rather to investigate their key requirements and to

address those through generic management infrastructure. The identified areas were Fault,
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Configuration, Accounting, Performance and Security Management [X700] and are collectively

referred to as FCAPS from their initials. Their generic requirements are supported by the Systems

Management Functions (SMF) [SMF]. The same functional areas have also being adopted by the

TMN. We present here the typical activities in each functional area, identify their generic

requirements and list the relevant SMFs.

Fault Management addresses the generation of error specific notifications (alarms), the logging

of error notifications at source and the testing of network resources in order to trace and identify

faults. Fault management systems should undertake alarm surveillance activities (analysis,

filtering and correlation), perform resource testing and provide fault localisation and correction

functions. The key requirements are event-based operation, a well-defined generic set of alarms

and a testing framework. The relevant SMFs are event reporting [X734], logging [X735], alarm

reporting [X733] and testing [X737][X745].

Configuration Management deals with initialisation, installation and provisioning activities. It

allows the collection of configuration and status information on demand, provides inventory

facilities and supports the announcement of configuration changes through relevant notifications.

The key requirements are event-based operation, control of change, generic resource state and

relationship representation, scheduling, time management, software distribution and system

discovery facilities. The relevant SMFs are event reporting [X734], logging [X735], object

[X730], state [X731] and relationship [X.732] management, scheduling [X746], time

management [X743], software distribution [X744] and shared management knowledge [X750].

Accounting Management deals with the collection of accounting information and its processing

for charging and billing purposes. It should enable accounting limits to be set and costs to be

combined when multiple resources are used in the context of a service. The key requirements are

event based operation, in particular logging, and a generic usage metering framework. The

relevant SMFs are event reporting [X734], logging [X735] and accounting metering [X742].

Performance Management addresses the availability of information in order to determine

network and system load under both natural and artificial conditions. It also supports the

collection of performance information periodically in order to provide statistics and allow for

capacity planning activities. Performance management needs access to a large quantity of

network information and an important issue is to provide the latter with a minimum impact on the

managed network. Key requirements are the ability to convert raw traffic information to traffic

rates with thresholds and tidemarks applied to them; the periodic summarisation of a variety of

performance information for trend identification and capacity planning; the periodic scheduling of
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information collection; and the ability to determine the response time between network nodes. The

relevant SMFs are event reporting [X734], logging [X735], metric monitoring [X739],

summarisation [X738], scheduling [X746] and response time monitoring [X748].

Security Management is concerned with two aspects of systems security. The management of

security, which requires the ability to monitor and control the availability of security facilities and

to report security threats or breaches. And the security of management, which requires the ability

to authenticate management users and applications, to guarantee the confidentiality and integrity

of management exchanges and to prevent unauthorised access to management information.

Authentication, integrity and confidentiality services are common to all OSI applications and are

addressed for the whole of the OSI framework in [X800][GULS]. The key requirements in OSI

management are support for security alarms, facilities for security audit trail and the provision of

access control. The relevant SMFs are event reporting [X734], logging [X735], security alarm

reporting [X736], security audit trail [X737] and access control [X741].

A common requirement in all the functional areas is event-driven management through event

reporting and logging facilities. The systems management functions [SMF] are described in

section 2.2.5.

2.2.2 The Manager-Agent Model

M

application in Manager role application in Agent role

A

performing operations

emitting notifications

   management
 communication
       protocol

managed object

other internal object

Figure 2-1  The Manager-Agent Model

OSI management has introduced the manager-agent model. A simplified version of this model has

also been adopted by the Internet SNMP [SNMP]. According to the model, manageable resources

are modelled by managed objects at different levels of abstraction. Managed objects encapsulate

the underlying resource and offer an abstract access interface at the object boundary. The

management aspects of entities such as network elements and distributed applications are
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modelled through “clusters” of managed objects, seen collectively across a management interface.

The latter is defined through the formal specification of the relevant managed object types or

classes and the associated access mechanism, i.e. the management access service and supporting

protocol stack. Management interfaces can be thought as “exported” by applications in agent

roles and “imported” by applications in manager roles. Manager applications access managed

objects across interfaces in order to implement management policies. Distribution aspects are

orthogonal to management interactions and are supported by other means.

OSI management is primarily a communications framework. Standardisation affects the way in

which management information is modelled and carried across systems, leaving deliberately

unspecified aspects of their internal structure. The manager-agent model is shown in Figure 2-1.

Note that manager and agent applications contain other internal objects that support the

implementation of relevant functionality. These are not visible externally, so they are depicted

with dotted lines.

The management access service and protocol carries the parameters of operations to managed

objects and returns relevant results, so it can be loosely described as a “remote method execution”

protocol (in object-oriented systems, an object’s procedure is called a “method”). The relevant

parameters and results are a superset of those available at the object boundary, allowing to de-

reference an object by name and to select a number of objects to perform an operation. In fact,

the agent offers an object-oriented database-like facility which has the effect that one operation

across the network may result in many operations to managed objects inside the agent, with a

“consolidated” result passed back. In the other direction, notifications emitted by managed objects

are discriminated internally within the agent, based on criteria preset by manager applications.

This mechanism eliminates unwanted notifications at source and forwards useful notifications

directly to interested managers.

The above facilities result in less management traffic and increase the timeliness of retrieved

management information. These are key requirements in most management environments and, in

particular, architectural requirements for the TMN as it will be described in section 2.3.2. In fact,

the manager-agent model was designed for the purpose of supporting such facilities. Briefly

positioning this model in the Open Distributed Processing (ODP) [ODP] framework that will be

described in Chapter 4, an OSI agent acts as a naming server, trader, notification server and

object access server with respect to the managed objects it administers. All these facilities are

tightly coupled with the associated managed objects within the same network node. Chapter 4
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explores relevant relationships with ODP in more detail and explains how this model can be

transposed onto the ODP framework.

The manager and agent roles are not fixed and management applications may act in both roles.

This is the case in hierarchical management architectures such as the TMN [M3010]. In

hierarchical management models, managed objects exist also in the agent aspect of management

applications, offering views of the managed network, services and applications at higher levels of

abstraction. Management functionality may be organised in different layers of management

responsibility: element, network, service and business management according to the TMN model.

Management applications may act in dual manager-agent roles, in either peer-to-peer or

hierarchical relationships. Figure 2-2 shows three types of management organisation: centralised,

flat and hierarchical. The hierarchical model is best exemplified by TMN which uses OSI-SM as

its base technology. Note that in both flat and hierarchical models, management applications are

hybrid, assuming both the manager and agent roles.

manager to agent relationship
managed element (agent)
management center (manager)
management application (manager-agent)

centralized flat hierarchical

Figure 2-2  Models of Management Organisation

2.2.3 The Management Information Model

The OSI-SM Management Information Model (MIM) is defined in [X720] and uses object-

oriented principles. A systematic introduction to object-oriented systems is given in section 3.2.1

of Chapter 3. A reader with no relevant exposure is advised to read that section first, since

relevant terms and concepts are used in this section.

An OSI Management Information Base (MIB) defines a set of Managed Object Classes (MOCs)

and a schema which defines the possible containment relationships between instances of those

classes. There may be many types of relationships between classes and their instances but

containment is treated as a primary relationship and is used to yield unique names. The smallest
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re-usable entity of management specification is not the object class, as is the case in other O-O

frameworks, but the package. Object classes are characterised by one or more mandatory

packages while they may also comprise conditional ones. An instance of a class must always

contain the mandatory packages while it may or may not contain conditional ones. The latter

depends upon conditions defined in the class specification. Managing functions may request that

particular conditional packages are present when they create a managed object instance.

A package is a collection of attributes, actions, notifications and associated behaviour. Attributes

have associated syntaxes specified in ASN.1 [X208] which may be of arbitrary complexity. A

number of generic attribute types have been defined in [X721], namely counter, gauge, threshold

and tidemark; resource-specific types may be derived from these. The fact that attributes may be

of arbitrary syntax provides useful flexibility, albeit at the cost of additional complexity. For

example, it allows the definition of complex attributes such as threshold, whose syntax include

fields to indicate whether the threshold is currently active or not and its current comparison value.

OSI managed object classes and packages may have associated actions that accept arguments and

return results. Arbitrary ASN.1 syntaxes may be used for the arguments and results, in a similar

fashion to attributes, providing a fully flexible “remote method” execution paradigm. Exceptions

with MOC-defined error information may be emitted as a result of an action. The same is also

possible as a result of operations to attributes under conditions that signify an error for which

special information should be generated. Object classes and packages may also have associated

notifications, specifying the condition under which they are emitted and their syntax. The latter

may be again of an arbitrary ASN.1 type. By behaviour, one means the semantics of classes,

packages, attributes, actions and notifications and the way they relate as well as their relationship

to the entity modelled by the class.

OSI Management follows a fully O-O paradigm and makes use of concepts such as inheritance.

Managed object classes may be specialised through subclasses that inherit and extend the

characteristics of superclasses. The use of inheritance and packages allows re-usability and

extensibility of specifications. It may also result in software reusability if an object-oriented

design and development methodology is used, as explained in Chapter 3. As an example of

inheritance, a transport protocol entity class (tpProtocolEntity) may inherit from an abstract

protocol entity class (protocolEntity) which models generic properties of protocol entities, e.g. the

operational state, the service access point through which services can be accessed, etc. By

abstract class it is meant a class that is never instantiated but serves inheritance purposes only. In

the same fashion, an abstract connection class may model generic properties of connection-type
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entities such as the local and remote service access points, the connection state, emit creation and

deletion notifications, etc. The inheritance hierarchy for those classes is shown in the left part of

Figure 2-3, using the Object Modelling Technique (OMT) notation [Rumb91].

It should be noted that conditional packages allow for dynamic (i.e. run-time) specialisation of an

object instance while inheritance allows only for static (i.e. compile-time) specialisation through

new classes. As pointed out in [Tuck94], in order to achieve the same effect with inheritance

instead of packages, N conditional packages would necessitate the definition of 2N additional

classes! Any requirements for further subclassing would make the combinatorial explosion even

worse.

    

top

x25VCx25ProtEntity

element protEntitysubsystem connection

    objClass=element
elementId=x25switch-A

 objClass=subsystem
subsystemId=network

objClass=x25ProtEntity
    protEntityId=x25

 objClass=x25VC
connectionId=123

 objClass=x25VC
connectionId=456

is contained by

example local name: {subsystemId=network, protEntityId=x25, connectionId=123}

inherits from

x25ProtEntity2

Figure 2-3  Example OSI Inheritance and Containment Hierarchies

The specification of manageable entities through generic classes which are used only for

inheritance and re-usability purposes may result in generic managing functions in manager

applications through polymorphism across a management interface. For example, it is possible to

provide a generic connection-monitor application that is developed with the knowledge of the

generic connection class only. This may monitor connections in different contexts, e.g. X.25,

ATM, etc. disregarding the specialisation of a particular context. That way, reusability is

extended to managing functions as well as managed object classes and their implementations.

In OSI management, a derived class may extend a parent class through the addition of new

attributes, actions and notifications; through the extension or restriction of the value ranges; and

through the addition of arguments to actions and notifications. Multiple inheritance is also

allowed and it has been used extensively by information model designers in standards bodies.

Despite the elegant modelling that is possible through multiple inheritance, such models cannot be
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easily mapped onto relevant facilities in O-O programming environments (e.g. C++ multiple

inheritance) as discussed in Chapter 3. Multiple inheritance is a powerful O-O specification

technique but increases complexity.

A particularly important aspect behind the use of object-oriented specification principles in OSI

management is that they may result in the allomorphic behaviour of object instances.

Allomorphism is similar to polymorphism but has the inverse effect: in polymorphism, a

managing function knows the semantics of a parent class in an inheritance branch and performs

an operation on an instance which responds as the leaf class. In allomorphism, that instance

should respond as the parent class, hiding completely the fact it belongs to the leaf class. For

example, a polymorphic connection monitor application can be programmed to know the

semantics of the connection class and only the syntax of specific derived classes through meta-

data. When it sends a “read all the attributes” message to a specific connection object instance,

e.g. x25Vc, atmVcc, etc., it wants to retrieve all the attributes of that instance, despite the fact it

does not understand the semantics of the specific “leaf” attributes. In allomorphism, a managing

system programmed to know a x25ProtocolEntity class should be able to manage instances of a

derived x25ProtocolEntity2 class without knowing of this extension. In this case, operations

should be performed to the x25ProtocolEntity2 instance as if it were an instance of the parent

x25ProtocolEntity class, since the derived class may have changed the ranges of values, added

new attributes, arguments to actions, etc.

Polymorphism is a property automatically supported by O-O programming environments while

allomorphism is not and has to be explicitly supported by management infrastructures as

explained in Chapter 3. Allomorphic behaviour may be enforced by sending a message to an

object instance and passing to it the object class as an additional parameter, essentially requesting

the object to behave as if it were an instance of that class. When no class is made available at the

object boundary, the instance behaves as the actual class i.e. the leaf class in the inheritance

branch. Allomorphic behaviour is very important since it allows the controlled migration of

management systems to newer versions by extensions of the relevant object models through

inheritance, while still maintaining compatibility with previous versions. This is particularly

important in management environments since requirements and understanding of the problem

space are expected to be continuously evolving. Allomorphism hides extensions at the agent end

of the manager-agent model. Extensions in managing systems should be hidden by programming

them in advance to be able to revert to the “base” information model if this is what it is supported

across a management interface. Though possible, this requires additional effort and increases

complexity.
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The root of the OSI inheritance hierarchy is the top class which contains attributes self-describing

an object instance. These attributes are the objectClass, whose value is the actual or leaf-most

class; packages, which contains the list of the conditional packages present in that instance;

allomorphs, which contains a list of classes the instance may behave as; and nameBinding, which

shows where this instance is in the naming tree as explained next. For example, in the instance of

the x25ProtocolEntity2 class mentioned before, objectClass would have the value

x25ProtocolEntity2 and allomorphs would have the value { x25ProtocolEntity }1. When an

instance is created by a managing function, the conditional packages may be requested to be

present by initialising accordingly the value of the packages attribute, which has “set by create”

properties.

Managed object classes and all their aspects such as packages, attributes, actions, notifications,

exception parameters and behaviour are formally specified in a notation known as Guidelines for

the Definition of Managed Objects (GDMO) [X722]. GDMO is a formal object-oriented

information specification language which consists of a set of templates. A “piecemeal” approach

is followed, with separate templates used for the different aspects of an object class i.e. class,

package, attribute, action, notification, parameter and behaviour templates. GDMO specifies

formally only syntactic aspects of managed object classes. Semantic aspects, i.e. the contents of

behaviour templates, are expressed in natural language. The formalisation of managed object

behaviour has been a research topic that attracted considerable attention [Fest93] [Fest95]

[Katch95]. Recently, the use of formal specification techniques such as System Definition

Language [Z100] and Z [Spiv89] are considered by the ITU-T in order to reduce the possibility

of ambiguities and misinterpretations and to increase the degree of code automation.

OSI-SM managed object instances are named through a mechanism borrowed from the OSI

Directory [X500]. Managed object classes have many relationships but containment is treated as

a primary relationship that yields unique names. Instances of managed object classes can be

thought as logically containing other instances. As such, the full set of managed object instances

available across a management interface is organised in a Management Information Tree (MIT).

This requires that an attribute of each instance serves as the “naming attribute”. The tuple of the

attribute and its value form a Relative Distinguished Name (RDN), e.g. connectionId=123. This

should be unique for all the object instances at the first level below a containing instance. If these

                                                  

1 The angular brackets indicate a set, since allomorphs is a set- or multi-valued attribute.
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instances belong to the same class, then it is the value of the naming attribute that distinguishes

them i.e. the “key”.

The containment schema is defined by the name-binding GDMO templates which specify the

allowable classes in a superior/subordinate relationship and identify the naming attribute. Name

bindings and naming attributes are typically defined for classes in the first level of the inheritance

hierarchy, immediately under top, so that they are “inherited” by specific derived classes. An

example of a containment tree is shown in the right part of Figure 2-3, modelling connections

contained by protocol entities, contained by layer subsystems, contained by a network element. A

managed object name, also known as a Local Distinguished Name (LDN), consists of the

sequence of all the relative names starting after the root of the tree down to the particular object,

e.g. {subsystemId=network, protocolEntityId=x25, connectionId=123} .

OSI management names are assigned to objects at creation time and last for the lifetime of the

object. An OSI managed object has exactly one name, i.e. the naming architecture does not allow

for multiple names.

2.2.4 The Access Paradigm

In OSI-SM environments, managing functions, or objects, implement management policies by

accessing managed objects. By access paradigm, we mean the access and communication aspects

between managing and managed objects. Access aspects include both the remote execution of

operations on managed objects and the dissemination of notifications emitted by them. OSI-SM

follows a protocol-based approach, with a message-passing protocol modelling operations on

managed objects across a management interface. The operations and parameters supported by the

protocol are a superset of those available at the managed object boundary, with the additional

features supporting managed object discovery and multiple object access. The protocol operations

are addressed essentially to the agent administering the managed objects which acts as a naming,

trading, notification and object access server as already discussed.
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      Note: There exist many OSI Network/DataLink protocol combinations
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PP: Presentation Protocol
SP: Session Protocol
TP: Transport Protocol

Figure 2-4  OSI-SM Protocol Stack

OSI-SM was designed with generality in mind and as such it uses a connection-oriented reliable

transport. The relevant management service / protocol, the Common Management Information

Service / Protocol (CMIS/P) [X710/11], operate over a full 7 layer OSI stack using the reliable

OSI transport service; the latter can be provided over a variety of transport and network protocol

combinations, including the Internet TCP/IP using the RFC1006 method [Rose87]. A more

detailed view of the CMIP protocol stack is presented in Chapter 3 while a simplified view is

depicted in Figure 2-4. End-to-end interoperability over networks with different combinations of

data link and network layer protocols is supported either through network-level relaying or

transport-level bridging as specified in [Q811]. The upper layer part is always the same and

comprises the OSI session and presentation protocols, while the application layer part comprises

the Association Control Service Element (ACSE) and the CMIS Element over the Remote

Operation Service Element (ROSE) [Q812]. The benefit of a robust and reliable protocol stack is

out-weighted partially by the fact that full 7 layer infrastructure is required even at devices such

as routers, switches, etc., which typically run only lower layer protocols. In addition, application

level associations need to be established and maintained prior to management operations and

event notifications.

The OSI management model distinguishes between systems management, which uses the full OSI

7 layer stack, and layer management, which may use shorter stacks for efficiency or because

higher layer communications are broken [Kler88]. Though layer management exists as a concept

in the OSI framework, it has not been populated by layer management protocols. The only effort
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to date is CMIS/P Over Logical Link Control (CMOL) [Black92]. This is a lightweight CMIS/P-

based link layer management protocol that attempted to dethrone SNMP from the private network

market without success. The TMN has adopted OSI Systems Management as its base technology,

so we are examining OSI-SM in this section.

Given the richness and object-oriented aspects of the GDMO object model, CMIS/P can be seen

as a “remote method execution” protocol, providing a superset of the operations available at the

object boundary within agents, with additional features to allow for object discovery, bulk data

retrieval, operations on multiple objects and a remote “retrieval interrupt” facility. The CMIS

operations are Get, Set, Action, Create, Delete, Event-report and Cancel-get. The Get, Set,

Action and Delete operations may be performed on multiple objects by sending one CMIS request

which expands within the agent through the scoping and filtering parameters. Since OSI managed

objects are named according to containment relationships and organised in a management

information tree, it is possible to send a CMIS request to a base object and select objects

contained below that object through scoping. Objects of a particular level, until a particular level

or the whole subtree may be selected. The selection may be further refined through a filter

parameter that specifies a predicate based on assertions on attribute values, combined by boolean

operators. Scoping and filtering are very powerful and provide an object-oriented database type

of functionality in OSI agents. This results in simplifying the logic of manager applications and

reducing substantially management traffic.

     Get, SetC
ActionC, Delete

LinkedReplies

EventReportC

Create

MANAGER NETWORK AGENT

Note1:  Get, Set, Action, Delete may also operate on one only object (single reply)
Note2:  Set, Action, EventReport have also a non-confirmed mode of operation

time

Reply

Reply

Figure 2-5  CMIS Interactions
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When applying an operation to multiple objects through scoping and filtering, atomicity may be

requested through a synchronisation parameter. The result/error for each managed object is

passed back in a separate packet, which results in a series of linked replies and an empty

terminator packet. A manager application may interrupt a series of linked replies through the

Cancel-get facility. Finally, the Set, Action, Delete and Event-report operations may also be

performed in an unconfirmed fashion. While this is typical for event reports (the underlying

transport will guarantee their delivery in most cases), it is not so common for intrusive operations

as the manager will not know if they succeeded or failed. Nevertheless, such a facility is provided

and might be used when the network is congested or when the manager is not interested in the

results/errors of the operation. Figure 2-5 depicts the interactions between applications in

manager and agent roles using CMIS, apart from Cancel-get.

The event reporting model in OSI management is very sophisticated, allowing for very fine

control of emitted notifications. Special support objects known as Event Forwarding

Discriminators (EFDs) [X734] can be created and manipulated in agent applications in order to

control the level of event reporting. EFDs contain the identity of the manager(s) who wants to

receive notifications prescribed through a filter attribute. The filter may contain assertions on the

type of the event, the class and name of the managed object that emitted it, the time it was emitted

and other notification-specific attributes, e.g. for an attributeValueChange notification, the

attribute that changed and its new and old values. In addition, an emitted notification may be

logged locally by being converted to a log record. The latter is contained in a log object created

by a manager, which contains a filter attribute to control the level of logging. In summary, OSI

management provides very powerful mechanisms to deal with asynchronous notifications and

reduces substantially the need for polling-based management.

An example

We will consider now a concrete example in order to demonstrate the use of the OSI-SM access

facilities. Assume we would like to find all the routes in the routing table of a network element

that “point” to a particular next hop address. The manager application must know the logical

name of the network element agent which it will map to the presentation address by using

directory-based distribution facilities, which are explained in detail in section 2.4.1. The manager

application will then connect to that address and request the relevant table entries through scoping

and filtering in the following fashion:

Get ( objName={subsystemId=nw,protEntityId=clnp,tableId=route},             

       scope=1stLevel, filter=(nextHopAddr=X),                              

        attrIdList={routeDest, routeMetric} )
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The results will be returned in a series of back-to-back linked replies, as shown in Figure 2-5.

The overall CMIS traffic will be kept fairly low: N linked replies for the matching entries

together with the request and the final linked reply terminator packets i.e. N+2 in total. The

overall latency will be slightly bigger than that of a single retrieval. It should be noted that traffic

would be much more without filtering, since the manager would have to retrieve all the routing

entries and perform the filtering locally. Finally, association establishment and release is also

necessary to the element agent. This does not happen though on a per operation basis but

associations may be “cached”.

The manager application would also like to be informed of new route entries “pointing” to the

next hop address X. This could be done by using the event reporting facilities provided by OSI

management. The manager will have to create an EFD with filter:

(eventType=objectCreation AND objectClass=routeEntry AND nextHopAddr=X)

It will also need to set as destination its own name. After that, notifications will be discriminated

within the agent and the ones matching the filter will be forwarded to the manager. Note that if

there is no association to the manager, the element agent will establish it by going through the

same procedure and mapping the logical manager name to an address through the directory. The

previous observations about association caching and address mappings also hold in this case.

2.2.5 Generic Management Functionality

One key aspect of the OSI-SM framework is it follows a “large common denominator” approach

to management standardisation, resulting in a large set of common object specifications that

should be globally supported. A number of generic management functions are addressed in order

to provide a well-defined framework for dealing with common tasks and to achieve reusability

and genericity. These specifications emanate from the five functional areas (FCAPS) and are

collectively known as the Systems Management Functions (SMFs) [SMF].

We can classify the OSI SMFs into four distinct categories:

i. those that provide generic definitions of management attributes, notifications and

actions only; these are the Object Management [X730], State Management [X731],

Relationship Management [X732] and Alarm Reporting [X733] SMFs;

ii. those that provide system definitions which complement the management access service

by providing a controlled mechanism to deal with notifications; these are the Event

Reporting [X734] and Log Control [X735] SMFs; and
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iii. those that provide miscellaneous definitions that are used to support the management

system itself; we can categorise here the security-related SMFs: Access Control [X741],

Security Alarm Reporting [X736], and Security Audit Trail [X740]; and

iv. those that provide generic definitions of managed object classes that are used for

common management tasks.

A full list of the current OSI SMFs is shown in Table 2-1.

ITU-T | ISO Number Systems Management Function

X.730 | 10164-1 Object Management Function

X.731 | 10164-2 State Management Function

X.732 | 10164-3 Attributes for Representing Relationships

X.733 | 10164-4 Alarm Reporting Function

X.734 | 10164-5 Event Management Function

X.735 | 10164-6 Log Control Function

X.736 | 10164-7 Security Alarm Reporting Function

X.740 | 10164-8 Security Audit Trail Function

X.741 | 10164-9 Objects and Attributes for Access Control

X.739 | 10164-11 Metric Objects and Attributes

X.738 | 10164-13 Summarisation Function

X.742 | 10164-10 Accounting Meter Function

X.745 | 10164-12 Test Management Function

X.737 | 10164-14 Confidence and Diagnostic Testing

X.746 | 10164-15 Scheduling Function

X.744 | 10164-18 Software Management Function

X.743 | 10164-20 Time Management Function

X.748 | 10164-22 Response Time Monitoring Function

X.750 | 10164-16 Management Knowledge Management Function

Table 2-1  OSI Systems Management Functions
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Starting from the third category first, the relevant functionality is important for security of

management. These functions support controlled access to management information [X741],

support the generation of security alarms when relevant breaches are detected [X736] and provide

the framework and mechanism to conduct security audit trails [X740].

The functions of the second category are extremely important since they provide the means for

event-driven as opposed to polling-based management. We term these system definitions since

they make it possible to deal with notifications emitted from managed objects and control their

forwarding to applications in manager roles through the Event-report CMIS primitive. As such,

they complement the OSI System Management access service. You may recall that in the

discussion of section 2.2.1 on the Management Functional Areas, event reporting and logging

facilities were identified as an important requirement in all the five functional areas.

Functions of the first category are particularly important. Object Management [X730] provides

three generic notifications related to configuration management that all OSI managed objects

should support, namely object creation, object deletion and attribute value change. State

Management [X731] provides a number of generic state attributes (administrative, operational,

usage state, etc.) and a state change notification. It also prescribes state transition tables

according to a well-defined state model. Relationship Management [X732] defines a relationship

model based on pointer attributes i.e. attributes whose value is the distinguished name of another

object. Relationships may also be represented by separate objects, as proposed by the more recent

General Relationship Model (GRM) [X725]. Finally, Alarm Reporting [X732] provides a set of

generic alarm notifications which cover the requirements for all possible types of alarms: quality

of service, communications, equipment, environmental and processing error alarm.

Other MIB specifications should use the above definitions to model object, state, alarm and

relationship aspects. Generic configuration, state or alarm managers may be written in a fashion

that makes them independent from the semantics of a particular MIB. For example, a

configuration monitor could be an application that connects to managed elements and requests all

the object creation, deletion, attribute value and state change notifications in order to display

changes to the human manager. Such an application can be written once and be reused: it only

needs to be “told” the formal specification of the element MIBs in order to be able to display

meaningful information for the objects emitting those notifications. OSI management platforms

typically provide a set of generic applications that are based on those common specifications.
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The relevant GDMO/ASN.1 specifications in the first and second category SMFs are compiled

together in the Definition of Management Information [DMI] recommendation, which also

specifies the properties of Count, Gauge, Threshold and Tide-Mark generic attributes.

Finally, functions of the fourth category constitute the majority of SMFs and provide a host of

generic functionality. We describe the most important ones in more detail and the rest only briefly

below.

Monitor Metric objects [X739] allow the observation of counter and gauge attributes of other

MOs and their potential conversion to a derived gauge, which may be statistically smoothed. That

gauge nay have associated threshold and tidemark attributes which support fully event-driven

performance management capabilities, relegating “polling” totally within a managed element.

Multiple input metrics provide the facility to combine different attributes in order to produce a

comparison rate, e.g. for error vs. correct packets. Summarisation objects [X738] allow a

manager to request a number of attributes from different objects of a remote system to be

reported periodically, possibly after some statistical smoothing. These attributes can be specified

using scoping and filtering while intermediate observations may be “buffered”. This facility is

important for gathering historical performance data for capacity planning and is typically used

together with logging. The author has done research that builds on the metric monitoring and

summarisation functions and provides a more flexible Intelligent Remote Monitoring framework

[Pav96b].

Accounting Metering [X742] provides generic objects to support data collection for resource

utilisation. Test Management [X745] defines generic test objects to provide both synchronous and

asynchronous testing facilities. The target is to model generic aspects of testing so that they are 

separated from specific aspects. A number of specific Confidence and Diagnostic Testing objects

[X737] have been specified using the previous framework, namely connectivity, data integrity,

echo, resource, loopback and protocol integrity tests. Scheduling Management [X746] provides

generic scheduler objects which could schedule activities of other MOs that support scheduling on

a daily, weekly, monthly or a periodic basis, e.g. event forwarding discriminators, logs etc.

Response Time Monitoring [X748] supports performance management by allowing the

measurement of protocol processing time and network latency between network nodes. Software

Management [X744] allows the delivery, installation, (de-)activation, removal and archiving of

software in a distributed fashion.
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Management Knowledge Management [X750] provides mechanisms for the dynamic acquisition

of shared management knowledge, including repertoire knowledge (which managed object

classes, conditional packages and name bindings a system supports), instance knowledge (the

names of the available managed object instances) and definition knowledge (the formal MIB

specification in GDMO). This knowledge is provided both through managed objects and through

OSI Directory [X500] objects. These directory objects support also global naming and

distribution facilities as it will be discussed in detail in section 2.4.1. The author has contributed

research work towards the distribution and discovery aspects of [X750].

The OSI SMFs were depicted in Table 2-1. Note there exist more SMFs under development e.g.

Domain and Policy Management [X749], Changeover Function [X752], Command Sequencer

[X753] etc. In summary, SMFs increase the intelligence and capabilities of applications in agent

roles. They provide useful generic facilities which most agent systems should support and enforce

a common style of operation which may result in generic managing. The relevant objects are

known as Support or Systems Managed Objects (SMOs) [X701] since they describe resources of

the management system itself. In Chapter 3 we propose an object-oriented realisation model for

the OSI SMFs that results in software reuse and makes available the relevant expressive power to

management applications at a minimal cost.
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2.3 The Telecommunications Management Network

This section provides an introduction to the Telecommunications Management Network (TMN)

[M3010] which is the framework developed by the ITU-T for managing telecommunications

networks and services. This is more than just an overview since it positions the TMN in the

context of the Broadband Integrated Services Digital Network (B-ISDN) Reference Model

[BISDN], presents the underlying requirements and explains the various architectural choices.

While the basic TMN recommendations have been available since 1990, there have been rather

few tutorial or survey papers and relevant books in the literature. [Sahi88] provides an early view

of the emerging architectural framework; [Bern93] discusses general issues related to the

management of telecommunications networks; [Shrew95] provides an interesting overview

(“TMN in a nutshell”) but is biased towards the Network Management Forum OMNIPoint

interpretation of TMN [OmniPnt], [Murr95]; finally [Glith95] and [Sidor95] provide easy-to-

read tutorial overviews. In terms of books, [Aida94] is a collection of chapters by different

authors addressing TMN issues, in which [Sahi94] and [John94] address the framework and

standards bodies work. [Cohen94] is a chapter in [Slom94] that provides a fairly complete but

rather dry overview of the TMN architectural framework.

The material in this section is based to a large extent on [Pav94a], [Pav96a] and [Pav97c].

2.3.1 The TMN in the Broadband ISDN Context

The purpose of a Telecommunications Management Network (TMN) [M3010] is to support

operators in managing telecommunications networks and services. This means support for

planning, provisioning, installing, maintaining and administering these. Management refers to set

of capabilities related to the five functional areas described in section 2.2.1 and it is an integral

part of the operation of networks and services.

Management becomes particularly important for the new generation of broadband

telecommunications networks based on the Synchronous Digital Hierarchy (SDH) / Synchronous

Optical Network (SONET) transmission and Asynchronous Transfer Mode (ATM) switching.

These technologies offer advanced multiplexing capabilities that need to be exploited and

harnessed through sophisticated management systems. Another important aspect that makes

TMN a necessity is the advent of a new generation of telecommunications services that break

away from basic telephony. Advanced services supporting multimedia, multi-party and mobility

features need comprehensive service management facilities and Quality of Service (QoS) control,
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especially as they may be sold according to QoS agreements. The TMN provides a framework

that tries to address these issues through a management model based on hierarchical

decomposition and abstraction and through the deployment of object-oriented information

specification and access principles that result in reusability and genericity.

The TMN is a data network carrying management traffic. It is logically separate from the

telecommunications network being managed but interfaces to it at several distinct points in order

to monitor and control its operation. A TMN may use, for its communication requirements, parts

of the telecommunications network itself. The basic concept behind the TMN is to provide a

framework in order to achieve the interoperation between management applications, which in

TMN language are called Operations Systems (OSs), and the telecommunications equipment

being managed. This is achieved through an architecture with standardised interfaces that support

object-oriented message exchanges over well-defined protocol stacks. It should be possible for

operators (or administrations in TMN parlance) to put together TMN systems that comprise

equipment and operations systems from different suppliers, reducing costs and achieving rapid

deployment and support for new services.

Control Plane

Management
      Plane

Figure 2-6  TMN Relationship to a Telecommunications Network (from [M3010])

Figure 2-6 shows the relationship between the TMN and the telecommunications network being

managed. The user plane of the current generation of telecommunications networks supports raw

transmission only, so a data network capability needs to be provided over them for

communicating management traffic. This capability can be provided through the control plane
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over the Signalling System Signalling System No. 7 (SS7) protocols [Moda90]. If ATM becomes

the core technology of the next generation as part of the Broadband ISDN [BISDN], the

telecommunications network will be inherently a data network. TMN management applications

(operations systems and workstations) operate typically on general purpose computer systems

which are either directly attached to the telecommunications network or reside in local networks

attached to it through interworking units. Although in Figure 2-6 the TMN boundary is shown as

restricted to managing equipment in the telecommunications network, in reality it may also extend

to manage equipment in the customer premises e.g. computer terminals for multimedia services.

The distinction between the TMN and the telecommunications network it manages, as depicted in

Figure 2-6, maps exactly to the distinction between the management and control planes of the

Broadband ISDN Reference Model [BISDN]. In the latter, activities in the operation of

telecommunications networks are categorised in three planes:

• the User Plane, which is involved with the transfer of user information (audio and video

streams, packet data);

• the Control Plane, which is responsible for the establishment, operation and release of

on-demand calls and connections; and

• the Management Plane, which is involved with the planning, installation, configuration,

provisioning and supervision of the network infrastructure in order to allow the user and

control planes to function as efficiently and smoothly as possible.

According to this categorisation, the control plane supports end-user services and has also two

distinct aspects. Support for bearer services, such as basic telephony through the Signalling

System No. 7 (SS7) [Moda90] or, in the future, support for bearer ATM virtual channel

connections through B-ISDN signalling [Q2931][Q2761]. And also support for enhanced

services, such as Intelligent Network (IN) [Q1200] based telephony or multimedia services based

on the emerging Telecommunications Network Information Architecture (TINA) [TINA]. The

key difference between bearer and enhanced services is that all the intelligence for the former

lives within the switching systems (the signalling protocols) while in the case of enhanced services

the relevant intelligence operates in general computing systems attached to the network e.g. the

service control point of IN or the service session control in TINA. As far as the TMN is

concerned, both switching equipment and general purpose computing systems supporting

advanced services are treated as managed elements.
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From the above discussion it is should be clear that the TMN does not aim to support on-demand

end-user services which are the subject of the control plane. The TMN supports management

services which are primarily used by the operators and human managers of the

telecommunications network. It also supports management services which are used by end-users,

such as service subscription, accounting, service profile customisation and the provision of

Virtual Private Network (VPN) [Reil96] management services.

The relationship between the TMN and the control plane bears a very good analogy to the

relationship between a managed object and the associated real resource. The TMN provides

management functions and facilities in an orthogonal fashion to the operation of the control plane

but these management functions affect the way in which the control plane operates. The TMN

influences operation of the latter by configuring operational parameters, for example routing table

entries, according to management decisions. The TMN monitors the network, makes decisions

based on network conditions and other information, such as management policy and knowledge of

future events, and feeds back management actions to the control plane in order to influence its

future behaviour. This relationship allows the network to operate as intelligently as possible

without burdening the network elements with sophisticated features. In essence, management

intelligence operates “outside” the network, in a similar fashion to enhanced service control

frameworks such as IN and TINA. Finally, it should be added that since the TMN is not involved

in on-demand end-user service control, it has less stringent requirements on real time response

than control plane functions.

Note: The terms control and management defined above are sometimes used in a different

fashion. By control it is meant functions embedded in network elements that are implemented in

hardware/firmware, use signalling protocols and provide fast real-time response. By management

it is meant functions operating in general purpose computing equipment, realised as software

programs, which use general purpose data communication protocols and provide slower response.

This is a physical categorisation as opposed to the functional one presented above. In the author’s

view, the former maps better to the B-ISDN reference model and it will be used consistently for

the rest of the thesis.
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2.3.2 TMN Architecture

In this section we examine the TMN architecture starting from the relevant requirements. We

then present the functional architecture, explain the role of the various reference points and

interfaces, discuss the logical layering aspects and finally examine the decomposition of an

Operation System Function (OSF) into functional components.

Since we use the term architecture extensively in the rest of the chapter and the thesis as a whole,

it is worth attempting to define it first. The definition is taken from the UK Alvey programme’s

Advanced Networked Systems Architecture (ANSA) project [ANSA89a]. There it is described as

“an engineering discipline of design with a common framework and a consistency of style”. It

embraces concepts and terms for explaining systems, models for reasoning about them, the

specification of basic building blocks and a defined process and framework for putting systems

together.

The TMN intends to support a wide variety of management activities which cover the planning,

installation, operation, administration, maintenance and provisioning of telecommunications

networks and services. The TMN should support the open exchange of information between

management applications and managed elements and between management applications

themselves. The latter should take place both within a TMN and across TMNs so that automated

co-operation of different administrations is possible. Also customers will be offered access to

management services through electronic interfaces.

Key requirements for TMN systems include the ability to:

• minimise the management reaction times to significant network events;

• minimise load caused by management traffic, especially when the telecommunications

network is used to carry it;

• allow for geographic dispersion of management functions over a wide area e.g. a

country-wide telecommunications network;

• be able to cope with very large scale sizes of manageable entities;

• provide automated isolation mechanisms for faults and invoke recovery procedures; and;

• improve service assistance and interaction with customers through electronic interfaces.

To provide the expected functionality and meet the relevant requirements, the TMN provides

three architectural views [M3010]:
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• The Functional Architecture refers to the distribution of TMN functionality into

categories of “function blocks” interconnected via “reference points”.

• The Information Architecture adopts OSI-SM object-oriented information specification

and access principles. Managed resources are represented by managed objects at

different levels of abstraction and are observed and modified by applications in managing

roles in hierarchical or peer-to-peer manager-agent relationships. OSI-SM was explained

in detail in section 2.2.

• The Physical Architecture maps combinations of functional blocks to physical blocks

based on non functional requirements such as performance, ownership etc. In this view,

some of the reference points become interoperable interfaces.

It is interesting to observe that the OSI-SM information specification and access framework has

been adopted as the basis for the information architecture because it addresses some of the key

objectives:

• It provides a highly configurable event model of fine granularity. This minimises reaction

times to network events and keeps management traffic low with suppression of unwanted

events at source.

• It provides intelligent information retrieval facilities based on scoping and filtering which

keep management traffic low and provide better timeliness of management information.

• It allows for wide-area geographic distribution when combined with the OSI Directory

Service [X500] which supports federation.

• It can cope with large scale of manageable entities in network elements as discussed in

Chapter 3.

Despite the fact the information architecture currently uses OSI-SM principles, the TMN is not

tied to the OSI-SM framework [X700]. Discussion is presently underway in the ITU-T Study

Group IV to consider the use of Open Distributed Processing (ODP) [ODP] technologies, such as

OMG CORBA [CORBA], as alternatives to OSI-SM. Chapter 4 of this thesis examines the

feasibility of this assertion and proposes a solution.
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2.3.2.1 Functional Architecture

The TMN management functions are realised by the following types or classes of function

blocks:

• Operations Systems Functions (OSF),

• Workstation Functions (WSF),

• Mediation Functions (MF),

• Q-Adapter Functions (QAF), and

• Network Element Functions (NEF).

A Network Element Function models telecommunications and support equipment which

communicates with the TMN for the purpose of being monitored and controlled. The NEF

includes only those equipment aspects that are subject to management, i.e. the representation of

relevant resources as managed objects and the necessary access mechanism. Control plane

aspects are outside the scope of the TMN and, as such, are not modelled by the NEF. A NEF is

typically an application operating in agent role according to the OSI-SM manager-agent model.

The Q-Adapter Function connects to the TMN those NEFs which do not support standardised

TMN reference points. The responsibility of a QAF is to translate between a TMN and a non-

TMN (e.g. proprietary) reference point. The main intra-TMN reference point is the q reference

point, hence the name Q-Adapter. A QAF provides both protocol and information model

translation and is typically a proxy agent-manager application according to the manager-agent

model. Issues on Q Adaptation are discussed in more detail in section 2.4.2.

The Mediation Function acts on information passing between NEFs and OSFs in order to

enhance the capabilities of “weak” NEFs. There are two types of q reference points, a fully

capable q3 and a “not quite q3” one, called qx. Mediation functions convert qx to q3 and may store,

adapt, filter, threshold and condense information. They may be implemented in a hierarchical

fashion in which qx reference points are enhanced in various stages until q3 is achieved. A MF

may provide protocol conversion and information model translation and enhancement and is

typically a proxy manager-agent application in a similar fashion to a QAF. Issues on mediation

are discussed in more detail in section 2.4.2.

The Workstation Function provides the means for the human user to interpret TMN information,

e.g. a network manager, and allow him/her to influence management decisions. The WSF

interfaces to the OSF and MF and complements decisions based on human heuristics with logic
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that checks their validity and consistency. Note that it is not permitted for a human user to

interface directly to a NEF or QAF, since relevant directives should always be checked by

automated management logic. The WSF is typically an application in the manager role according

to the manager-agent model. Issues on WSs are discussed in more detail in section 2.4.3.

The Operations Systems Function constitutes the heart of the TMN and processes information

related to telecommunications management activities. OSFs access NEFs either directly or

indirectly through MFs. They may also access foreign elements through QAFs. OSFs interact

with each other in either peer-to-peer or hierarchical relationships. The latter are governed by the

TMN logical layered architecture which prescribes a hierarchical structure in element, network,

service and business management layers. The OSF is typically an application in both manager

and agent roles according to the manager-agent model. The internal structure of the OSF is

addressed in detail in section 2.3.2.5.
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Figure 2-7  TMN Function Blocks and Reference Points (from [M3010])

In the discussion above we already introduced the q3 and qx reference points while discussing Q-

adapter and mediation functions. The TMN defines a number of reference points which

interconnect the function blocks presented above. The function blocks and reference points taken

together define a reference model for the TMN. The logical functionality of any TMN can be

described in a reference configuration by some arrangement of those function blocks and
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reference points. Figure 2-7 shows the relationship between function blocks and their

interconnection by a number of reference points i.e. the TMN Reference Functional Architecture.

The TMN defines the following classes of reference points. Those inside or on the borders of the

TMN (q3, qx, f and x) are subject to standardisation in order to support open management

information exchange.

q3: interconnects OSFs to NEFs, QAFs and MFs and OSFs to OSFs. It is realised through

OSI application layer services: OSI-SM [X700], Directory [X500], File Transfer

Access and Management (FTAM) [FTAM], Transaction Processing (TP) [DTP] and

possibly Security [GULS].

qx: interconnects MFs to “weak” QAFs and NEFs and MFs to each other in a hierarchical

fashion. It is typically based on OSI-SM principles but “not quite”.

x: interconnects OSFs to OSFs between TMNs. It is realised in a similar fashion to q3 but

with mandatory security mechanisms die to its inter-domain nature.

f: interconnects WSFs to OSFs and MFs. Very little work has yet been done towards its

standardisation.

g: presents information to the human user in a graphical form. It captures the “look and

feel” of the Graphical User Interface (GUI) together with its semantic specification e.g.

a manual.

m: interconnects QAFs to foreign managed elements e.g. those supporting the Internet

Simple Network Management Protocol (SNMP) [SNMP] or older telecommunications

type management interfaces.

The q3, qx, x and f reference points are discussed in more detail later in this chapter.

2.3.2.2 Physical Architecture

Reference points define conceptual points of information exchange between function blocks. A

functional block becomes a physical block and the relevant reference points become interfaces

when that block is embodied in a separate piece of equipment, interoperating with other physical

blocks over the TMN Data Communication Network (DCN). A Physical Architecture is the

“instantiation” of a TMN system composed of physical blocks that conform to the reference

functional architecture.
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Interfaces are characterised by two facets, a conceptual facet and a physical facet, with the

conceptual facet effectively defined by the reference point. The conceptual facet is characterised

by the M-Part (Message Part) while the physical facet is characterised by the P-Part (Protocol

Part) [Embry91]. In the case of OSI-SM which is currently adopted in the TMN, the M-Part

defines the structure of the message sent to or received from a managed object i.e. a Common

Management Information Service (CMIS) message [X710]. The P-Part defines the protocol stack

used to transfer the message and this will involve the selection of the profile to support the

Common Management Information Protocol (CMIP) [Q3]. Reference points are denoted by lower

case letters (e.g. q3) while interfaces are denoted by upper case letters (e.g. Q3). The relationship

between reference points and interfaces is shown in Figure 2-8.

Interface

Conceptual Facet
 Reference Point

Physical Facet

P-PartM-Part

Figure 2-8  Relationship of Reference Points and Interfaces

It may be the case that more than one function block are combined together to form a physical

block because of non-functional requirements. For example, two OSFs may constitute a single

Operations System (OS), a MF and a QAF may constitute a Mediation Device / Q-Adapter (MD-

QA) block, and so on. In this case their functional separation should still hold while their

interactions should conform to a well-defined reference point. The actual realisation of that

reference point becomes a proprietary issue since it remains internal within a network node.

2.3.2.3 Logical Layering

One of the key aspects of the TMN as a management framework is that it transforms the old

centralised or flat management paradigm to a hierarchical distributed one (see also Figure 2-2 

Models of Management Organisation). We will examine here the aspects and issues behind the

TMN hierarchical decomposition.

In the hierarchical model projected by the TMN, management functionality is layered, offering

increased abstraction and encapsulation in higher layers. The functionality of each layer builds on

the functionality offered by the layer below. Each layer may contain additional sub-layers. The
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functionality of each layer (or sub-layer) is supported by a one or more Operation System

Functions (OSFs). These may have peer-to-peer relationships when in the same layer or

hierarchical ones when in different layers (or sub-layers). Each OSF presents an information

model to superior OSFs which build on it and present different information models of higher

abstraction to their superiors. As such, a layer in this architecture builds on the information

model presented by the layer below and presents its own information model to the layer above.
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Figure 2-9  Cascaded Hierarchical Communication (from [M3010])

This hierarchical decomposition and the cascaded interactions in manager-agent roles with

different information models at each level are depicted in Figure 2-9. The information models at

each level represent manageable resources at different levels of abstraction. At the lowest level of

that hierarchy, managed network elements contain resources of the finest granularity, representing

aspects of the local system, e.g. access points, interfaces, call endpoints etc. At higher levels,

objects represent resources of higher abstraction that can be mapped onto lower level resources,

e.g. subnetworks, networks, services etc.

The TMN layers correspond essentially to different levels of abstraction in the information

architecture. The mapping between information models at adjacent levels is accomplished through

information conversion functions within OSFs. It should be noted that the use of OSI-SM as

depicted in Figure 2-9 extends the OSI-SM model defined in [X701]. In the latter, managed

objects are considered modelling resources in the various layers of the communications protocol

stack. In the TMN this holds only for the lowest level of the management hierarchy i.e. the NEFs.

Managed objects in higher TMN layers are more abstract views of the lowest layer objects.

TMN layering is not strict in the sense that an OSF may access directly OSFs in layers below the

adjacent underlying layer. This may be the case, for example, between the service management
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and element management layers regarding historical QoS data, accounting records etc. The key

aspect that characterises the TMN hierarchical organisation is that each layer is a fully

incremental addition of the functionality provided by the layers below. As such, lower layers are

essentially unaware of the presence of higher layers; they simply respond to management requests

which are always initiated by the higher layers. Manager-agent interactions are only top-down or

peer-to-peer in this layered hierarchy. Note that event notifications are always requested first (i.e.

configured) by the superior system.

Another way to view the hierarchical nature of OSFs and the manager-agent relationships is

depicted in Figure 2-10. This is known as the TMN Logical Layered Architecture (LLA). The

LLA uses a recursive approach to decompose a particular management activity into a series of

nested functional domains. Each functional domain becomes a management domain under the

control of an Operation System Function (OSF). A domain may contain other OSF domains to

allow further layering and/or may represent logical or physical resources as managed objects at

the lowest level of the hierarchy within that domain. When the OSF domain is at the top of the

layered architecture, there is no superior OSF.
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Figure 2-10  Logical Layered Architecture (from [M3010])

All the interactions within a domain take place at generic q reference points. Interactions between

peer domains, i.e. crossing the OSF domain boundary can take place at a q or x reference point.

Reference points may become interfaces depending on the physical realisation. The essence of the

LLA is that at each point of interaction with an OSF domain, all the other subordinate OSF
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domains used to accomplish a management task can be thought as encapsulated (contained) by

that domain. The user of a management service or sub-service offered by that OSF does not see

its realisation.

The 1991 version of [M3010] indicated a potential decomposition of TMN layered functions in

element, network, service and business management layers. These were influenced by British

Telecommunications’ Communications Network Architecture for Management (CNA-M)

[Milh89]. This layered decomposition was only informative and not normative since the initial

idea behind the TMN was that only Q3 interfaces to network elements and X interfaces were to be

standardised. In the 1996 version of [M3010] this layered decomposition became normative,

which means that Q3 interfaces within the TMN are also going to be standardised. The potential

functions of the TMN layers of management activity are the following.

The Element Management Layer (EML) comprises functions related to either a single or a small

number of network elements located in a small geographical area. These functions are concerned

with the day-to-day management of elements in terms of configuration, faults and maintenance,

performance monitoring, historical data etc. An abstract view of elements is presented to the

network management layer so that the latter is shielded from unnecessary complexity and detail.

These functions are predominantly technology dependent and do not take into account network-

wide aspects as they have only a limited view of other parts of the network, if at all.

The Network Management Layer (NML) is concerned with keeping the network capabilities at

some operational optimum. Human and automatic decision making processes may be used to

optimise the network resources. This layer supports the management of the whole network which

may span a large geographical area e.g. a whole country. The network is typically partitioned

hierarchically into subnetworks, with complete visibility of the whole network provided at the

top-most level. A technology independent view is presented to the service management layer. At

this level, provision, cessation and modification of network capabilities are provided in order to

support services. Statistical data are kept for the whole of the network concerning performance,

usage, availability, faults etc.

The Service Management Layer (SML) is concerned with functions supporting services.

Customer facing (provision, cessation, subscription, accounting, QoS, fault reporting) and

interfacing with other administrations for the provision of end-to-end services are aspects of this

layer. Additional tasks include the control of interaction between services, service order,
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complaint handling and invoicing. At this level, a technology independent view of the network is

possible i.e. the network is treated as a “cloud” with a set of capabilities.

The Business Management Layer (BML) is concerned with the implementation of policies and

strategies within the organisation which owns and operates the services and possibly the network

itself. Business management functionality is typically proprietary and this subsequently means

there is no x reference point at this level. Business decisions may be influenced by higher level

controls such as legislation or macro-economic factors. They may address tariffing policies,

quality maintenance strategies guidance on service operation, and so on. As an example, BT’s

“friends and family” package involves a business decision which affects the charging schemes in

the service management layer and aims at attracting new subscribers (or keeping existing ones). It

seems unlikely that the majority of business management functions will be automated in the near

future.
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Figure 2-11  TMN Functional and Example Layered Physical Architecture

Figure 2-11 shows in the left part a simplified view of the TMN functional architecture as

presented in Figure 2-7 which maps to an example physical architecture in the right part; the

latter demonstrates the TMN layers discussed above. Note that in the above example physical

architecture, all the network elements are considered Q3-capable i.e. there are no mediation

devices or Q adapters; workstations have also been omitted for simplicity. The reason for the

conical shape of the physical depiction is that higher sub-layers or layers comprise typically

fewer OSs.
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Figure 2-12  Classes of q and x Reference Points

The TMN functional architecture defines generic classes of q and x reference points for

management information exchange. Given the hierarchical decomposition of the TMN into

element, network, service and business management layers, specific classes of those reference

points can be defined between layers and within a layer. Figure 2-12 depicts a hierarchical

taxonomy of the relevant classes as presented in [GOM].

It should be noted it is unlikely that qee and xee will exist in reality. This is because element

management OSFs typically follow strict hierarchical as opposed to peer-to-peer relationships. In

addition, it may be the case that there will exist x reference points between different TMN layers

and not only between the same layer. As an example, there may be network providers that offer

pure transport only, with service providers buying those transport facilities to offer services. A

service provider’s TMN SM layer will need to interact with the network provider’s TMN NM or

even EM layers through xsn and xse reference points respectively. These types of cross-layer

TMN interactions are not shown in Figure 2-12. Finally we mentioned previously that there may

exist interactions between non-adjacent layers within a TMN e.g. between the service and element

management layers. In this case, the qne reference point is used as “qse”.

An interesting aspect that deserves some discussion is that an intra-layer reference point, e.g. qnn,

is in principle the same with the inter-layer interface to the layer above, e.g. qsn. This is because

only one information model is typically standardised for the whole layer, addressing the “agent



Chapter 2: OSI-SM and the TMN

54

profile” to the layer above. The functional decomposition of a TMN layer into OSFs, and

subsequently into physical OSs, is something outside the scope of TMN standardisation. The

reason for this approach is that there are infinite ways to distribute the relevant functionality in

OSFs. By leaving this unspecified there are no constraints on how to go about it and there is more

scope for suppliers of TMN applications to diversify and compete with each other. On the other

hand this implies that a particular operator is tied to buying the whole TMN layer from the same

supplier in terms of the constituent OSs. This is because interoperability is actually dictated by

the inter-layer and inter-TMN reference point specifications. It should be added though that

international fora, such as the NMF, may extend the ITU-T recommendations and address the

internal decomposition of a TMN layer in terms of well-defined OSFs.
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Figure 2-13  Updated Classes of q and x Reference Points

Given the previous discussion, it is obvious that it is the agent part that defines the functionality

of a reference point. This means that the notation qma and xma in Figure 2-12 is equivalent to qa

and xa. Taking into account that intra-layer and inter-layer reference points are the same, a

simplified taxonomy of reference points is presented in Figure 2-13.
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The reference points identified in Figure 2-13 are further specialised for a particular network

technology and management service. At the time of writing (end of 1997), the following reference

points have been addressed:

• qne-sdh: management for Synchronous Digital Hierarchy (SDH) elements - the ITU-T

G.774 recommendation [G774].

• qne-atm: management for Asynchronous Transfer Mode (ATM) elements - the ITU-T

I.751 recommendation [I751].

• qne-ss7: management for Signalling System No. 7 (SS7) elements - the ITU-T Q.751

recommendation [Q751].

• qne-gsm: management for Global System for Mobile (GSM) elements - the ETSI GSM12

specifications.

• qn: technology-independent network layer management - the ETSI Generic Object Model

(GOM) [GOM]and the equivalent emerging ITU-T network information model.

• xs-coop and xs-user: inter-domain service management for path provisioning - the

EURESCOM Xcoop (provider-to-provider) and Xuser (user-to-provider) specifications.

More reference points are being currently addressed by various groups.

2.3.2.4 Interface Specification Methodology

TMN interface specifications are typically produced by ITU-T, ETSI and NMF groups. They

contain the formal description of managed object classes in GDMO together with usage scenarios

that follow possibly the NMF “Ensemble” style [NMF-025]. The latter proposes scenarios that

demonstrate how the supported management functions are accomplished through CMIS message

exchanges with objects of the defined classes.

Interface specifications are produced in a top-down rather than a bottom-up approach. [M3020]

describes a methodology to be applied when designing TMN interfaces. According to this, TMN

designers start from the management services they would like to achieve, they decompose these

to management service components, possibly recursively in more than one step. The finest

granularity service components are further decomposed into management functions, which are

then mapped onto managed object classes through an object-modelling phase. A consolidation

phase is then necessary to make sure that the original management services are supported by the

object classes the designer arrived at. The management information schema is finally produced in
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terms of name bindings for those classes. Additional notions such as the management context,

management roles and management goals are also taken into account in the design process.

The management services and functions information model designers have come across are

documented in [M3200] and [M3400], but these are informative rather than normative. Since

TMN interfaces are object-oriented, new interface specifications should take into account the

Generic Network Information Model [M3100] which specifies technology-independent generic

classes to be specialised through inheritance. They should also take into account the functionality

already offered by the OSI systems management functions [SMF].

[Sylor89] presents a set of guidelines for structuring manageable entities. RACE projects such as

ICM [ICM] and PREPARE [PREPARE] have extended and refined the [M3020] methodology

with the results fed back to the ITU-T. The author has contributed research work towards the

ICM methodology described in [Grif96a].

2.3.2.5 Functional Components

[M3010] defines a number of functional components as constituents of TMN function blocks.

These are not subject to standardisation but help to understand the internal functionality of the

various function blocks. Reference points only are standardised and these are supported by

Message Communication Function (MCF) components, which “understand” the structure of the

relevant messages.

Since the Operation System Function is the most important and complex function block of the

TMN, its structure in terms of functional components is shown in Figure 2-14. The Management

Application Function in agent role, OSF-MAF(A), provides support for the information model

exported across the q and x reference points. It receives messages that request operations on

managed objects and returns results. It also emits asynchronous event reports according to

defined preconditions in the relevant GDMO model specification. In a similar fashion, the

Workstation Support Function (WSSF) understands the semantics of f messages and responds to

relevant requests. The Security Function (SF) makes sure that only authorised entities

communicate with the OSF (authentication) and controls the level of access to management

information (access control).
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Figure 2-14  OSF Decomposition into Functional Components

The Management Application Function in manager role, OSF-MAF-M, provides the OSF’s

management intelligence by accessing subordinate information models in OSFs, QAFs and NEFs

or peer ones in adjacent OSFs. It performs operations on managed objects and receives

asynchronous event reports. Collection of statistics, alarm correlation and decision functions are

typically located there. The Information Conversion Function (ICF) provides information

translation functions that link the OSF-MAF-A and OSF-MAF-M. Operations on OSF-MAF-A

managed objects may need to be mapped on operations to subordinate or peer information

models. For example, a “path establishment” action on a network managed object in a network

configuration management OSF will need to be mapped to operations on element manager OSFs

to request relevant cross-connections. This mapping can be very complex since a relevant route

needs to be identified that both satisfies the requested QoS characteristics (e.g. end-to-end

latency, bandwidth, etc.) and can be accommodated through the existing resources. In the

opposite direction, a link problem (e.g. fibre break) will cause alarms from many network

elements since a large number of paths will typically be affected. Early correlation will take place

in element manager OSFs but a network fault management OSF will have to perform the final

correlation and generate a consolidated alarm announcing that the link is at fault. These are

functions provided by the OSF-MAF-M and the ICF. They can be very complex, making use

intelligent techniques such as rule based systems, learning processes based on neural networks,
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etc. This duality of operation in both manager / agent roles and the increased abstraction of

management information in higher layers constitute in fact the essence of the TMN.

Table 2-2 presents the relationship of all the TMN function blocks to functional components. The

MF and QAF are very similar to the OSF while the NEF acts in plain agent role. The WSF is the

only different one, containing a User Interface Support Function (UISF) which requests and

receives messages across the f reference point in order to drive the graphical display.

Function Block Functional Components Associated  Message
Communication Functions

WSF UISF, SF MCFf

OSF OSF-MAF(A/M), ICF, WSSF, SF MCFq3, MCFx, MCFf

MF OSF-MAF(A/M), ICF, WSSF, SF MCFq3, MCFqx, MCFf

QAF OSF-MAF(A/M), ICF, SF MCFq3 or MCFqx, MCFm

NEF OSF-MAF(A), SF MCFq3 or MCFqx

Table 2-2  Relationship of Function Blocks and Functional Components
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2.4 Modifications and Extensions to the TMN Model
and Architecture

2.4.1 Distribution and Discovery Aspects

The initial version of the TMN architecture as described in the 1991 version of [M3010] did not

support distribution and discovery services. The defined reference points (q, x, f) supported only

management information exchange, assuming information about the location and precise

capabilities of other applications was acquired through ad-hoc mechanisms. Today’s first

generation of commercial TMN systems are still based on the 1991 TMN architectural principles

and use static information in local databases to describe the location of applications. This

approach makes it difficult to ensure global consistency and does not support distribution in

terms of location transparency. Distribution transparencies are discussed in more detail in

Chapter 4. [ODP] and in particular [X903] define location transparency as “hiding the

topological details when identifying and binding to distributed objects” and [ANSA89a] defines it

as “hiding the location of a distributed program component, enabling components to be located

anywhere in a distributed system”.

Given the fact that the TMN is based on OSI-SM technology, it is natural to try to use OSI

naming services to support location transparency. In an OSI environment, the Directory [X500]

provides a distributed naming service but, until 1993, it was not clear how to use the OSI

Directory in order to name and locate TMN applications and associated managed objects.

Research in the RACE ICM [Stath93] and PREPARE [Tschi93] projects and elsewhere

[Sylor93] resulted in efforts to provide open mechanisms for distribution and discovery services.

The author was substantially involved in the research and design behind the ICM approach which

is described in detail in this section. The ICM and PREPARE approaches were harmonised and

constituted the main input to the [X750] Management Knowledge Management Function. Before

we examine the relevant issues, we will describe briefly the OSI Directory.

The OSI Directory [X500] provides a federated hierarchical object-oriented database. The latter

lives in many Directory Service Agents (DSAs) that administer parts of a global Directory

Information Tree (DIT). Parts of the global DIT belong to different Autonomous Administrative

Areas (AAAs) and start at Autonomous Administrative Points (AAPs). DSAs are accessed by

applications in Directory User Agent (DUA) roles via the Directory Access Service / Protocol

(DAS/P) [X511] while DSAs communicate with each other via the Directory System Protocol

(DSP). Accessing the local DSA is enough to search for information anywhere in the global DIT.
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Figure 2-15 depicts the operational model of the directory and the global DIT. Directory Entries

or Objects (DOs) are named using distinguished names that express containment relationships, in

the same fashion as OSI managed objects. In fact, the directory naming architecture preceded that

of OSI management and was essentially reused in the latter. The key difference between the

Directory and OSI-SM information models is that directory objects are plain information objects

containing only attributes i.e. they do not have behaviour, do not accept actions and do not emit

notifications. A DIB is a fairly static database, i.e. directory objects do not change often, while a

MIB is a dynamic management information store. Another key difference is the federated nature

of the directory and the support of a unified DIB across all the DSAs.
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Figure 2-15  X.500 Directory Organisational and Administrative Model

The Directory Access Protocol (DAP) bears many similarities to CMIS. There exist bind and

unbind operations to support connect and disconnect operations respectively. The read operation

is equivalent to a CMIS M-Get without scope and filter. The list operation returns the first level

subordinates of a particular object, so it is equivalent to a M-Get with scope=1stLevel and no

attributes requested. The search operation returns information from a number of objects

according to scope and filter parameters, so it is generally equivalent to a M-Get. It should be

noted that the equivalent “scope” parameter supports only the 1stLevel and wholeSubtree options

i.e. there are no NthLevel and baseToNthLevel options as in CMIS. The compare operation

compares a supplied attribute value with a directory attribute for which the user may not have

access, so it is equivalent to M-Get with filter and no attributes requested. All the above

operations may be cancelled when outstanding with the abandon operation, which is equivalent to

the M-CancelGet. The addEntry operation is equivalent to M-Create and the removeEntry to the
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M-Delete. Finally, the modifyEntry operation may be used to change the attributes of an object,

so it is equivalent to the M-Set.

The first thoughts behind the issues of using the directory in an OSI-SM/TMN environment for

naming, discovery and location transparency services took place during the first year of the

RACE ICM and PREPARE projects in 1992. The partners involved in this work were UCL and

ICS in ICM and GMD Fokus in PREPARE. UCL was actually a common partners in both

projects, so it tried to achieve a harmonisation of the approaches. The common aspect is the

representation of the TMN applications through directory objects and the unification of the

directory and management name spaces, but there are also important differences. The PREPARE

approach is described in [Tschi93] and [Bjer94]. Its key feature is the unification of CMIS/P and

DAP as access methods through the Management Information Service (MIS), with the directory

used to store general management information of static nature e.g. TMN customer records and

contracts. On the other hand, the ICM approach uses the directory only as a repository of

information about the location and capabilities of TMN applications. The ICM approach is

described in [Stath93], [Stath95], [Pav95a] and [Pav96a]. The common aspects of the two

approaches became input to the [X750] recommendation and are described below.

A key aspect of the directory is its hierarchical naming architecture which is similar to that of

OSI management. As such, it has been proposed to unify the two spaces in one global name

space, considering management as an extension of the directory name space. The concept is

depicted in Figure 2-16 which presents the extended manager-agent model through the use of the

directory. Managed objects in an application in agent role, such as a TMN OS, may be addressed

either through local names, e.g. {logId=1, logRecordId=1234}, or through global names starting

from the root of the directory tree, e.g. {c=GB, o=UCL, ou=CS, cn=NM-OS, systemId=NM-OS,

logId=1, logRecordId=1234}.

OSI-SM applications in manager, agent or hybrid roles are called Systems Management

Application Processes (SMAPs) and are referred to through logical names e.g. NM-OS. Their

management interfaces are known as Systems Management Application Entities (SMAEs) and

each is associated to a, location dependent, OSI presentation address. The key issue for achieving

location transparency is to decouple the SMAP name from the SMAE address and use the

directory as a naming service that resolves a relevant name to the corresponding address(es). This

can be done by modelling a SMAP through a directory object, the latter containing other directory

objects modelling its SMAEs. SMAE directory objects contain addressing information as well as

information regarding other aspects of that interface, termed Shared Management Knowledge
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(SMK) [X750]. Since the same hierarchical naming architecture is used for both the OSI

directory and management, the two name spaces can be unified. This can be achieved by

considering a “logical” or “virtual” link between the topmost MIT object of an agent and the

corresponding SMAP directory object.

The universal name space is shown in Figure 2-16 through the extended manager-agent model.

The manager application may address objects through their global names, starting from the root

of the directory tree, e.g. {c=GB, o=UCL, ou=CS, cn=NM-OS, systemId=NM-OS, logId=1,

logRecordId=5}. The underlying infrastructure will identify the directory portion of the name i.e.

{c=GB, o=UCL, ou=CS, cn=ATM-NM-OS}, will locate the relevant DO and will retrieve

attributes of the contained SMAE DO, including the OSI presentation address of the relevant

interface. It will then connect to that interface and access the required managed object through its

local name i.e. {logId=1, logRecordId=5}. Note that applications in manager roles are also

addressed through directory names for the forwarding of event reports, since the destination

address in EFDs contains the directory name of the relevant manager.
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example global name: { c=GB, o=UCL, ou=CS, cn=NM-OS, systemId=NM-OS, logId=1 }

Figure 2-16  The Universal Directory and Management Name Space

[Sylor93] proposes a similar approach that uses a single directory object instead of the SMAP /

SMAE separation. This directory object “mirrors” the class of the root MIT MO and its naming

attribute, e.g. its class would be system in the above example instead of applicationProcess and

the naming attribute would be systemId instead of commonName (or cn abbreviated). This object
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contains information related to the management interface, including the presentation address.

Both the directory and the root MIT MO are called junction objects since they model the same

entity and unify the two name spaces. An advantage of this approach is that the relative name of

the directory application is not repeated in the global name e.g. {c=GB, o=UCL, ou=CS,

systemId=NM-OS, logId=1}. On the other hand, a number of new directory classes need to be

defined for every managed object class that can be in the root of a MIT e.g. system,

managedElement etc. All of these would contain exactly the same information apart from the

naming attribute and this is not a good object-oriented design practice. Another disadvantage is

that an application is modelled only by one directory object and, as such, it may only have one

management interface. This means that a hybrid manager-agent application with two interfaces

needs to be modelled through two distinct directory objects.

The technique of unifying two name spaces that use the same naming principles is termed

grafting in [Zatti94]. The latter contains also a nice tutorial overview of the OSI Directory and

discusses in general issues of name management.

Let’s examine now the mechanics of using the directory for naming in more detail. A management

application needs to know beforehand the domain in which it operates, e.g. {c=GB, o=UCL,

ou=CS}, its logical name, e.g. NM-OS, and the address of the local DSA. This information does

not need to be hardwired in its logic but can be obtained from some local configuration

repository. When it starts up, it forms its SMAP name and tries to access the relevant directory

object through a read DAP operation. If it fails, it is probably the first time it is started up in that

domain and it creates the SMAP and SMAE objects through addEntry operations. If it succeeds,

it simply creates the SMAE objects for its interfaces. Finally, when it terminates, it deletes the

relevant SMAE objects. If it terminates abnormally, e.g. it crashes, the SMAE object will contain

inconsistent information until it is either deleted by a SMK “consistency checker” application or

until the application is restarted. The SMAE relative name is a matter of local policy while parts

of the presentation address, e.g. the selectors and ports, could be produced randomly to avoid

clashes with other OSI applications running on that node.

When a management application needs to contact another one in order to perform operations on

managed objects or forward event reports, it needs to know the SMAP name of the target

application. It then has to perform a search operation, retrieving attributes of the SMAE objects

in the first level below, including the presentationAddress and mitMoList attributes. If there exist

two SMAE objects, one for an agent and one for a manager interface, it needs to identify which is

the one it is looking for. This can be done by examining the mitMoList attribute, which contains
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the list of managed object classes the interface supports and the names of (static) object instances

for every class [X750]. A non-empty mitMoList attribute signifies an agent interface. It should be

noted that in the final version of [X750], the mitMoList attribute was left optional, despite the

relevant complaints of the author and other ICM reviewers. This means that it may not be

possible to determine the type of a management interface from the relevant directory information.

In this case, trial and error is the only way to find this out. In the initial ICM approach [Stath93],

there was an additional mandatory managementRole attribute that should take one of the values

agent, manager and agent-manager. Unfortunately, this was not included in [X750].

In this universal naming scheme, managed objects may be addressed through global names which

also implicitly denote the name of the application that contains the object. Global names

guarantee location transparency since they remain the same even if the application moves because

of availability, load balancing or other non-functional reasons. In this case, only the presentation

address attribute of the relevant SMAE directory object needs to change. It should be noted that

an application typically moves within an administrative domain e.g. within {c=GB, o=UCL,

ou=CS}. When administrative boundaries are crossed, the name of the application and of the

contained managed objects will have to change. This is acceptable since in this case a number of

other things will need to change as well given the fact that the management system is restructured.

This naming architecture is built around the OSI-SM “managed object cluster” model, with a

MIT handled by an application in agent role being the unit of distribution. A limitation of this

architecture is that a managed object cannot move between agent applications and still retain its

name. This is acceptable in the current TMN paradigm where applications contain managed

objects that do not migrate. Future TMN systems may comprise active managed objects that act

as mobile agents [Vass95][Vass97]. In this case, a migrating object will need to notify its clients

when moving since its name is going to be different in the new hosting application.

We will now examine some aspects of this naming scheme in a TMN context. At the lowest level

of the TMN hierarchy, network elements will have SMAP names denoting the particular element

e.g. cn=switch-X. These applications will typically run always at the same network address but

element managers will address them through their logical name, resolving it to an address through

the directory. Q adapters adapting for a foreign network element should appear to element

managers as if they were the element itself, e.g. cn=switch-Z, hiding the existence of the

adaptation function. Mediation functions mediating for a number of elements should present

separate views of the different elements, hiding the fact that the elements are dealt with together.

In this case, there will be separate SMAP objects for each mediated element but the presentation
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address of the relevant SMAE will be the same i.e. the address of the node where the mediation

device runs. The mediation device itself may appear as a separate SMAP through which it could

be configured e.g. cn=MD-A. Finally, operations systems may take logical names such as

cn=EM-OS-X or cn=NM-OS-Conf.

When a TMN OS is developed, it sees an information model in subordinate or peer systems and

supports an information model for peer or superior systems as explained in 2.3.2.3 Logical

Layering. During its development, no assumption should be made that instances of the relevant

classes exist in a particular subordinate or peer system; this knowledge can be acquired

dynamically, at run time. When it starts up, it should be “told” the SMAP names of the

subordinate or peer systems to access, each of which may support a portion of the relevant

information model. The relevant SMAE directory objects will contain the supported classes and

possibly instance names, so the operation system will access the directory, retrieve this

information and will be able to tailor its operation accordingly. As already mentioned in section

2.3.2.3, the TMN does not prescribe how to group physically the functionality of a TMN layer in

terms of co-operating operations systems. The directory SMAE objects may be used to assist the

dynamic discovery of the relevant information through the SMAE mitMoList information.

                                       Country

         countryName=GB

             Organization

                            organizationName=PTT

    applicationProcess
                                                                                        Group of Names
commonName=SMAP-X

               commonName=Domain-Z

    applicationEntity        Member
     sMASE, cMISE         Owner
commonName=SMAE-X

presentationAddress
supportedApplicationContext
supportedCMIPVersion
supportCmisFunctionalUnits
supportedSmasFunctionalUnits
mitMOList

Directory Structural Class
Directory Auxiliary Class
Relative Distinguished Name

KEY:

Sample contained attributes

Figure 2-17  The Directory Schema for Distribution and Discovery (from [X750])

The described approach to distribution and discovery services for OSI-SM based environments

was standardised in [X750] during 1995. The SMAP is modelled through the applicationProcess
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directory structural class and contains no significant information. The SMAE is modelled through

the applicationEntity structural class and the cMISE and sMASE auxiliary classes. A relevant

DO instance contains the presentation address and mitMoList attributes that have already been

described. It also contains, among other, attributes describing the supported application context,

the supported CMIP version, the supported CMIS functional units (scoping, filtering, cancel-get),

and the supported SMFs (SMAS - Systems Management Application Service functional units).

The directory schema for distribution and discovery is shown in Figure 2-17.

Note that application processes may be grouped together. This grouping is modelled through a

groupOfNames directory object that contains the SMAP names of the group members. An

application in manager role may be told initially the name of a groupOfNames object and access

this one first in order to get the names of the SMAPs it should interact with. [Stath95] proposes a

much more elaborate scheme for finding out dynamically which management systems contain the

right managed object instances a manager application needs to work with. While such approaches

are useful, it is very difficult to devise a truly generic scheme and standardise it. The approach

taken in [X750] is that of a least common denominator. The scheme that was finally standardised

may have minor deficiencies but goes a long way towards supporting distribution and discovery

services in TMN environments.

An implementation of the initial ICM approach described in [Stath93] was undertaken in 1993,

using the QUIPU directory system [QUIPU] [Kill91]. This was made available as part of the

OSIMIS-3.3 release in early 1994. The system was re-implemented in 1995 to reflect closely the

emerging [X750] standard and became part of the OSIMIS-4.1 release. The relevant realisation

issues are discussed in Chapter 3. The TMN architecture [M3010] was also updated to suggest

the use of the OSI Directory as the means for discovery and shared management knowledge

services. The relevant implications on the TMN architecture are discussed in section 2.4.4.

While it has almost been three years since this approach was standardised by the ITU-T, the

author is not aware of any commercial TMN applications that make use of the directory. Many

TMN vendors talk of forthcoming support and it may happen given the recent revived interest in

OSI Directory technology and the expressed commitment of companies such as Microsoft and

Netscape. On the other hand, though the directory is another OSI application, it is different

technology to OSI-SM. Vendors of OSI-SM platform infrastructure are not typically involved in

the OSI directory market and do not have relevant know-how. This means that operators who

deploy TMN systems need also to buy and operate directory technology separately. This

increases both the cost and the complexity of a comprehensive TMN solution.
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The reason the OSI Directory was chosen to support naming services was mainly because it

provides federation and because it is considered complementary technology to OSI-SM. On the

other hand, OSI-SM has all the relevant properties apart from federation and could be also used

to support naming services. As an analogy, OMG CORBA uses naming services based on

CORBA technology while it tries to solve the federation problem by other means. Had a similar

approach been followed in the TMN, discovery facilities might have been commonplace in

today’s TMN systems.

Finally, it should be mentioned that despite the fact that the CMIP protocol [X711] does not

mention federation across OSI-SM agents, a number of commercial TMN platforms offer such

federation. This is simply achieved through special “junction” managed objects which are in

effect logical links to the root MIT instance of a subordinate agent. The relevant agents treat

those instances in a special fashion, forwarding requests to the subordinate agent by adjusting

only the CMIS scope parameter so that the latter reflects the already searched levels [Pav97e]. A

manager application may get the view of a global MIT which is in effect realised by different

agents. In summary, OSI-SM could have been used to provide federated naming services,

providing one homogeneous technology for the TMN and reducing both the complexity and cost

of relevant solutions.

2.4.2 Issues on Adaptation and Mediation

TMN Adaptation and Mediation are similar concepts as they both perform information and

protocol conversion and enhancement functions as discussed in 2.3.2.1. The key difference is that

adaptation converts from reference points which are entirely non-compliant with the TMN i.e.

various types of m, while mediation enhances various classes of “weak” qx reference points to full

q3. Adaptation may yield either q3 or qx reference points; in the latter case, an additional level of

mediation is needed to complement adaptation. Both adaptation and mediation are used to protect

investment in network elements without TMN Q3 interfaces.

2.4.2.1 Aspects of adaptation

The Q-Adaptor Function is used to connect to the TMN network elements that do not support the

standard TMN interfaces. Q-Adapters provide information conversion functions from a

proprietary information model and the associated access protocol to a TMN compliant

information model and protocol. The proprietary information model may be object-oriented,

simply object-based (e.g. SNMP) or there may be no distinct information model at all, which is

the case with procedural management protocols. Examples of typical older telecom-type
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interfaces are TL-1 (Transaction Language 1) and TBOS (Telemetry Byte-Oriented Serial

protocol). The Q-Adaptor Function should convert a proprietary m model to the TMN equivalent

q3 or a qx one. Powerful querying aspects of the Q3 access service such as scoping/filtering may

need to be emulated through a series of operations across the existing M interface.

The nature of adaptation is depicted in the upper part of Figure 2-18. This is similar to the nature

of class C mediation which is explained in the next section. Both adapter and class C mediation

functions are hybrid units with respect to the manager-agent model: they access a lower level

information model through m or qx (MAF-M) and convert it to a qx/q3 or q3 reference point

respectively (MAF-A), through an Information Conversion Function (ICF).

q3 qx

MF NEF/QAF

QAF

q3/qx m
ICF

MAF-A

MAF-M

non-TMN NEF 

Adaptation

Mediation class C

ICF

MAF-A

MAF-M

MAF-A

M to A

Figure 2-18  Adaptation and Mediation Class B

Ideally, automatic conversion between information models and associated access mechanisms is

desirable in order to be used to automate the Q-Adaptation mechanism. This is only feasible for

management frameworks of a similar nature. In principle, if Z is the target framework (i.e. OSI-

SM in the case of TMN) and X a proprietary one, generic adaptation is possible if and only if X

is a pure subset of Z in terms of expressive power, both in terms of the information model and the

associated access service. In this case, X can be converted to the equivalent features of Z while

some of the additional features may be provided in the adapter through mappings on simpler X

features. Conversion in the opposite direction is problematic: some of the additional features of Z

will remain unused while others can be mapped to equivalent X features only by using human

heuristics.
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A relationship between two management frameworks that has been extensively researched is that

between OSI-SM and the Internet SNMP [SNMP]. A good general comparison can be found in

[Geri94]. In this case, a pure subset relationship holds [Pav93c][IIMC]. The SNMP object model

is a subset of the OSI-SM one, while CMIS/P offers access features that are a pure superset of

the SNMP ones [Pav97a]. Additional features of CMIS/P such as scoping and filtering may be

provided through multiple mappings on relevant SNMP features (get / get-next). The mapping in

the opposite direction “wastes” OSI-SM facilities such as scoping, filtering and fine-grain event

control. Additional problems are related to the conversion between the information models. Since

SNMP does not support imperative actions, a GDMO action could be emulated through SNMP

set and get primitives that pass the action parameters and retrieve the results. The mapping of the

parameters and results to SNMP objects is something that can be done in many ways, requiring

human intervention in the translation process and making difficult to automate adaptation units.

The author has been involved in early research investigating the relationship between the two

frameworks and trying to identify generic rules for the unidirectional mapping between the two

[Pav93c]. The latter involves the automatic conversion of a SNMP information model to the

equivalent GDMO one and the automatic translation between CMIS/P and SNMP messages in

the adapter unit that supports the resulting GDMO information model. This work culminated in

relevant Network Management Forum specifications under the name ISO/ITU-T and Internet

Management Coexistence (IIMC) [IIMC]. The author has also been involved in the design and

implementation of a generic adapter that verified and validated the relevant concepts [McCar95].

The latter has been the first adapter of this type and has been made publicly available through the

OSIMIS-3.3 (1994) and OSIMIS-4.0 (1995) [Pav95b] releases. It should be noted that only

recently (1997) have similar products been announced in the marketplace.

Generic conversion rules between OSI-SM and any other non TMN compliant technology can

result in fully automated adaptation which is economical to provide since it is not necessary to

implement specific adapters for every interface of that technology. This makes possible the cost-

effective integration of “foreign” elements and applications in a TMN environment. An important

aspect is that the resulting “raw” information model from the automatic translation can be

augmented and enhanced through the generic capabilities of the OSI Systems Management

Functions [SMF], as for any other TMN interface.

The drawback of the generic adaptation approach is that the resulting information model, though

semantically similar, is bound to be syntactically different to the equivalent TMN model due to

the generic nature of the conversion. For example, translating the SNMP ATM element
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information model as in the RFC 1695 will result in a GDMO model that is syntactically very

different to that of the equivalent ITU-T I.751 recommendation [I751]. The resulting reference

point is qx rather than a q3 one as explained in the next section, so a further mediation step is

necessary. Ideally, one would like to investigate generic mechanisms (e.g. a meta-language) that

describe the relationship between a specific information model in two different frameworks and

use them to automatically generate the adaptation unit; this is an interesting topic for further

research.

While the TMN framework positions adaptation functions between NEs and Element

Management OSs (2.3.2.1), in reality it may be the case that adaptation functions will take place

elsewhere in the TMN hierarchy. For example, most elements with non-TMN management

interfaces are typically supplied together with the associated element manager. Adapting for such

elements means that new TMN-compliant EM-OSs need to be purchased, which is not cost-

effective. An alternative solution is to convert the old element manager to a partly-compliant

“EM-OS”, with a Q3 interface to the network management layer, while retaining the M interface

to the network element. This approach is proposed in [Glith96] and termed Q-Addition. Though

not fully TMN-compliant according to [M3010], it is a pragmatic approach for retaining existing

investment and migrating gradually towards a full TMN solution.

We close this section with a final remark on adaptation. Adaptation may be used to protect

investment in non TMN-compliant elements and management systems if and only if the latter

provide interfaces with similar expressive power to the TMN prescribed interfaces. In other

words, if the relevant features are not present in the native “foreign” interface, they cannot be

supported in the adapter. This implies that it may not be possible to fully integrate some of the

older foreign elements into a TMN environment.

2.4.2.2 Aspects and taxonomy of types of mediation

According to the precise TMN definition, mediation functions may “adapt, store, filter, threshold

and condense information”. A mediation function acts on information passing between an OSF

and NEF or QAF and essentially enhances a qx reference point to produce either a more capable

qx or a fully capable q3 one. This procedure may take several iterations, with intermediate levels

of qx reference points and a recursive cascaded structure of the relevant mediation functions. This

explains the MF to MF interaction in the TMN functional architecture of Figure 2-7.

The idea behind the qx reference point is that it is simpler than the “fully capable” q3 one and, as

such, easier to provide in network elements with limited computing resources. In addition, qx
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would result in reduced investment in the relevant software/firmware development by equipment

suppliers, enabling the early introduction of TMN-capable network elements. The difference

between the qx and m reference points is that the former is a TMN endorsed interface, using some

form of TMN information model representation and access mechanisms (GDMO/CMIS).

Various qx reference points would be endorsed by the ITU-T, as proposed by equipment suppliers

with relevant products.

There has never been a taxonomy of possible types of qx reference points and relevant interfaces,

either by the ITU-T or in the literature, apart from [Pav96a]. The author proposes the following

classes of Qx interfaces and, subsequently, classes of mediation:

A. The protocol stack is not standard in comparison to the general requirements for the Q3

interface [Q3] in general (Class A);

B. The CMIS [X710] and SMAS [SMF] capabilities are not fully supported as dictated by

the relevant Q3 specification for that type of interface (Class B); and

C. The relevant information model is not fully standard, again as dictated by the relevant Q3

specification for that type of interface (Class C).

Class A points to data network protocol interworking. It should be noted that this is higher layer

protocol interworking, any lower layer interworking due to different data network technologies

that support the Q3 interface [Q811] should be transparently addressed either by network layer

relays or transport bridges. Examples of non-standard Qx protocol stacks include CMIS/P Over

LLC (CMOL) [Black92] or the early lightweight mapping of CMIS/P over TCP/IP (CMOT)

[Besa89]. There exist also other non-standard mappings, used by various equipment suppliers.

Full OSI
  stack

Convergence
      stack

Mediation

Q3 Qx

Figure 2-19  Mediation Class A

This type of mediation device provides either pure CMIS service conversion or combined service

and protocol conversion. When the Qx protocol stack provides equivalent functionality to the Q3
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one, e.g. connection-oriented reliable packet service, service conversion is only necessary. This

means that CMIS and association control primitives are simply copied between the two stacks, in

a trivial fashion. If the Qx stack is of lesser functionality, e.g. connectionless unreliable as is the

case with CMOL, then protocol conversion is necessary to provide reliability and appropriate

mappings for association management. In both cases, the required mediation device is relatively

simple. This type of mediation device is depicted in Figure 2-19. Note that a different mediation

device is necessary for each different type of Qx.

Mediation Class B is necessary to overcome the inability of Qx to support required CMIS and

SMAS capabilities: scoping and filtering [X710], storage (logging - [X734]), thresholding (metric

monitoring - [X739]) and condensing (summarisation - [X738]) attributes of mediation. The

functionality of this type of mediation device involves “mirroring” the relevant Qx information

model and enhancing it with the missing properties in order to become Q3. This enhancement may

take place through a series of cascaded devices, each possibly grouping a number of similar

elements together. Since the functionality of the missing function is well-known, it is possible to

produce generic mediation devices of this type. If we wanted to depict pictorially this class of

mediation function, it would be similar to Class C (Figure 2-18) but the two information models

would be exactly the same.

Class C means that the information model is different to the TMN prescribed one for the

particular technology. This is typical of early TMN-capable elements, implementing early views

of relevant developing standards with proprietary changes/additions to fill in gaps and to provide

the desired functionality. The mediation device required in this case is depicted in the lower part

of Figure 2-18. This class of mediation is similar to adaptation but the key difference is that the

access mechanism is CMIS/P and the information model is described in GDMO/ASN.1.

Converting this type of Qx to Q3 cannot be easily automated. Given the fact the two models are

semantically equivalent, it should be possible to describe their relationship in a meta-language

which could be parsed to produce the mediation logic, as discussed in the previous section. The

problem is that this is a research problem that has not yet been solved. As a consequence, a

specific mediation device needs to be developed for every network element with this type of Qx

interface. Given the fact there exist almost infinite variations of non-standard information models

from different suppliers, it becomes both difficult and expensive to deal with this type of

heterogeneity through mediation devices.

It should be finally mentioned that a Qx interface may belong to more than one of the identified

classes. Table 2-3 shows the various aspects of M, Qx and Q3 interfaces. M does not have any q
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reference point aspects (CMIS/GDMO) and, as such, it has none of the three interface aspects as

well. Qx has the q reference point aspects, though it does not have all the aspects of the Q3

interface. As such, we can actually characterise 7 types of Qx: one that has none of those three

aspects, three that have one only and three that have two.

I/F characteristic M Q x Q3

q reference point x m m

a. standard CMIP stack x o m

b. required CMIS and SMAS FUs x o m

c. required GDMO model x o m

x: not present o: optional m: mandatory

Table 2-3  Characteristics of the M, Qx and Q3 Interfaces

In summary, Class A of mediation is relatively straightforward to provide since it only requires

service and protocol conversion. A different type of such a mediation device is necessary for

every type of Qx protocol stack. Class B is more difficult to provide but, in principle, it could be

dealt with in a generic fashion. Class C is problematic as there exist almost infinite variations of

non fully standard Qx models and it cannot be dealt with in a generic fashion. In any case, the

existence of Qx necessitates the use of mediation devices which require additional investment.

Because of this, operators deploying TMN systems are typically locked into buying the EM-OS

together with the Qx-capable element, which is against the principle of a fully open, multi-vendor

TMN system.

The above analysis was first published in [Pav96a] and was also passed as input to the ITU-T

Study Group IV that addresses the TMN architecture. It was also proposed to avoid

standardising the qx reference point / Qx interface and remove qx from the TMN functional

architecture together with the mediation function. The main reason for the existence of Qx was the

fact that Q3 was considered expensive and heavyweight to provide circa 1990, when the first

version of the TMN architectural framework was produced. The evolution of technology in the

mean time, in terms of cheap processing power and memory, together with research for the

provision of efficient TMN development environments such as OSIMIS, has invalidated to a

large extent those reasons. Chapter 3 of this thesis shows that the overhead of a full Q3 interface

is much less than widely believed, both in terms of computing resources and in terms of required
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development time. As such, it is perfectly possible to provide direct Q3 interface capabilities for

telecommunications network elements. It still might not make sense to deploy a Q3 interface in a

LAN repeater or bridge, but telecommunications network elements are typically much more

capable and sophisticated (exchanges, multiplexors, switches, intelligent peripherals etc.).

2.4.3 Workstations and the F Interface

Workstation functions (WSFs) provide the means to support human users of management

services in realising management decisions or performing supervisory activities. They essentially

provide the means to interpret TMN information to be presented to the human user and vice-

versa. A separate reference point and corresponding interface (f and F respectively) realise the

logical and physical communication between workstation functions and operations system or

mediation functions.

According to the TMN functional architecture, workstation functions are not connected to either

network element or q-adaptation functions. The reason for this restriction is that human users

should not be allowed direct access to elements but only through the use of management functions

provided by OSFs so that their decisions are implemented in a controlled fashion. [M3010]

suggests that MFs may support decision functions and, as such, WSFs may connect to MFs

through a f reference point (Figure 2-11). The analysis in the previous section suggests that there

are no such aspects of mediation but only qx to q3 enhancement. As such, WSFs should not

interface to MFs but only to OSFs.

While the f reference point and F interface have been an integral part of the TMN architecture

from its early stages, there have never been serious efforts towards their standardisation within

the ITU-T. The first tangible output has been recommendation [M3300] which explains further

the workstation concept and presents a number of management capabilities required at the F

interface in the various functional areas. The latest draft [M3010] reflects the most recent views

of the ITU-T regarding the F interface. According to this, the relevant functionality is a superset

of the Q3 functionality in terms of the information model involved. Potential F information in

addition to Q3 managed objects could be display support (e.g. maps), information on GUI

function and command initiation, help text etc. While this is the intention, it is a really challenging

problem to propose an approach for F that is generic enough not to constraint implementations

and also able to cope with the needs of different types of WSs.

Another reason behind the existence of the F interface was that WSs should be able to run on

inexpensive equipment with limited resources e.g. laptop PCs etc. The protocol part of the F
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interface could be a lightweight mapping, supporting this capability. The analysis in the previous

section for the Qx interface holds also for F in this respect: inexpensive equipment does not

necessarily imply limited resources anymore while, in addition, a full Q3 protocol stack is not

expensive in terms of required resources as it will be shown in Chapter 3.

In the absence of standards for the F interface, the following assumptions can be made:

• f, F are transaction-oriented in a similar fashion to q, Q; and

• interactions across f, F can be always mapped onto q, Q.

The key assumption is that all the necessary information to support workstation functionality can

be derived from management information in Q3 form. In other words, Q3 models can be defined in

such a way to be able to support all the necessary information for the human TMN user.

From an architectural point of view, this implicitly means that direct workstation access is

allowed to any q-capable function block, including mediation, adaptation and network element

functions. Given the previous discussion though, WSFs should have intrusive access only to

OSFs: security services should be used to restrict direct intrusive access to MFs, QAFs and

NEFs.

WSSF OSF UISF WSF

MAF (A) OSF

f

q
3

MAF (M)

f

g

g
WSSF UISF WSF

OSF

WS-OSF

MAF (A) OSF MAF (M) UISF

gq
3

ICF

Figure 2-20  The WS-OSF Function Block

Given the fundamental assumption that f can be derived from q3, we propose the configuration for

workstation applications depicted in Figure 2-20. The upper part depicts the notion of a WS as in

[M3010]. The mapping of f to q3 can be supported by an OSF in managing role. The Workstation

Support Function (WSSF) in the latter receives f messages and through a Management
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Application Function in Manager role (MAF-M) converts these to q3 messages (middle part of

Figure 2-20). This mapping may not be one-to-one but should be always possible if the necessary

information is available in q3 form. Taking this concept a step further, we introduce a new TMN

function block called Workstation-Operation System Function (WS-OSF). The latter comprises a

User Interface Support Function (UISF), an Information Conversion Function (ICF) and a MAF-

M functional component and may interact with OSFs across q3 (lower part of Figure 2-20). As a

consequence, the TMN WSSF functional component is no longer necessary, being replaced by

the ICF.

According to the approach described above, interoperability between WS-OSs in manager roles

and OSs in agent roles is based on Q3 interfaces. For this architectural modification we have also

taken into account the fact that full Q3 support is not expensive, as it will be shown in Chapter 3.

The f reference point remains internal within a WS-OS and becomes a matter of design discipline

rather than a TMN architectural prescription. In other words, it is up to the designer of a WS-OS

application to separate GUI support functionality (UISF) from the application’s management

intelligence (ICF/MAF-M). Such a separation can be effected through a well-defined internal

software interface (i.e. a f reference point) rather than a “on the wire” interoperable F interface.

This separation provides for a cleaner design and makes possible to change the technology used

for the GUI without affecting the rest of the WS-OS application. According to our experience,

this separation is possible and desirable but it is not easy to make the f reference point

independent of the application-specific functionality. This is one of the reasons that we believe

interoperability should be based on the Q3 interface and, as a consequence, we suggest that the f

reference point should not be standardised [Pav96d].

Finally, it should be possible to run workstation displays on platforms without Q3 stack support

for reasons other than cost. For example, it should be possible to use a string-based CMIS

encapsulated in Hypertext Transfer Protocol (HTTP) [HTTP] packets to drive WWW GUIs, etc.

These are essentially class A Qx protocols as explained in the previous section and a protocol

converter is required to translate them to Q3. Such converters are essentially “mediation

functions” that operate in the opposite direction and can be thought as part of the broader WS-OS

physical block. It should be finally mentioned that OSs might directly support such “Qx”

interfaces in addition to Q3, which is the practice with a number of commercial products. In this

case, the WS-OS is typically sold together with the vendor’s OS.

In summary, we propose that ITU-T does not address the standardisation of the F interface so

that full flexibility is possible in providing TMN workstations. The bottom line for
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interoperability should be the Q3 interface, which has led us to define a more specific WS-OSF

block that replaces the WSF block. As a consequence, the WSSF functional component is no

longer necessary. The above analysis was first documented in [Pav96a] and [Pav96d] and has

also been provided as input to the ITU-T TMN architecture group.

2.4.4 The Architecture Revisited

In the previous three sections we presented a number of modifications and extensions to the TMN

architecture. These covered the following:

• the use of the OSI Directory for distribution and discovery services;

• the taxonomy of classes of mediation and the suggestion, after a relevant analysis, that qx

/ Qx should not be standardised; and

• the introduction of the WS-OSF block that replaces the WSF and the suggestion that f /

F should not be standardised since they can be derived from q3 / Q3.

The impact of the last two on the TMN reference functional architecture is evident: no qx and

subsequently no MF; and no f and the replacement of WSF by the new WS-OSF block. The first

one though suggests the introduction of a new technology in the TMN, namely the OSI Directory

technology, and it raises the question of how the latter is integrated in the TMN from an

architectural point of view.

Since the introduction of the directory to the TMN was initially proposed by the RACE projects

ICM [ICM] and PREPARE [PREPARE], they both included relevant integration schemes. The

PREPARE approach is documented in [Bjer94]. According to this, a new function block is

introduced, the Directory System Function (DSF). All the other TMN function blocks connect to

the DSF through a d reference point, which embodies discovery facilities through the directory

access service. The drawback of this approach is that it does not address the DSF to DSF

interaction either within a TMN or across TMNs. Is there another reference point to model the

directory system service between DSFs? [Bjer94] stays moot on this point.

The ICM approach was developed by the author and is documented in [Pav96a]. It is similar to

the PREPARE approach in terms of the new DSF function block but differs in the sense that

access to the DSF is provided through the q3 reference point within a TMN or through the x

reference point across TMNs. These model, in this case, the directory access service. In addition,

DSFs may communicate with each other either through q3 or x, which in this case model the

directory system service.
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Figure 2-21  TMN and Directory Integration

Both above approaches were submitted to the ITU-T TMN architecture group which finally

decided on a third variation that has minimal impact on the existing architecture, as depicted in

Figure 2-21. This is closer to the author’s approach in the sense that no new reference points are

introduced but on the other hand it does not introduce a new function block. Directory system

functionality is provided by OSF-like function blocks which model, in this case, passive directory

databases. The relevant functionality is supported internally by the Directory System Function

which becomes now a functional component. Other TMN blocks that need access to discovery

services contain a Directory Access Function (DAF) component. Access to OSF-like directory

blocks may take place within a TMN of across TMNs, in a similar fashion to the author’s

approach described above.

The approach adopted by the ITU-T will appear in the new version of [M3010] which is still in

draft form (end 1997). The author feels this approach is elegant and general while it aligns better

with the possibility of a TMN based on distributed object technologies instead of X.700/X.500.

For example, a CORBA Naming Server [COSS] is a part of the distributed computing

infrastructure, realised as a CORBA object while access to it is provided through the standard

CORBA mechanisms and protocols. As such, naming and discovery services should not be

treated in a special fashion through separate reference points and function blocks. Issues related

to the architectural evolution of the TMN due to the future use of distributed object technologies

are discussed in Chapter 4.



2.4. Modifications and Extensions to the TMN Architecture

79

Given these modifications, we propose the revised TMN functional architecture presented in

Figure 2-22. It is interesting to observe its simplicity compared to the original architecture

presented in Figure 2-11. The key important changes are the removal of qx and MF, the removal

of f and the replacement of the WSF by the WS-OSF. A key point that needs to be emphasised is

that now there exist special types of OSFs that act as directory servers. As a result of this, the q3

and x reference points are “overloaded” with directory access and directory system

communication aspects. NEFs, QAFs, WS-OSFs and non-directory OSFs contact the “directory”

OSFs to inform them of their location and capabilities or to discover the location and capabilities

of other blocks they need to communicate with. Directory OSFs communicate with each other and

with similar function outside TMNs to provide the unified global directory information tree.
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Figure 2-22  Revised TMN Functional Architecture

Table 2-4 shows the revised relationship between function blocks and functional components,

updating Table 2-2. All the function blocks contain a DAF functional component while the OSF

may contain also a DSF component when behaving as a directory server. Note also that there are

no more WSSF, MCFqx and MCFf.
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Function Block Functional Components Associated  Message
Communication Functions

WS-OSF UISF, ICF, MAF(M), DAF, SF MCFq3

OSF OSF-MAF(A/M), ICF, DAF, DSF, SF MCFq3, MCFx

QAF OSF-MAF(A/M), ICF, DAF, SF MCFq3, MCFm

NEF OSF-MAF(A), DAF, SF MCFq3

Table 2-4  Revised Relationship of Function Blocks and Functional Components
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Figure 2-23  Revised OSF Decomposition into Functional Components

Figure 2-23 shows the revised decomposition of an OSF into functional components which was

initially depicted in Figure 2-14. We are going to explain this in some detail. The WSSF

component and the associated MCFf that supported f message exchanges has been removed. A

DAF component has been added that supports distribution and discovery functions by accessing

OSF-like blocks that offer directory services via a MCFq. The OSF-MAF-A implements the

agent functionality of the OSF, supporting the managed objects required by the q3 and x reference

points. The same physical Management Information Tree (MIT) supports both q3 and x

interactions, though different views may be presented through access control functions [X741].

The latter are realised by the SF together with authentication, data integrity and possibly

confidentiality services [GULS]. The SF essentially provides secure access to the MIT across the
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q3 and x reference points. The OSF-MAF-A needs to update the directory through the DAF about

its location and capabilities when it is first started. Subsequently, it will have to resolve the names

of other OSFs that appear as destinations in event forwarding discriminators to addresses through

the DAF.

In the next chapter, we will show how the internal structure of an OS can be supported by a

object-oriented development environment, achieving reusability, supporting a rapid development

cycle and not sacrificing performance. We will then revisit the decomposition of Figure 2-23 and

we will associate it to the relevant concrete engineering abstractions.

Coming back to the revisions we have proposed to the TMN architecture, it should be noted that

the ITU-T has recently agreed to remove the qx reference point and the mediation function from

the forthcoming new version of [M3010] but they have not (yet) decided to remove the f reference

point. On the other hand, the existence of very little work supporting the F interface and the

proliferation of WSs based on various diverse technologies suggest a potential future removal.

The initial TMN architectural framework was complicated and difficult to understand and

explain. The proposed changes simplify it without sacrificing any important aspects for open

interoperable telecommunications management.
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2.4.5 Discussion

Having first introduced the TMN architectural framework and subsequently presented a number

of modifications and extensions to it, we will now discuss some salient features and clarify

further a number of issues. Let’s first qualify exactly how a TMN interface is specified and how

the overall capabilities of a TMN physical block should be expressed in terms of both exported

and imported interfaces (the latter for blocks other than NE and QA).

A Q3 or X interface has typically a manager-agent or client-server duality: an interface is

exported by an application in agent role or it is imported by another application that acts in

manager role. Interfaces are only specified from the agent or server side but the capabilities of a

TMN application with dual nature such as an OS are expressed through both exported and

imported interfaces; the latter are necessary for it to accomplish its management functions. As

such, a TMN application with managing aspects other than NE/QA is qualified through the

description of both exported and imported interfaces.

Since TMN interfaces are transaction-oriented, specifying the capabilities of a Q3 or X interface

has two aspects:

• specifying the entities that are made available across the interface in terms of their syntax

and semantics, e.g. management and directory objects, files; and

• specifying the protocols used to convey these entities between systems.

The second aspect should specify the exact protocol stack profile. The upper layer stack profile is

always the same [Q3][Q812] while it should be stated which of the lower layer profiles of

[Q3][Q811] that interface supports. The first aspect should specify the management, directory

and file information model for file transfer.

The management part of a Q3 or X interface is specified in terms of a GDMO model which

constitutes an “ensemble” [NMF-025], i.e. the relevant object instances collectively provide a

management capability. The exact features implemented should be mentioned, i.e. optional

aspects included etc. The latter information should be also made available through the directory

as shared management knowledge.

The directory aspects of Q3 and X involve the use of the directory service to either notify/update

it with its location and capabilities or to learn about these with respect to other applications.

Recall that all TMN applications have OSI Application Process names which map onto a unique

directory name, e.g. {c=GB, o=UCL, ou=CS, cn=ATM-OS}. The directory information model
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for shared management knowledge activities has been specified in X.750, so it suffices to mention

that an application supports it.

A key aspect in the TMN is that its functional entities are essentially composite computational

components or building blocks for management services, presenting capabilities through a

managed object cluster made available at the exported interface(s). Internally, within each such

functional entity there may exist other computational entities which are not visible externally.

These require additional object modelling by OSF designers. The properties of managed objects

are specified in GDMO while the Object Modelling Technique (OMT) [Rumb91] may be used as

an additional notational technique. Any internal computational entities may be also described

using OMT. It should be added that the modelling and placement of computational logic can be

arbitrary, in the sense that managed objects may also have computational properties and not be

simple information objects. The computational aspects of all these objects, i.e. internal behaviour,

state and response to stimuli can be specified using formal description tools such as SDL [Z100].

The mapping of these objects to concrete engineering depends on the relevant engineering

infrastructure. Chapter 4 of this thesis proposes an object-oriented environment for the rapid and

efficient realisation of TMN systems, in which managed and other internal computational objects

are mapped onto C++ object instances.

One particularly important aspect of the object cluster model used in the TMN is the existence of

generic functionality available at every management interface. This functionality is provided by

the OSI Systems Management Functions (SMFs) which specify generic support managed objects

that may be instantiated to offer such functionality. Some of these can be thought of as

“enhancing” the information model available at every interface. As an example, metric

monitoring, summarisation and logging can enhance raw data such as transmitted and discarded

octets across an interface to provide throughput and error rates, QoS alarms and historical trend

data over time. This information can be provided by simply instantiating the relevant support

managed objects and initiating the relevant functions.

An accusation often directed to the TMN is the lack of precise computational specifications

complementing the GDMO interface definitions. It should be mentioned that according to the

ITU-T, the TMN is first and foremost a communications concept. As such, the lack of such

specifications is deliberate; specifications are concerned with what is available at a management

interface rather than how this functionality is provided internally. There has already been a lot of

research work towards formalising GDMO behaviour, as already mentioned in section 2.2.3,

while ITU-T is considering languages such as Z [Spiv89] and SDL [Z100]. Even in this case



Chapter 2: OSI-SM and the TMN

84

though, additional computational intelligence will be required to support, for example, alarm

correlation functions, information conversion functions etc.

Another limitation of the TMN has to do with the inherent asymmetry of the manager-agent

model adopted in its information architecture, especially for peer-to-peer interactions. It is true

that this model can be limiting if the underlying engineering concepts separate completely the

manager and agent aspects. In flexible object-oriented support environments such as the one

proposed in Chapter 4, this separation is not strong at all: a managed object may as well act as a

managing object at the same time.

In summary, the TMN is a hierarchically-structured environment of co-operating distributed

applications, each containing a managed object cluster or ensemble in the form of a management

information tree. The unit of distribution is the TMN physical block (i.e. OS), while there exist

typically more than one OSs in every TMN layer in peer-to-peer or top-down hierarchical

relationships. The units of re-usability can be the managed object class, the managed object

cluster that models a management service component, the OS physical block and finally the

management service realised by a set of co-operating OSs.
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2.5 Summary

2.5.1 Research Contribution

In this chapter we have presented first a detailed overview of OSI-SM and TMN. This has been

largely based on the relevant ITU-T recommendations but the author has presented those through

his own point of view, explaining the reasons behind the various architectural decisions and

clarifying a number of issues. As such, there are aspects of this presentation that constitute a

research contribution. The relevant contributions in the introductory sections 2.2 and 2.3 are the

following.

• The association of the requirements in each of the FCAPS functional areas with the

systems management functions in section 2.2.1.

• The discussion on the use of polymorphism across a management interface through

generic MOCs and its relationship to allomorphism in section 2.2.3.

• The taxonomy of the SMFs according to their functionality in section 2.2.5.

• The positioning of the TMN in the B-ISDN reference model and the discussion of the

different aspects of control and management in section 2.3.1.

• The association of the TMN requirements with those aspects of OSI-SM that justify its

choice as the supporting base technology in section 2.3.2.

• The discussion on the relationship and aspects of the intra-layer and inter-layer TMN

reference points and the proposed taxonomy in section 2.3.2.3.

• The description of the functionality and relationships of the various functional

components that constitute an OSF in section 2.3.2.5.

The third part of this chapter (section 2.4) proposed a number of modifications and extensions to

the TMN model and architecture and constitutes the major research contribution of this chapter.

The specific research contributions are the following.

• The introduction of the OSI directory as the technology to support TMN distribution and

discovery services. This includes the issues behind a relevant directory information model

and the exact mechanism for name resolution and location transparency described in

section 2.4.1.
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• The discussion on the aspects of adaptation in section 2.4.2.1. In particular, the

discussion on the aspects of generic adaptation and the conclusion that the latter typically

results in Qx interfaces, necessitating an additional mediation function which partially

out-weights the relevant advantages.

• The discussion of the aspects of Qx interfaces and the taxonomy of the mediation

functions into three generic classes with particular characteristics in section 2.4.2.2. In

addition, the proposal that Qx interfaces should not be standardised and the subsequent

removal of the MF from the functional architecture.

• The discussion on the relevant aspects of the workstation functions and the F interface in

section 2.4.3. The suggestion that the F interface can be derived from Q3, and the

subsequent proposal that the F interface should not be standardised. This leads to the

replacement of the WSF by the WS-OSF function block in the functional architecture.

• The discussion on the possible approaches for integrating the OSI Directory in the TMN

functional architecture in section 2.4.4.

• The simplification of the TMN functional architecture depicted in Figure 2-22.

• The simplification of the internal structure of the OSF function block in Figure 2-23.

• The final discussion on the TMN framework as a whole in section 2.4.5 which, among

other, explains the exact nature of the TMN Q3 and X interfaces.

Since most of the research work described in this thesis has been conducted in a collaborative

research project environment, it has inevitably involved other researchers. We clarify here which

of the research work in this chapter has been performed in a collaborative fashion and separate

the credits between the author and the researchers involved.

• The identification of the different aspects of control and management have been based on

lengthy discussions and exchange of ideas with D. Griffin, formerly with ICS, Crete,

Greece and currently with UCL.

• The idea that the F interface should not be standardised and the introduction of the WS-

OSF function block was conceived in collaboration with D. Griffin. The credit on the

concept is equal while the author worked out the precise architectural details presented in

section 2.4.3 and documented the relevant concept in [Pav96a] and [Pav96d].
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• The use of the OSI Directory in the TMN in order to support distribution and discovery

services was worked out in collaboration with C. Stathopoulos and D. Griffin of ICS,

Crete, Greece. In addition, the above group of people had discussions with M.

Tschichholtz and A. Dittrich of GMD Fokus who masterminded the PREPARE

approach. The details of the directory information model and the access principles fir

location transparency were devised by the author and C. Stathopoulos. Regarding the

relevant software design and implementation, C. Stathopoulos implemented the directory

access aspects while the author integrated it in OSIMIS and devised the naming scheme

for the SMAE directory objects. These aspects are described in more detail in Chapter 3.

It should be also mentioned that the contribution to the Shared Management Knowledge ITU-T

recommendation [X750] was put together mainly by A. Dittrich of GMD Fokus, unifying the

ICM and PREPARE approaches. The author and C. Stathopoulos commented on the various

drafts.

All the other research contributions presented in this chapter are the author’s alone.

2.5.2 Towards the Realisation of the TMN

Having simplified the TMN architectural framework, the key objective of this thesis is to

demonstrate that it can be mapped onto object-oriented programming environments through

platform abstractions similar to those of distributed object-oriented frameworks. The relevant

realisation should retain the presented powerful characteristics but it should be also performant,

efficient in terms of required computing resources, it should scale and it should support the rapid

development of TMN applications.

Based on the analysis in this chapter and the TMN characteristics as depicted in Figure 2-22 and

Figure 2-23, the relevant software environment should support the following:

• it should support the development of TMN applications in the agent role of the OSI-SM

model, i.e. NEFs and QAFs;

• it should support the development of TMN applications in manager roles, i.e. WS-OSFs;

• it should support the development of TMN applications in hybrid manager-agent roles,

i.e. OSFs; in addition

◊ the manager-agent roles should not be separated in engineering terms so that peer-

to-peer interactions are supported in a natural fashion;
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• it should support distribution and discovery aspects through the OSI directory; and

• it should support secure management information exchanges, especially for inter-domain

interactions across the X interface.

A key aspect for all those objectives is the realisation of the Q3 / X protocol stack and its

encapsulation in object-oriented infrastructure in a “harness and hide” fashion. Managed objects

should be “first class citizens” of the resulting software infrastructure based on the OSI-SM

GDMO information modelling framework. Managing objects should be able to access those in a

natural fashion, disregarding physical distribution and being shielded from protocol aspects.

Finally, the powerful information access aspects of the OSI-SM/TMN technology, i.e. scoping,

filtering and fine-grain event reporting, should be available in a natural, easy-to-use fashion.

While WS-OSs interoperate with OSs based on Q3 interfaces, it may be necessary to realise GUIs

in scripting languages with built-in relevant support such as Tcl/Tk [Oust94] and Java [Sun96].

This implies that a string version of an access API might be also desirable. Such an API

essentially implements a string-based CMIS service and could be mapped onto protocols such as

HTTP in order to drive WWW displays, as discussed in section 2.4.3.

The issues behind the object-oriented software realisation of the TMN framework are examined

in detail in Chapter 3.


