

21. “RHEED Oscillations and Surface Structure of MBE grown GaAs-AlAs”,
B.A. Joyce, P.J. Dobson, J.H. Neave, K. Woodbridge and Jing Zhang,
presented at European Materials Research Society, Council of Europe,

22. “RHEED Studies of Heterojunction and Quantum Well Formation during
MBE Growth - from Multiple Scattering to Band Offsets”, B.A. Joyce, J.H.
Neave, P.J. Dobson, K. Woodbridge, Jing Zhang, P.K. Larsen and B.
Bolger, presented at the 1st International Conference on the Formation of
Semiconductor Interfaces, University of Marseilles, France, 10-14 June
1985.

23. “Absorptive Optical Bistability in GaAs/AsGaAs Multiple Quantum Wells”, A.
Miller, G. Stewart, P. Blood and K. Woodbridge, presented at VII National

24. “Cathodoluminescence of Al(x)Ga(1-x)As/GaAs Single Quantum Well
Structures”, S.J. Bailey, J.W. Steeds, P.J. Dobson and K. Woodbridge,
1985.

Harris, P. Blood and K. Woodbridge, presented at the Institute of Physics
meeting on “III-V Materials grown by MBE and MOVPE”, London, 6 March
1986.

26. “RHEED Studies and Interface Analysis of GaAs grown on Si(001)”, K.
Woodbridge, J.P. Gowers, P.F. Fewster, J.H. Neave and B.A. Joyce,
presented at the 4th International Conference on Molecular Beam Epitaxy,
York, 7-10 Sep. 1986.

27. “Growth of Quantum Well Heterostructures by MBE for Short Wavelength
Laser Applications”, K. Woodbridge (invited), presented at the Council of
Europe study group meeting on “Heterostructures and Semiconductor

28. “Nucleation and Growth of GaAs on Si”, K Woodbridge, J.P. Gowers and
P.F. Fewster, presented at the 4th European Molecular Beam Epitaxy
Workshop, Les Diablerets, Switzerland, 30 March-1 April 1987.

29. “Growth of GaAs on Si”, K. Woodbridge (invited), presented at the
European Materials Research Society Conference, Council of Europe,

30. “Geometrical Dependence of Transient Nonlinearities in Multiple Quantum
Well Structures”, R.J. Manning, D.W. Crust and K. Woodbridge, presented
at Optical Bistability IV, Aussois, France, 23-25 March 1988. Published in

31. “MBE Growth of GaAs and III-V Quantum Wells on Si”, K. Woodbridge
(invited), presented at NATO ASI workshop on “Heterostructures on Si”,

84. Other Meeting Presentations – Not Refereed

Book Chapter

Refereed Journal Publications

20. “Dependence of Threshold Current on the Number of Wells in AlGaAs-
GaAs Quantum Well Lasers”, P. Blood, E.D. Fletcher and K. Woodbridge,

21. “Short Wavelength (Visible) Quantum Well Lasers grown by Molecular
Beam Epitaxy”, P. Blood, E.D. Fletcher, K. Woodbridge and P.J. Hulyer,

22. “RHEED Studies of Heterojunction and Quantum Well Formation during
MBE growth - from Multiple Scattering to Band Offsets”, B.A. Joyce, J.H.
Neave, P.J. Dobson, K. Woodbridge, Jing Zhang, P.K. Larsen and B.

23. “Magneto- Optics in GaAs-GaAlAs Quantum Wells”, D.C. Rogers, J.
Singleton, R.J. Nicholas, C.T. Foxon and K. Woodbridge, Phys. Rev. B, 34,
4002, 1986.

24. “Electroreflectance Spectroscopy from Quantum Well Structures in an
Electric Field”, P.C. Klipstein, P.R. Tapster, N. Apsley, D.A. Anderson, M.S.

25. “Thermally Induced Optical Bistability at Room Temperature in
GaAs/AlGaAs Multiple Quantum Wells”, A. Miller, G. Steward, P. Blood and

26. “Observations of Interfacial Plasmons on MBE grown GaAs by High
Resolution Electron Energy Loss Spectroscopy”, Z.J. Gray-Grychowski,
R.A. Stradling, R.G. Edgell, P.J. Dobson, B.A. Joyce and K. Woodbridge,

27. “RHEED Studies and Interface Analysis of GaAs grown on Si(001)”, K.
Crystal Growth, 81, 224, 1987.

28. “Growth of GaAs on Si”, K. Woodbridge, Les Editions de Physique, XV1,

MBE grown GaAs(100)”, Z.J. Grychowski, R.G. Edgell, B.A. Joyce, R.A.

30. “Experimental Confirmation of a Sum Rule for Room Temperature
Electroabsorption in GaAs-AlGaAs Multiple Quantum Well Structures”, M.
Whitehead, G. Parry, K. Woodbridge, P.J. Dobson and G. Duggan, Appl.

31. “Transient Grating Studies in GaAs/GaAlAs Multiple Quantum Wells”, R.J.
Manning, D.W. Crust, D.W. Craig, A. Miller and K. Woodbridge, J. de

61. "High reflectivity and low resistance 1.55 \(\mu \text{m} \) Al\(0.65\text{In0.35As/Ga0.63In0.37As} \) strained quarter wave Bragg reflector stack", P. Guy, K. Woodbridge and M. Hopkinson, Elec. Lett., 29, pp 1947-1948, 1993.

JOURNAL PUBLICATIONS ACCEPTED OR IN REVIEW

