IMPEDANCE SPECTROSCOPY

• Antibody sensors

• Biomimetic membrane sensors

• Nucleic acid sensors
 [lab-on-a-chip]
Would have liked an antibody based ChemFET
Does not give a reliable response

A more complex analysis of the antibody-antigen electrostatic interactions needed.
Impedance spectroscopy can be used to analyse protein–charged analyte interactions.
Simple equivalent circuit of a charged interface
Impedance Spectroscopy

\[V_{\text{exc}} = V_i \sin(\omega t) \]

Scan frequency, \(\omega \),
[milliHertz to MegaHertz range]

\[\frac{V_{\text{test}}}{V_{\text{ref}}} = \frac{Z_{\text{test}}}{Z_{\text{ref}}} = \frac{Z_{\text{test}}}{R_{\text{ref}}} \]

\[Z_{\text{test}} = \frac{V_{\text{test}} R_{\text{ref}}}{V_{\text{exc}} - V_{\text{test}}} \]

Test System,
\(Z_{\text{test}} \)

\[V_{\text{test}} = V_o \sin(\omega t + \varphi) \]

Reference resistor, \(R_{\text{ref}} \)

Measure amplitude, \(V_o \), and phase, \(\varphi \), as a function of the scanned frequency, \(\omega \).

Calculate real, \(Z_{\text{Re}} \), and imaginary, \(Z_{\text{Im}} \), parts of the impedance of the test system
Signal – magnitude and phase

Signal e.g. voltage

Magnitude of signal 1

Magnitude of signal 2

Phase difference

Signal 1

Signal 2

Time
Voltages and impedances represented as complex numbers

Complex number

\[x + jy \]

\(j = \) the imaginary number \(\sqrt{-1} \) (square root of minus one)

Impedance, \(Z = x + jy \)

Mathematicians use \(i \) to represent \(\sqrt{-1} \)
Engineers use \(j \)
Voltages represented as complex numbers

\[V = V_o \cos(\omega t + \phi) = V_o \cos(2\pi ft + \phi) \]

In complex arithmetic

\[\exp(j\theta) = \cos(\theta) + j\sin(\theta) \]

Therefore

\[V = \Re[V_o \exp(j\omega t + j\phi)] \]

Usually written (remembering in calculations that it is the real part of a complex number)

\[V = V_o \exp(j\omega t + j\phi) = V_o \exp(j\omega t)\exp(j\phi) \]
Impedances represented as complex numbers

- Resistance, $Z_R = R$ \hspace{1cm} (R + j0)
- Capacitance, $Z_C = -j/C\omega$ \hspace{1cm} (0 - j/C\omega)
- Inductance, $Z_L = jL\omega$ \hspace{1cm} (0 + jL\omega)
- Constant Phase Element, $Z_{CPE} = \sigma(j\omega)^{-\alpha}$

$Z = \text{Impedance (ohms)}$

$\omega = \text{Radial frequency} \equiv 2\pi f$

$f = \text{frequency (Hz \equiv s}^{-1})$
Impedance Spectroscopy

Impedances in series

\[Z_{\text{equiv}} = Z_1 + Z_2 \]

Impedances in parallel

\[\frac{1}{Z_{\text{equiv}}} = \frac{1}{Z_1} + \frac{1}{Z_2} \]

\[Z_{\text{equiv}} = \frac{Z_1 Z_2}{Z_1 + Z_2} \]
Simple equivalent circuit of a charged interface

- Charge Transfer Resistance (R_{ct})
- Double Layer Capacitance (C_d)
- Bulk Solution Resistance (R_Ω)
- Surface charge (σ) in $C m^{-1}$
Impedance Spectroscopy

\[Z_d = -\frac{j}{\omega C_d} \]

\[Z_{ct} = R_{ct} \]

\[Z_\Omega = R_\Omega \]

\[Z_{equiv} = \frac{R_{ct} + R_\Omega + jC_d R_{ct} R_\Omega \omega}{1 + jC_d R_{ct} \omega} \]

\[Z_{equiv} = \frac{R_{ct} + R_\Omega - C_d R_{ct}^2 R_\Omega \omega^2}{1 + C_d R_{ct}^2 \omega^2} + j \left(\frac{C_d R_{ct} R_\Omega + C_d R_{ct}^2 + C_d R_{ct} R_\Omega \omega}{1 + C_d R_{ct}^2 \omega^2} \right) \omega \]
Impedance Spectroscopy

\[V_{exc} = V_i \sin(\omega t) \]

Scan frequency, \(\omega \), [milliHertz to MegaHertz range]

\[Z_{test} = \frac{V_{exc} R_{ref}}{V_{exc} - V_{test}} \]

Reference resistor, \(R_{ref} \)

Test System, \(Z_{test} \)

\[V_{test} = V_o \sin(\omega t + \varphi) \]

Measure amplitude, \(V_o \), and phase, \(\varphi \), as a function of the scanned frequency, \(\omega \).

Calculate real, \(Z_{Re} \), and imaginary, \(Z_{Im} \), parts of the impedance of the test system.
Impedance Spectroscopy

\[V_{in} = V_i \sin(\omega t) \]

Test System

\[V_{out} = V_o \sin(\omega t + \phi) \]

Reference resistor

Fit real, \(Z_{Re} \), and imaginary, \(Z_{Im} \), parts of the impedance of the test system to an equivalent circuit.
Impedance Spectroscopy

Cole-Cole Plots

\[Z_{\text{total}} = \frac{R_{ct} + R_{\Omega} + jC_d R_{ct} R_{\Omega} \omega}{1 + jC_d R_{ct} \omega} \]
Impedance Spectroscopy

$-Z_{\text{imag}} / (\text{ohms} \times 10^4)$

$Z_{\text{real}} / (\text{ohms} \times 10^4)$

Base of a root canal
Non-linear Regression and Impedance Spectroscopy
Impedance Spectroscopy

Frequency Response Analyser

~30 cm
Impedance Spectroscopy

Set frequency scan, ω, [milliHertz to MegaHertz range] and voltage V_i

Display output signal magnitude, V_o, phase, φ, Z_{real} and Z_{imag}

Send magnitude, V_o, phase, φ, Z_{real} and Z_{imag} to a PC

Test system monitoring port (V_{test})

Excitation signal port (V_{exc})

$$V_{\text{exc}} = V_i \sin(\omega t)$$

$$V_{\text{test}} = V_o \sin(\omega t + \varphi)$$

Reference resistor
Impedance Spectroscopy
Frequency Response Analyser

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Magnitude</th>
<th>Phase</th>
<th>Z_{real}</th>
<th>Z_{imag}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mHz</td>
<td>7.2</td>
<td>0.21</td>
<td>7.04</td>
<td>1.50</td>
</tr>
<tr>
<td>10 MhZ</td>
<td>5.3</td>
<td>0.33</td>
<td>5.01</td>
<td>1.72</td>
</tr>
<tr>
<td>100 MhZ</td>
<td>3.5</td>
<td>0.47</td>
<td>3.12</td>
<td>1.59</td>
</tr>
<tr>
<td>1 hZ</td>
<td>2.7</td>
<td>0.67</td>
<td>2.12</td>
<td>1.68</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1 MhZ</td>
<td>0.7</td>
<td>0.05</td>
<td>0.70</td>
<td>0.03</td>
</tr>
<tr>
<td>10 MhZ</td>
<td>etc</td>
<td>etc</td>
<td>etc</td>
<td>etc</td>
</tr>
</tbody>
</table>
Impedance Spectroscopy

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Complex Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>real1</td>
</tr>
<tr>
<td>10</td>
<td>real2</td>
</tr>
<tr>
<td>100</td>
<td>real3</td>
</tr>
<tr>
<td>1000</td>
<td>real4</td>
</tr>
<tr>
<td>10000</td>
<td>real5</td>
</tr>
<tr>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>100000</td>
<td>realn</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Complex Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>imag1</td>
</tr>
<tr>
<td>10</td>
<td>imag2</td>
</tr>
<tr>
<td>100</td>
<td>imag3</td>
</tr>
<tr>
<td>1000</td>
<td>imag4</td>
</tr>
<tr>
<td>10000</td>
<td>imag5</td>
</tr>
<tr>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>1000000</td>
<td>imagn</td>
</tr>
</tbody>
</table>
Impedance Spectroscopy

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Complex Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>real1</td>
</tr>
<tr>
<td>10</td>
<td>real2</td>
</tr>
<tr>
<td>100</td>
<td>real3</td>
</tr>
<tr>
<td>1000</td>
<td>real4</td>
</tr>
<tr>
<td>10000</td>
<td>real5</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td>100000</td>
<td>realn</td>
</tr>
<tr>
<td>1</td>
<td>imag1</td>
</tr>
<tr>
<td>10</td>
<td>imag2</td>
</tr>
<tr>
<td>100</td>
<td>imag3</td>
</tr>
<tr>
<td>1000</td>
<td>imag4</td>
</tr>
<tr>
<td>10000</td>
<td>imag5</td>
</tr>
<tr>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td>1000000</td>
<td>imagn</td>
</tr>
</tbody>
</table>

How do we get the parameters?
FITTING EXPERIMENTAL DATA TO A MODEL

• LINEAR REGRESSION

• NON-LINEAR REGRESSION
LINEAR REGRESSION

\[y = a + bx + cx + dx + \ldots \quad \text{\(y\) dependent variable} \]

\[y = a + bx + cx^2 + dx^3 + \ldots \quad \text{\(x, z\) independent variables} \]

\[y = a + bx + cz \]

Minimise sum of weighted residuals squared

\[
\chi^2 = \sum_{i=1}^{n} \left(\frac{y_{i,\text{exper}} - y_{i,\text{theor}}}{\sigma_i} \right)^2
\]

straight line

\[
\chi^2 = \sum_{i=1}^{n} \left(\frac{y_i - a - bx_i}{\sigma_i} \right)^2
\]
LINEAR REGRESSION

Quadratic, i.e. an analytical function that may be differentiated, e.g. for a straight line

\[\chi^2 = \sum_{i=1}^{n} \left(\frac{y_i - a - bx_i}{\sigma_i^2} \right)^2 \]

\[\frac{\partial \chi^2}{\partial a} = -2 \sum_{i=1}^{n} \left(\frac{y_i - a - bx_i}{\sigma_i^2} \right) \]

\[\frac{\partial \chi^2}{\partial b} = -2 \sum_{i=1}^{n} \left(\frac{y_i - a - bx_i}{\sigma_i^2} \right) x_i \]

At the minimum

\[\frac{\partial \chi^2}{\partial a} = 0, \quad \frac{\partial \chi^2}{\partial b} = 0 \]

\[a = \frac{1}{\Delta} \left(\sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2} \sum_{i=1}^{n} \frac{y_i^2}{\sigma_i^2} - \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2} \sum_{i=1}^{n} \frac{x_i y_i}{\sigma_i^2} \right) \]

\[b = \frac{1}{\Delta} \left(\sum_{i=1}^{n} \frac{1}{\sigma_i^2} \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2} \sum_{i=1}^{n} \frac{y_i}{\sigma_i^2} \right) \]

\[\Delta = \sum_{i=1}^{n} \frac{1}{\sigma_i^2} \sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2} - \left(\sum_{i=1}^{n} \frac{x_i}{\sigma_i^2} \right)^2 \]
LINEAR REGRESSION
ESTIMATION OF ERRORS IN BEST ESTIMATES

1. chi-square at the minimum
2. Curvature (‘Width’) of the chi square surface at the minimum

Curvature

= reciprocal of the second differential

For a single parameter:

\[
\frac{1}{\frac{\partial^2 \chi^2}{\partial \theta^2}}
\]
2. Curvature (‘Width’) of the chi square surface at the minimum

\[
\text{Curvature} = \frac{1}{\frac{\partial^2 \chi^2}{\partial \theta^2}}
\]
3. Correlation between parameters, e.g. for a straight line

Curvature equation must accommodate all parameter
Bringing all three aspects together:

First create a Hessian Matrix (n unknown variables, θ)

$$
\begin{bmatrix}
\frac{\partial^2 \chi^2}{\partial \theta_1^2} & \frac{\partial^2 \chi^2}{\partial \theta_1 \partial \theta_2} & \frac{\partial^2 \chi^2}{\partial \theta_1 \partial \theta_3} & \cdots & \frac{\partial^2 \chi^2}{\partial \theta_1 \partial \theta_n} \\
\frac{\partial^2 \chi^2}{\partial \theta_2 \partial \theta_1} & \frac{\partial^2 \chi^2}{\partial \theta_2^2} & \frac{\partial^2 \chi^2}{\partial \theta_2 \partial \theta_3} & \cdots & \frac{\partial^2 \chi^2}{\partial \theta_2 \partial \theta_n} \\
\frac{\partial^2 \chi^2}{\partial \theta_3 \partial \theta_1} & \frac{\partial^2 \chi^2}{\partial \theta_3 \partial \theta_2} & \frac{\partial^2 \chi^2}{\partial \theta_3^2} & \cdots & \frac{\partial^2 \chi^2}{\partial \theta_3 \partial \theta_n} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\frac{\partial^2 \chi^2}{\partial \theta_n \partial \theta_1} & \frac{\partial^2 \chi^2}{\partial \theta_n \partial \theta_2} & \frac{\partial^2 \chi^2}{\partial \theta_n \partial \theta_3} & \cdots & \frac{\partial^2 \chi^2}{\partial \theta_n^2}
\end{bmatrix} = \bar{H}
$$
LINEAR REGRESSION
ESTIMATION OF ERRORS IN BEST ESTIMATES

Bringing all three aspects together:

Invert the Hessian Matrix (H) to obtain the Variance-covariance matrix (C)

\[
\mathbf{C} = \mathbf{H}^{-1}
\]

Corresponds to simple inversion if only one parameter variance

\[
\sigma^2 = \frac{1}{\left(\frac{\partial^2 \chi^2}{\partial \theta^2}\right)}
\]
\[
\overline{H} = \begin{vmatrix}
\frac{\partial^2 \chi^2}{\partial a^2} & \frac{\partial^2 \chi^2}{\partial a \partial b} \\
\frac{\partial^2 \chi^2}{\partial b \partial a} & \frac{\partial^2 \chi^2}{\partial b^2}
\end{vmatrix}
\]

\[
\overline{H}^{-1} = \begin{vmatrix}
\frac{\partial^2 \chi^2}{\partial b^2} & -\frac{\partial^2 \chi^2}{\partial a \partial b} \\
\frac{\partial^2 \chi^2}{\partial a^2} & \frac{\partial^2 \chi^2}{\partial a^2} - \left(\frac{\partial^2 \chi^2}{\partial a \partial b}\right)^2 \\
-\frac{\partial^2 \chi^2}{\partial b \partial a} & \frac{\partial^2 \chi^2}{\partial b \partial a} - \left(\frac{\partial^2 \chi^2}{\partial a \partial b}\right)^2 \\
\frac{\partial^2 \chi^2}{\partial a^2} & \frac{\partial^2 \chi^2}{\partial b^2} - \left(\frac{\partial^2 \chi^2}{\partial a \partial b}\right)^2
\end{vmatrix}
\]
LINEAR REGRESSION
ESTIMATION OF ERRORS IN BEST ESTIMATES

Variance-covariance matrix, \(\mathbf{C} \)

\[
\begin{pmatrix}
\text{var}_1 & \text{cov}_{12} & \ldots & \text{cov}_{1n} \\
\text{cov}_{21} & \text{var}_2 & \ldots & \text{cov}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\text{cov}_{n1} & \text{cov}_{n2} & \ldots & \text{var}_n
\end{pmatrix}
\]

Standard deviation of the \(i \)th estimated parameter, \(\sigma_i = \sqrt{\text{var}_i} \)

Correlation coefficient between parameters,

\[
\rho_{ij} = \frac{\text{cov}_{ij}}{\sqrt{\text{var}_i \cdot \text{var}_j}}
\]

\(\rho_{ij} = 0 \) no correlation

\(\rho_{ij} = 1 \) total correlation
Variance

\[\sigma_x^2 = \sum_{i=1}^{n} \frac{(x_i - \bar{x})^2}{n-1}, \quad \bar{x} = \sum_{i=1}^{n} \frac{x_i}{n}, \]

Standard deviation

\[\sigma_x = \sqrt{\sum_{i=1}^{n} \frac{(x_i - \bar{x})^2}{n-1}} \]

Covariance

\[\sigma_{xy}^2 = \sum_{i=1}^{n} \frac{(x_i - \bar{x})(y_i - \bar{y})}{n-1}, \quad \bar{x} = \sum_{i=1}^{n} \frac{x_i}{n}, \quad \bar{y} = \sum_{i=1}^{n} \frac{y_i}{n} \]

Correlation coefficient

\[\rho_{xy} = \frac{\sigma_{xy}^2}{\sigma_x \sigma_y} \]
Correlation coefficient

\[\rho_{xy} = \frac{\sigma_{xy}^2}{\sigma_x \sigma_y} = 1 \]

\[\rho_{xy} = \frac{\sigma_{xy}^2}{\sigma_x \sigma_y} = 0 \]
LINEAR REGRESSION
ESTIMATION OF ERRORS IN BEST ESTIMATES

Variance-covariance matrix, \bar{C}

$$
\begin{pmatrix}
\text{var}_1 & \text{cov}_{12} & \ldots & \text{cov}_{1n} \\
\text{cov}_{21} & \text{var}_2 & \ldots & \text{cov}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\text{cov}_{n1} & \text{cov}_{n2} & \ldots & \text{var}_n
\end{pmatrix}
$$

Standard deviation, $\sigma = \sqrt{\text{var}}$

Correlation coefficient between parameters,
\[\rho_{ij} = \frac{\text{cov}_{ij}}{\sqrt{\text{var}_i \cdot \text{var}_j}} \]

- $\rho_{ij} = 0$ no correlation
- $\rho_{ij} = 1$ total correlation
LINEAR REGRESSION
ESTIMATION OF ERRORS IN BEST ESTIMATES

Hessian matrix, \(\bar{H} \), for a linear regression on \(y = ax + b \) [analytical solution]

\[
\begin{vmatrix}
\frac{\partial^2 \chi^2}{\partial a^2} & \frac{\partial^2 \chi^2}{\partial a \partial b} \\
\frac{\partial^2 \chi^2}{\partial b \partial a} & \frac{\partial^2 \chi^2}{\partial b^2}
\end{vmatrix}
\]

\[\bar{C} = \bar{H}^{-1} \]

\[
\sigma_a = \sqrt{\frac{1}{\Delta} \sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2}}
\]

\[
\sigma_b = \sqrt{\frac{1}{\Delta} \sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2}}
\]

\[
\Delta = \sum_{i=1}^{n} \frac{1}{\sigma_i^2} \left(\sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2} - \left(\sum_{i=1}^{n} \frac{x_i}{\sigma_i} \right)^2 \right)
\]
If standard deviations of data points NOT known
(unweighted regression)

Replace all σ by 1; the variance-covariance matrix becomes

$$
\underline{C} = \sqrt{\frac{SS}{n-p}} \; \underline{H}^{-1}
$$

$n = \text{number of points}, \; p = \text{number of estimated parameters}, \; ss = \text{sum of squares of residuals}

$$
ss = \sum_{i=1}^{n} (y_i - a - bx_i)^2 \quad \text{for a straight line}
$$

\underline{C} is the variance-covariance matrix

\underline{H}^{-1} is the inverse of the Hessian matrix, \underline{H}

\underline{H} is the Hessian matrix, whose elements are now the second differentials of the sum of squares, ss, with respect to all pairs of parameters
Regression Model

\[Z_{\text{total}} = \frac{\left(R_{ct} + \frac{\sigma}{\omega^n} - \frac{j\sigma}{\omega^n} \right) \left(-j \right)}{R_{ct} + \frac{\sigma}{\omega^n} - \frac{j\sigma}{\omega^n} - \frac{j}{C_d \omega}} + R_{\Omega} \]

\[Z_{\text{Re}} \]

\[R_{ct}, R_{\Omega}, C_d, \sigma \text{ and } n \]
FITTING EXPERIMENTAL DATA TO A MODEL

• LINEAR REGRESSION

• NON-LINEAR REGRESSION
NON-LINEAR REGRESSION

The dependent variable cannot be expressed as a linear combination of coefficients and dependent variables,

\[Z_{total} = \left(R_{ct} + \frac{\sigma}{\omega^n} - \frac{j\sigma}{\omega^n} \right) \left(-j \frac{C_d\omega}{j} \right) + R_\Omega \]

\[\frac{R_{ct} + \frac{\sigma}{\omega^n} - \frac{j\sigma}{\omega^n} - \frac{j}{C_d\omega}}{R_{ct} + \frac{\sigma}{\omega^n} - \frac{j\sigma}{\omega^n} - \frac{j}{C_d\omega}} \]

\(Z_{real} \) and \(Z_{imag} \) are the dependent variables, \(\omega \) is the independent variables

Parameters to be estimated: \(R_{ct}, R_\omega, \sigma, n \) and \(C_d \)

We still minimise sum of weighted residuals squared

\[\chi^2 = \sum_{i=1}^{n} \left(\frac{Z_{real,i,exper} - Z_{real,i,theor}}{\sigma_i^2} \right)^2 + \sum_{i=1}^{n} \left(\frac{Z_{imag,i,exper} - Z_{imag,i,theor}}{\sigma_i^2} \right)^2 \]

BUT NO GENERAL ANALYTICAL SOLUTION
Coupling via evanescent field

- **Prism**: n_{prism}
- **Air Gap**: 1.0
- **Waveguide**: 1.6 – 1.8
- **Substrate**: 1.52

n:

- 1.5 – 2.0
\[
\begin{align*}
\kappa_0 n_{\text{prism}} \sin(\varphi) &= \kappa_{\text{z,core}} \rho = \kappa_{\text{c}} (n_{\text{eff}}) \rho \\
\kappa_0 \sqrt{\zeta^2_{\text{core}} - \langle n_{\text{eff}}^2 \rangle \rho}^{1/2} &= \varphi \rho + \gamma_{\text{superstrate}} + \gamma_{\text{substrate}} + T_{\text{prism}} \\
T_{\text{prism}} &= \sin(\gamma_{\text{superstrate}}) \cos(\gamma_{\text{prism}}) e^{-2in_{\text{superstrate}}}
\end{align*}
\]

\[
T_{\text{prism}} = \begin{cases}
\tan^{-1} \left(\frac{\zeta_{x, \text{superstrate}}}{\zeta_{x, \text{core}}} \right) & \text{TE mode} \\
\tan^{-1} \left(\frac{\zeta_{x, \text{superstrate}}}{\zeta_{x, \text{core}} n_{\text{superstrate}}^2} \right) & \text{TM mode}
\end{cases}
\]

with similar terms for \(\gamma_{\text{substrate}} \) and \(\gamma_{\text{prism}} \)

\[
\begin{align*}
\zeta_{x, \text{superstrate}} &= \sqrt{k_0 \langle n_{\text{eff}}^2 \rangle \rho - k_0 n_{\text{superstrate}}^2} \\
\zeta_{x, \text{core}} &= \sqrt{k_0 \langle n_{\text{eff}}^2 \rangle \rho - k_0 n_{\text{core}}^2} \\
\zeta_{x, \text{substrate}} &= \sqrt{k_0 \langle n_{\text{eff}}^2 \rangle \rho - k_0 n_{\text{substrate}}^2} \\
\zeta_{x, \text{prism}} &= \sqrt{k_0 \langle n_{\text{eff}}^2 \rangle \rho - k_0 n_{\text{prism}}^2}
\end{align*}
\]

Measured parameter, \(n_{\text{core}} \)
NON-LINEAR REGRESSION

\[\chi^2 \]

\[\theta \]

Non-linear surface

Linear surface
NON-LINEAR REGRESSION

No general equation. Make initial estimates (in all dimensions – picture below in just one dimension) and move systematically over the surface to the minimum.
Steepest Descent

Based on the idea that a local minimum is reached if one always moves in the direction \(\frac{\nabla F}{|\nabla F|} \), where \(\nabla F \) is the \textbf{gradient} of the function \(F(x_1, x_2 \ldots x_p) \).

Pictures from Subramaniam Ganapathy and Yi Wu
Nelder and Mead Simplex Method
(1 dimension – first steps)

Step 1 – initial estimate of θ
Step 2 – calculate χ^2

Step 3 – initial estimate of accuracy of initial guess: - step size, Δ

Step 4 – add and subtract Δ to and from initial estimate

Step 5 – calculate, χ^2, at the initial estimate plus and minus Δ
Step 6 – determine minimum value
Nelder and Mead Simplex Method
(Initial simplex in 2 dimension)
Nelder and Mead Simplex Method
(Initial simplex in 2 dimension)

mid – point of average of all points excluding the worst

Line through worst point and average of other points
Nelder and Mead Simplex Method

REFLECTION

Default new trial point
Nelder and Mead Simplex Method

EXPANSION

If f_3 is a new minimum move further down the surface.
If \(f_3 \) is a worse point, look at a smaller step.
If a simple contraction does not improve matters bring all points nearer to current minimum.
Nelder and Mead Simplex Method

Calculate initial P_i and y_i
Determine h, calculate \bar{P}
Form $P = (1+\alpha)\bar{P} - \alpha P_h$
Calculate y^*

- **Reflection coefficient, α**

 - is $y^* < y_i$?
 - No
 - is $y^* > y_i$, $i \neq h$?
 - Yes
 - No
 - Form $P^{**} = (1+\gamma)P^* - \gamma\bar{P}$
 - Calculate y^{**}
 - is $y^{**} < y_i$?
 - Yes
 - Replace P_h by P^{**}
 - No
 - Replace P_h by P^*
 - Has minimum been reached ?
 - Yes
 - Exit
 - No

- **Contraction coefficient, γ**

 - Yes
 - No
 - is $y^* > y_i$, $i \neq h$?
 - Yes
 - No
 - is $y^* > y_h$?
 - Yes
 - Replace P_h by P^*
 - Replace all P_i's by $(P_i + P)/2$
 - No
 - Replace P_h by P^{**}
 - Has minimum been reached ?
 - Yes
 - Exit
 - No

- **Expansion coefficient, β**

 - Yes
 - No
 - Replace P_h by P^{**}
 - Has minimum been reached ?
 - Yes
 - Exit
 - No
Nelder and Mead Simplex Method
(Initial simplex in 3 dimension)
• Make good initial estimate
• Repeat the regression with new initial estimates at $2\theta_{min} - \theta_i$
Multiple minima
No general equation. Approximate values can be obtained if the chi-square surface is close to a quadratic about the minimum.

\[\chi^2 \]

Non-linear surface

Linear approximation about the minimum

\[\theta \]
NON-LINEAR REGRESSION
ESTIMATION OF ERRORS IN BEST ESTIMATES

No general equation. Approximate values can be obtained if the chi-square surface is close to a quadratic surface about the minimum – then use

\[
\overline{C} = \overline{H}^{-1}
\]

\[
\overline{H} = \begin{bmatrix}
\frac{\partial^2 \chi^2}{\partial \theta_1^2} & \frac{\partial^2 \chi^2}{\partial \theta_1 \partial \theta_2} & \cdots & \frac{\partial^2 \chi^2}{\partial \theta_1 \partial \theta_n} \\
\frac{\partial^2 \chi^2}{\partial \theta_2 \partial \theta_1} & \frac{\partial^2 \chi^2}{\partial \theta_2^2} & \cdots & \frac{\partial^2 \chi^2}{\partial \theta_2 \partial \theta_n} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{\partial^2 \chi^2}{\partial \theta_n \partial \theta_1} & \frac{\partial^2 \chi^2}{\partial \theta_n \partial \theta_2} & \cdots & \frac{\partial^2 \chi^2}{\partial \theta_n^2}
\end{bmatrix}
\]

Chi-square may not be differentiable and numerical differentiation will then be required (\(\delta \sim 10^{-3} \text{ or } 10^{-4}\))

\[
\frac{\partial \chi^2(p)}{\partial \phi_i} \Rightarrow \frac{\chi^2((1+\delta/2)p_i) - \chi^2((1-\delta/2)p_i)}{p_i \delta}
\]

\[
\frac{\partial^2 \chi^2(p)}{\partial \phi_i \partial \phi_j} \Rightarrow
\]

\[
\frac{\chi^2((1+\delta/2)p_i,(1+\delta/2)p_j) - \chi^2((1-\delta/2)p_i,(1+\delta/2)p_j) - \chi^2((1+\delta/2)p_i,(1-\delta/2)p_j) + \chi^2((1-\delta/2)p_i,(1-\delta/2)p_j)}{p_i p_j \delta^2}
\]
ESTIMATION OF ERRORS IN BEST ESTIMATES
CORRELATION

\[y = abx = cx \]

\[y = \frac{abx}{b + x} \]
WHICH IS THE BEST MODEL?

\(\chi^2_A \); \(C_d \), \(R_{ct} \), \(R_\Omega \) and \(Z_w \)

\(\chi^2 \) reduced model

\(\chi^2_B \); \(C_{d,w} \), \(R_{ct,w} \), \(CPE_w \), \(R_P \), \(C_{d,P} \), \(R_\Omega \), \(C_{d,C} \), \(R_{ct,C} \) and \(CPE_C \)

\(\chi^2 \) fuller model
WHICH IS THE BEST MODEL?

\[\chi^2 = \sum_{i=1}^{n} \frac{(y_{i,\text{exper}} - y_{i,\text{theor}})^2}{\sigma_i^2} \]

is a measure of the goodness of fit.

Checking which of the two chi squares \(\chi^2_{\text{reduced model}} \) or \(\chi^2_{\text{fuller model}} \) is the smaller is not adequate.
WHICH IS THE BEST MODEL?
WHICH IS THE BEST MODEL?
WHICH IS THE BEST MODEL?

\[\chi^2 = \sum_{i=1}^{n} \left(\frac{y_{i, \text{exper}} - y_{i, \text{theor}}}{\sigma_i^2} \right)^2 \]

is a measure of the goodness of fit.

Checking which of the two chi squares \(\chi^2_{\text{reduced model}} \) or \(\chi^2_{\text{fuller model}} \) is the smaller is not adequate.

We need a statistical test with which to compare \(\chi^2_{\text{reduced model}} \) and \(\chi^2_{\text{fuller model}} \).
WHICH IS THE BEST MODEL?

\(\chi^2_{\text{reduced model}} \) and \(\chi^2_{\text{fuller model}} \)

divided by the degrees of freedom are variances

\[
\chi^2 = \sum_{i=1}^{n} \left(\frac{y_{i,\text{exper}} - y_{i,\text{theor}}}{\sigma_i^2} \right)^2 / \left(N_{\text{data}} - n_{\text{parameters}} \right)
\]

\[
\sigma_x^2 = \sum_{i=1}^{n} \frac{(x_i - \bar{x})^2}{n-1}, \quad \bar{x} = \sum_{i=1}^{n} x_i / n,
\]
WHICH IS THE BEST MODEL?

Use an F-test

$$F = \frac{\text{variance1}}{\text{variance2}}$$

There are tables of the probabilities that

$$F = \frac{X_1^2/\nu_1}{X_2^2/\nu_2}$$

would be as large as it is if the denominator distribution with observed X_1^2/ν_1
actually has a smaller reduced chi-square than that of the denominator distribution with the observed X_2^2/ν_2. The degrees of freedom of the two distributions are $\nu1$ and $\nu2$.
The F hypothesis test is defined as:

H_0: \hspace{1cm} \sigma_1^2 = \sigma_2^2$

H_a: \hspace{1cm} \sigma_1^2 < \sigma_2^2 \quad \text{for a lower one-tailed test}$

\hspace{2cm} \sigma_1^2 > \sigma_2^2 \quad \text{for an upper one-tailed test}$

\hspace{2cm} \sigma_1^2 \neq \sigma_2^2 \quad \text{for a two-tailed test}$

Test Statistic: \hspace{1cm} F = \frac{s_1^2}{s_2^2}$

where s_1^2 and s_2^2 are the sample variances. The more this ratio deviates from 1, the stronger the evidence for unequal population variances.
WHICH IS THE BEST MODEL?

- Calculate the χ^2 for both the fuller model (χ^2_{fuller}) and the reduced model (χ^2_{reduced}).

- Calculate variance of the fuller model

$$\text{var}_{\text{fuller}} = \frac{\chi^2_{\text{fuller}}}{df_{\text{fuller}}} = \frac{\chi^2_{\text{fuller}}}{N_{\text{data}} - n_{\text{fuller}}}$$

- Calculate the variance of the ‘extra χ^2’

$$\text{var}_{\text{extra}} = \frac{\chi^2_{\text{reduced}} - \chi^2_{\text{fuller}}}{df_{\text{reduced}} - df_{\text{fuller}}} = \frac{\chi^2_{\text{reduced}} - \chi^2_{\text{fuller}}}{(N_{\text{data}} - n_{\text{reduced}}) - (N_{\text{data}} - n_{\text{fuller}})}$$

$$= \frac{\chi^2_{\text{reduced}} - \chi^2_{\text{fuller}}}{n_{\text{fuller}} - n_{\text{reduced}}}$$

$N_{\text{data}} = \text{number of data points}$, $n = \text{number of estimated parameters}$

$df = \text{degrees of freedom}$

$= \text{number of data points} - \text{number of estimated parameters}$
WHICH IS THE BEST MODEL?

\textbf{F-test}

- Ratio the ‘extra’ variance and the fuller model variance

\[
F = \frac{\text{var}_{\text{extra}}}{\text{var}_{\text{fuller}}} = \frac{\chi^2_{\text{reduced}} - \chi^2_{\text{fuller}}}{n_{\text{fuller}} - n_{\text{reduced}}} = \frac{\chi^2_{\text{fuller}}}{N_{\text{data}} - n_{\text{fuller}}} = \left(\frac{\chi^2_{\text{reduced}} - \chi^2_{\text{fuller}}}{n_{\text{fuller}} - n_{\text{reduced}}}\right)\left(\frac{N_{\text{data}} - n_{\text{fuller}}}{\chi^2_{\text{fuller}}}\right)
\]

- This ratio is termed an \textit{F-ratio}.

Use statistical tables or a statistical computer program library to obtain the probability, given the calculated \(F\) value, for degrees of freedom, \(n_{\text{fuller}} - n_{\text{reduced}}\) and \(N_{\text{data}} - n_{\text{fuller}}\), that the fuller model is a better fit than the reduced model.
Impedance spectroscopy and sensors

Requirement for smaller instrumentation
Impedance Spectroscopy Instrumentation

Frequency Response Analyser (FRA)

Analog Devices AD5933
1 Msps, 12 Bit Impedance Converter Network Analyzer

- ~30 cm
- ~6 mm

FRA price range
£3000 - £15000

~£4 per chip
~£80 per chip plus evaluation board
Impedance spectroscopy and sensors for biological and medical applications
Differences between 'wet' equivalent circuits and classical electrical circuits
Impedance Spectroscopy

\[Zn^{2+} + 2e^- \rightleftharpoons Zn \]
Impedance Spectroscopy

\[\text{Hg}_2^{2+} + 2\text{e}^- \rightleftharpoons 2\text{Hg} \]
Impedance Spectroscopy

![Graph showing impedance spectroscopy](image)

- Kinetic control
- Mass transfer control
- Decreasing ω

Mathematical expressions:
- Z_{lm}
- R_Ω
- $R_\Omega + \frac{R_{ct}}{2}$
- $R_\Omega + R_{ct}$
- Z_{Re}
Simple equivalent circuit of a charged interface
Impedance Spectroscopy

WARBURG IMPEDANCE

<table>
<thead>
<tr>
<th>Double Layer Capacitance</th>
<th>Bulk Solution Resistance</th>
<th>Charge Transfer (electrode) Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_d</td>
<td>R_Ω</td>
<td>R_{ct}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass transfer controlled impedance (Warburg impedance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{ct} Z_w R_Ω</td>
</tr>
</tbody>
</table>
Impedance Spectroscopy

WARBURG IMPEDANCE

\[
Z_w = \frac{\sigma}{\omega^{1/2}} - \frac{j\sigma}{\omega^{1/2}}
\]

\[
\sigma = \frac{RT}{n^2 F^2 A \sqrt{2}} \left[\frac{1}{C_o \sqrt{D_o}} + \frac{1}{C_R \sqrt{D_R}} \right]
\]

- Number of electrons transferred
- Electrode area
- Diffusion coefficient of oxidant
- Concentration of oxidant
- Concentration of reductant
- Diffusion coefficient of reductant
Warburg impedance is a special case of a CPE where $\alpha = 1/2$

$$Z_{CPE} = \frac{Q}{(j\omega)^\alpha}$$

$$Z_W = Z_{CPE} = \frac{Q}{(j\omega)^{1/2}} = \frac{\sqrt{2}\sigma}{(j\omega)^{1/2}} = \frac{\sigma}{\omega^{1/2}} - \frac{j\sigma}{\omega^{1/2}}$$
Impedance Spectroscopy

CONSTANT PHASE ELEMENT

• Surface Roughness
• A Distribution of Reaction Rates
• Varying Thickness or Composition
• Non-uniform Current Distribution
Impedance Spectroscopy

\[-Z_{\text{imag}} / (\text{ohms} \times 10^4)\]

\[Z_{\text{real}} / (\text{ohms} \times 10^4)\]

Base of a root canal
Impedance Spectroscopy
Impedance Spectroscopy of Antibody-Protein Interactions

O. Ouerghi, A. Touhami, N. Jaffrezic-Renaulta, C. Marteleta, H. Ben Ouada & S. Cosnier

Antigen (human IgG) added

- ▲ 100 ng/ml
- △ 50 ng/ml
- ○ 10 ng/ml

Capture antibody (anti-human IgG) on gold

Bioelectrochemistry, 56 (1-2), 15 May 2002, pp 131-133
Bio-functionalized Pt nanoparticles based electrochemical impedance immunosensor for human cardiac myoglobin (cMb)
Fig. 6 Impedance measurements of IgG-modified silicon samples before and after exposure to anti-IgG and anti-IgM. (a) n-type, 0.1 Ω cm Si substrate. (b) p-type, 0.12 Ω cm Si substrate.
• EIS studies on biomembranes and biomimetic membrane sensors may be found in Section 8, Biomimetic membranes

• EIS studies on nucleic acids and on DNA sensors may be found in Section 9, Lab-on-a-Chip