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Theory of Raman-Mediated Pulsed Amplification in
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Abstract—We present a comprehensive theoretical study of
pulsed stimulated Raman scattering in silicon wires. The pulse
dynamics is described by a system of coupled equations, which
describes intrinsic waveguide optical losses, phase shift and
losses due to free-carriers (FCs) generated through two-photon
absorption (TPA), first- and second-order frequency dispersion,
self-phase and cross-phase modulation, TPA losses, and the inter-
pulse Raman interaction. Furthermore, the influence of the FCs
on the pulse dynamics is incorporated through a rate equation.
The corresponding system of equations has then been numerically
integrated, and phenomena such as noise-seeded Raman amplifi-
cation, pulsed Raman amplification, and Raman-mediated pulse
interaction have been described.

Index Terms—Coupled mode analysis, Raman amplification, sil-
icon nanowire waveguide, stimulated Raman scattering (SRS).

I. INTRODUCTION

RECENTLY, active silicon-waveguide components have at-
tracted much interest for use in photonic integrated cir-

cuits. Due to its indirect band, direct optical pumping cannot
be employed to realize light amplification in silicon. However,
several groups have shown recently that stimulated Raman scat-
tering (SRS) can be used to achieve tunable light amplification
in the C-band communication channel. Experiments have been
performed to prove the validity of this idea using silicon-on-in-
sulator (SOI) waveguides [1], [2] or SOI wire waveguides with
submicron transverse dimensions [3], [4]. The feasibility of em-
ploying silicon-waveguides in active devices has been further
demonstrated by the recent fabrication of SRS-based silicon
lasers [5]–[8] and frequency converters [9], [10].

In these recent experiments, the cross section of the wave-
guides ranged from a few [7], [8] to tens of square microns [5].
For these waveguides, the material dispersion dominates. On the
other hand, SRS amplification has also been demonstrated in
a SOI wire waveguide [3], which had a cross section of less
than 0.1 m . In such a waveguide, the light confinement is
strongly enhanced, and, therefore, higher power densities can
be achieved. As a result, Raman amplification is achieved at
smaller optical powers and unwanted effects such as free-carrier
(FC) generation and two-photon absorption (TPA) are reduced.
An additional advantage of using such ultra-small wire wave-
guides stems from the fact that for waveguides with submicron
transverse dimensions the waveguide dispersion dominates the
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material dispersion, and, therefore, the total modal dispersion
can be easily engineered.

All of these SRS experiments have used high pump power
density and a variety of pump formats; hence, it is crucial to
have a high-intensity theoretical model that describes the influ-
ence of optical nonlinearities on pulse dynamics in the presence
of Raman interaction. We present here a rigorous analysis, based
on the coupled-mode formalism, of pulsed SRS in silicon wire
waveguides. Dispersive effects, which are absent in the contin-
uous pump case, play an important role in the Raman-medi-
ated pulse interaction and Stokes amplification. Free carrier and
TPA effects contribute to additional loss in the waveguide and
are thus incorporated in our study. The magnitude of the effec-
tive third-order nonlinearity is sensitive to the waveguide prop-
agating-mode profile, due to the tight mode confinement within
the SOI waveguide, and is included in our model through several
scalar coefficients, set by overlap integrals. Our model can be
easily integrated numerically, and, therefore, offers a fast route
to a detailed analysis of the Raman-mediated pulsed amplifica-
tion in silicon wires.

The paper is organized as follows. In the next section we
describe the dispersive properties of the silicon wire wave-
guides and discuss the relative contribution of the material and
waveguide dispersion to the modal dispersion. Section III is
devoted to the formulation of the analytical model that governs
the combined dynamics of the optical field and the FCs. The
corresponding system of equations is integrated numerically
and the results of these detailed numerical studies are presented
in Section IV. Finally, we summarize our results in Section V.

II. DISPERSIVE PROPERTIES OF SI WIRE WAVEGUIDES

The schematics of the structure of the silicon wire wave-
guide considered here is presented in Fig. 1. It shows a rect-
angular silicon core oriented along the direction, which is
embedded into a SiO substrate whose refractive index is

at 1.55 m [3]. Both the width and height of the sil-
icon core are in the submicron range. The main consequence of
this choice of the geometrical parameters of the wire waveguide
is that, unlike the case of the waveguides used in recent experi-
ments [1], [5], [7], [8], the waveguide dispersion dominates the
material dispersion. As we will demonstrate, this property plays
an important role in defining the pulse dynamics in the presence
of Raman interaction. Although our analysis applies to waveg-
uides with arbitrary submicron dimensions, most of the quanti-
tative results reported here are calculated by using the parameter
values m and m, which correspond to
the silicon wire used by the authors of [3] to demonstrate Raman
amplification in ultrasmall SOI wire waveguides [3].
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Fig. 1. Waveguide geometry of the Si wire, with the input facet of the
waveguide in the (1�10) plane of the Si crystal lattice. The dashed-line is along
the [100] direction. The waveguide width and height are w and h, respectively.

The dispersive properties of four silicon wire wave-
guides with different dimensions are illustrated in Fig. 2.
The values chosen for the geometrical parameters
were, respectively, (0.45 m, 0.22 m), (0.55 m, 0.22 m),
(0.65 m, 0.22 m), and (0.45 m, 0.3 m). The guiding modes
were computed by using BeamPROP,1 a commercially avail-
able software tool based on the fully-vectorial implementation
of the beam propagation method. In all these cases the wave-
guides support only one mode, namely the mode, whose
main components of the electromagnetic field are and

. Because of the high-index contrast provided by the SOI
materials platform, as well as the subwavelength transverse
dimensions of the waveguide, the guided modes exhibit strong
frequency dispersion. For example, Fig. 2(a) shows that the
waveguide dispersion in such wire waveguides dominates the
material dispersion. The contribution of the latter to the mode
dispersion is given by the relation , where
is the propagation constant, is the wavelength, is the speed
of light, and the material refractive index is given by the
Sellmeier equation [11]

(1)

For silicon, the material constants in (1) are m,
, m , and .

The first two terms represent the nonresonant contributions to
the refractive index, whereas the last one gives the contribution
of the indirect band-gap.

The total modal dispersion, which includes both the wave-
guide and the material dispersion, is used then to numerically
calculate the higher-order dispersion coefficients, defined by the
relation [12], where is the frequency

1RSoft Design Group. [Online] Available: http://www.rsoftdesign.com/

Fig. 2. Dispersion coefficients for several nanowire waveguides.
(a) Propagation constant versus wavelength. (b) First-order dispersion
coefficient versus wavelength. (c) Second-order dispersion coefficient versus
wavelength. In all the figures, the thick lines represent the material dispersion,
whereas the dispersion data correspond to the waveguides with dimensions of
(0.45 �m, 0.22 �m) ( ); (0.45 �m, 0.30 �m) (- - -); (0.55 �m, 0.22 �m)
(� � �); and (0.65 �m, 0.22 �m) (� � � � �).

and is the corresponding order. The results of these calcula-
tions are presented in Fig. 2(b) and Fig. 2(c), which show, re-
spectively, the first- and second-order dispersion coefficients.
One important property illustrated in these figures is that by
engineering the waveguide modal dispersion one can design
waveguides that exhibit both normal and anomalous
dispersion within the same frequency window of im-
portant technological applications. For completeness, we have
also calculated the third-order dispersion coefficient, but as we
will explain later the corresponding third-order dispersion plays
a negligible role on the dynamics of the Raman mediated pulse
interaction.

III. THEORETICAL MODEL OF RAMAN

MEDIATED PULSE INTERACTION

The main characteristics of the dynamics of the Raman-me-
diated pulse interaction in a silicon wire are governed by
the interplay between several characteristic times and the
relative magnitude of several characteristic lengths. Thus, if
a monochromatic pump wave at frequency propagates in
a Raman-active solid medium it creates a scattered Stokes
signal at the frequency , which is down-shifted with re-
spect to by a frequency shift (Raman frequency) that
corresponds to the frequency of the optical phonons at the
center of the Brillouin zone. For silicon, this frequency shift
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is 15.6 THz [13]. Furthermore, in silicon the
spectral width of the SRS spectrum is 105 GHz,
which amounts to a response time of the Raman interaction
of 10 ps. Therefore, if the pulsewidth of the pump and
Stokes pulses are much larger than the Raman response time

, their spectral width is much smaller than the width of the
Raman spectrum, so that the Raman interaction is mediated
by the third-order nonlinear Raman susceptibility, calculated
exactly at the frequency . In the opposite case, namely when
the pulsewidth of the pump and Stokes pulses are comparable
or smaller than the Raman response time, all frequencies in the
Raman spectrum are involved in the process of energy transfer
from the pump to the Stokes pulse.

In addition to the characteristic time of Raman interaction,
there are also three characteristic lengths that play an important
role in the stimulated Raman amplification of the Stokes signal.
These are the waveguide length , and the walkoff and disper-
sion lengths defined, respectively, as

(2)

(3)

where is the half-width (at -intensity point) of the pump
pulse and is the walkoff pa-
rameter, with the group-velocity . For a pump pulse
with temporal width ps, centered at m,
and the corresponding Stokes pulse centered at m
the propagation constants are s/m and

s/m, respectively, so that the character-
istic lengths are cm, m, and the walkoff
parameter is s/m. The walkoff length
represents the distance over which the pump and Stokes pulses
pass through each other’s envelope, which means that the effi-
ciency of the Raman amplification process increases with ,
as long as the condition is satisfied.

In order to derive the system of equations that governs the dy-
namics of the Raman mediated pulse interaction in a silicon wire
waveguide we start from the conjugated form of the Lorentz
reciprocity theorem (see, e.g., [14])

(4)

where the integral is taken over the infinite cross section
of the waveguide, is the unit vector oriented along the lon-
gitudinal axis of the waveguide, and the vector field is con-
structed with two arbitrary guided electromagnetic fields ( ,

) and ( , )

(5)

Here we assume that both the electric and magnetic fields
contain the implicit harmonic time dependence .
Now let us choose the two guided electromagnetic fields to
be and , where the
fields

(6a)

(6b)

correspond to the guided mode of the unperturbed lossless
waveguide whereas the fields ( , ) correspond to the wave-
guide whose optical properties are perturbed both by the
nonlinear optical effects such as the SRS, Kerr effect, or the
TPA, as well as by the changes of the dielectric constant induced
by the linear losses or free carrier generation. Note that the ( ,

) fields correspond to a fixed frequency , and, therefore,
they represent the Fourier components of the time-dependent
fields propagating in the perturbed waveguide. In (6) is the
transverse coordinate, and and are the electric
and magnetic fields of the unperturbed mode with frequency ,
normalized such that

(7)

Here is a normalization constant that defines the mode optical
power, , where is the mode amplitude.

With this choice of the two electromagnetic fields, (4) can be
written as

(8)
where the subscript signifies the transverse component
of the field. On the left-hand side of this equation, only
the transverse components of the fields are retained as
the longitudinal components do not contribute to the inte-
grand. Using Maxwell’s equations, the divergence of the
vector field leads to the integrand on the right hand side.

is
the perturbed polarization, with and
its linear and nonlinear components, respectively. The source
of this perturbed polarization is the change in the dielectric
constant, , induced by both linear processes, such as
optical losses and free carrier generation, as well as nonlinear
optical effects, such as TPA, SRS, and the Kerr effect.

Now let us consider the total time-dependent electric and
magnetic fields in the waveguide, written as a superposition of
the copropagating pump and Raman pulses

(9a)

(9b)

where and are slowly varying ampli-
tudes of the electric and magnetic fields at the corresponding
frequencies, respectively, and stands for complex conjuga-
tion. Note that the field representation (9) is valid as long as the
two pulses are well separated in frequency. For Raman interac-
tion in silicon this requirement is always satisfied because of the
large value of the Raman frequency and the relatively small
Raman spectral bandwidth . Thus, the field representation
(9) ceases to be valid when the pump and the Raman pulses
start to spectrally overlap; however, this can happen only for
subpicosecond pulses, that is for pulses with a duration consid-
erably smaller than the Raman response time of silicon.

Under our assumption that the frequency bandwidth of the
pump and Raman pulses is smaller than the spectral width of
the SRS spectrum, it requires that the spectral bandwidths of
the envelopes and are smaller than
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. Furthermore, within the so-called improved coupled-mode
analysis formalism [15]–[18] the envelopes of the electric and
magnetic fields can be written as

(10a)

(10b)

(10c)

(10d)

where are slowly varying functions, in both and , and
. With the normalization (7), the optical powers of the

pump and Raman pulses are , and , re-
spectively, where and are the corresponding peak powers.
Note that if one considers a more complex waveguide geom-
etry, namely arrays of strongly coupled wire waveguides, then a
fully-vectorial coupled-mode analysis must be employed [19],
in which case the transverse fields also depend on the transverse
gradient of the longitudinal fields. However, for our case (10)
provides an accurate representation of the electromagnetic field
distribution in the perturbed waveguide. Moreover, the longitu-
dinal components (10c) and (10d) of the modal fields have been
presented only for the sake of completeness, as they represent
less than 1% of the total field amplitude. By inserting (6), (9),
and (10) in (8), one obtains

(11)
where is the Fourier transform of

(12)

Expanding in Taylor series the difference in the modal propa-
gation constant , the lift-hand side (l.h.s) of (11)
becomes

(13)

Note that in the series expansion in (13) we neglect the terms
beyond the second-order dispersion, as our numerical calcula-
tions show that for pulsewidths considered in this paper, the
third-order dispersion is at least one order of magnitude smaller
as compared to the second-order dispersion. For instance, for
a 50-ps pulse centered at 1.55 m, the second order dispersion
length m, while the third order dispersion length

km.
The linear component of the polarization in (11)

is determined by the linear change in the dielectric constant,
, which can be written as

(14)

where is the refractive index of the unperturbed silicon, is
the vacuum permittivity, is the intrinsic absorption coeffi-
cient, determined both by the material losses as well as by the
optical field scattering at the silicon/silicon oxide interfaces, and

and are the change in the refractive index and FC ab-
sorption coefficient, respectively. Based on a Drude model of
the FCs, the latter two quantities are given by [20]

(15a)

(15b)

where is the charge of the electron, is the in-
duced variation of the electrons (holes) density,

is the conductivity effective mass of the elec-
trons (holes), with the mass of the electron, and is
the electron (hole) mobility. Note that in (15) the exponent of
the hole density has been introduced for a better fit with the ex-
perimental data [20].

The nonlinear part of the polarization has two com-
ponents, namely an electronic part, which contains both the Kerr
and the TPA contributions, and the Raman component. The Kerr
polarization is the result of the electronic polarizability of sil-
icon, which has a response time of a few tens of femtosec-
onds, and, therefore, we can assume an instantaneous Kerr re-
sponse. Moreover, the characteristic time of TPA processes is
much shorter than the duration of the pulses considered here, so
that we can treat them as instantaneous processes as well. Under
these circumstances, the electronic polarization can
be written as

(16)

where , with , , and
and are third-

order tensor susceptibilities. The real part of these nonlinear
susceptibilities describes parametric processes of photon scat-
tering and leads to a change in the refractive index. On the other
hand, the imaginary part of the susceptibilities corresponds to
TPA processes. Note that since silicon belongs to the crystal-
lographic point group the susceptibility tensor has 21
nonzero elements, of which only four are independent, namely

, , , and [21]. In addition, in the fre-
quency range considered here the frequency dispersion of the
nonlinear susceptibility can be neglected, so that the Kleinman
symmetry relations imply that the last three elements are equal.
The real parts of the two independent susceptibilities are related
by [22], with m V
[23], [24].

To find the imaginary parts of the two independent suscepti-
bilities we used the values of the TPA coefficients measured at
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the wavelength m, for the and polariza-
tions [24]. Thus, the TPA coefficient can be expressed as

(17)

where for silicon

(18)

Here is a unit vector along the direction of the induced po-
larization, , , and are unit vectors along the polarization
direction of the interacting fields, and , , , and are the
direction cosines of these unit vectors. Thus, for the and

polarizations the effective susceptibilities are
and , so

that by using the values cm/GW and
cm/GW one obtains m V and

m V .
Now let us consider the Raman component of the nonlinear

polarization, . The most convenient way to describe
this polarization is by means of the third-order Raman suscep-
tibility defined as [25]–[28]

(19)

where , is the number of vibrational os-
cillators per unit volume, is the vibrational resonant fre-
quency, and the matrix elements are given by the deriva-
tives of the polarizability tensor with respect to the coordinate
of the normal mode . There are three degenerate Raman-ac-
tive optical phonons in silicon, , 1, 2, 3, with the
symmetry of the irreducible representation , and the corre-
sponding Raman tensors [29]

(20)

This property implies that there is only one independent com-
ponent of the Raman tensor, namely . Furthermore, close
to the Raman resonance so that (19) can be simplified
to

(21)

The real part of this susceptibility describes parametric pro-
cesses that lead to a change in the refractive index whereas the
imaginary part of the Raman susceptibility describes the Raman
amplification process. At resonance, , the Raman sus-
ceptibility is pure imaginary, its value being

m V . Under these conditions, and

if in addition we assume that the spectral width of the pump and
Raman pulses are smaller that the Raman resonance bandwidth,
the Raman part of the nonlinear polarization can be written as

(22)

Note that since the Raman interaction leads
to the amplification of the signal whereas it acts as a loss term
at the frequency of the pump.

The expressions (16) and (22) for the nonlinear Kerr and
Raman polarization, respectively, as well as the linear polariza-
tion described by (14) are inserted in (8) and the result is Fourier
transformed into the time domain. As a result, we are left with
the following system of coupled partial differential equations,
which describe the pulse dynamics upon propagation in the sil-
icon wire waveguide

(23a)

(23b)

where is the transverse area of the wire waveguide and ,
, , , and play the role of effective nonlinear sus-

ceptibilities, and are two constants defined as

(24)

Although in (24) we kept the frequency dependence of the pa-
rameters s, their frequency dispersion can be neglected. For
example, if nm and nm, the corre-
sponding values of these parameters are and

, respectively. The effective susceptibilities are defined
by certain weighted integrals of the corresponding tensor sus-
ceptibilities over the transverse area of the waveguide. Thus,

is given by the following expression (we drop the explicit
-dependence of the modal fields)

...
(25)
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the other ones being given by similar formulas, whereas the
Raman susceptibilities can be written as

...

(26)
Note that the susceptibility tensors are known in the
crystal principal axes, whereas the modal fields are nu-
merically determined in the waveguide system. Therefore,
to calculate the integrals in (25) and (26) the suscepti-
bility tensors must be transformed first in the waveguide
system. For the (0.45 m, 0.22 m) waveguide, at the
wavelengths nm and nm the
corresponding values of the effective susceptibilities are

m V ,
m V ,

m V ,
m V , m V ,

m V . These numerical values
show that the frequency dispersion of the electronic suscepti-
bilities can be neglected; however, we incorporate in our model
the frequency dependence of the Raman susceptibilities .
The latter are given by the following formula:

(27)

where and . Finally, we
mention that in order to derive the system (23) we used the
relationship between the total energy density per unit length
of the waveguide and the modal optical power, namely

where the power is defined by (7) and
[14].

One important parameter that characterizes the Raman am-
plification process is the Raman gain coefficient . By using
the equation that governs the dynamics of the amplitude of the
Stokes signal, namely the (23b), one can easily show that the
Raman gain coefficient is given by the following expression:

(28)

Note that since the Raman susceptibility in silicon is about
four orders of magnitude larger that the Raman susceptibility
of silica, one expects that the Raman amplification in silicon
wire is significantly enhanced as compared to the Raman
amplification in optical fibers.

For a full description of optical pulse interaction in a silicon
wire waveguide the system (23) must be completed with an ad-
ditional relation that describes the dynamics of the FCs and their
interaction with the optical field. For this we use a rate equation,
which governs the interplay between the optical FC generation
and their decay through recombination processes. Thus, from
the system (23) one can easily derive the optical power absorp-
tion per unit length due to TPA

(29)

where is the total optical power. With
this expression for the TPA, the rate equation can be written as

(30)

where the characteristic lifetime of the FCs, , is assumed to
be the same for both electrons and holes. In bulk silicon or in
waveguides of micrometer size transverse dimensions this char-
acteristic time is a few tens of nanoseconds. However, recently
it has been reported that in submicron silicon structures, due to
the fast diffusion of free carriers to the edges of the waveguide,
this relaxation time can be as low as 0.5 ns [30].

A better understanding of the interplay between different ef-
fects described by the system (23) and (30) is gain if we cast
these equations in dimensionless form. For this, we introduce
the dimensionless time and the dimen-
sionless distance , where the characteristic Raman
length is defined by

(31)

We choose to use the Raman length to normalize the dis-
tance because for the power levels and transverse waveguide
areas used in experiments [3] this characteristic length is the
smallest one. For example, for a peak pump power mW,
this Raman length is mm, which is much smaller
than the walkoff length or dispersion length that we pro-
vided before. After simple transformations, the system (23) can
be brought to the following dimensionless form:

(32a)

(32b)

where the parameters in (32) are given by the following expres-
sions:

(33)
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Similarly, in the dimensionless variables the rate equation (30)
can be written as

(34)
where is the normalized FC relaxation time and

(35)
Note that in (32) and depend on the FC concentration

through (15) and, therefore, (32) and (34) must be solved
simultaneously.

When the spectral width of the pump and Stokes pulse is com-
parable or larger than the width of the Raman spectrum the
system (32) must be modified so as to take into account the finite
time response of the SRS process. To this end, we first introduce
the Raman response function in the wire waveguide , de-
fined as the inverse Fourier transform of the Raman effective
susceptibility

(36)

where and is the Heaviside function
defined as for and for . In
order to include in our formalism the Raman delay described by
the response function (36), we follow the approach developed in
[12], [31]–[33]. As the derivation is similar to that presented in
these works, we give here only the final form of the governing
equations:

(37a)

(37b)

where is the dimensionless Raman frequency
and is the normalized Raman
response function. Simple calculations show that when the
spectral width of the pulses and is much
smaller than the system (37) reduces to (32). Therefore, to
find the dynamics of picosecond pulses as they interact through

SRS one has to numerically integrate (37) coupled to the rate
equation (34).

IV. RAMAN AMPLIFICATION AND PULSE INTERACTIONS

In this section we numerically investigate the physical char-
acteristics of the Raman pulse interaction in silicon wires. We
discuss both noise-seeded Stokes signal generation and ampli-
fication as well as Raman amplification of input signal pulses.
In both cases we investigate the Raman amplification of pulses
with duration much longer than the Raman response time, which
can be thought of as a quasi-continuous-wave (CW) regime,
as well as the dynamics of pulses with duration comparable or
shorter than the Raman response time. We compare the predic-
tions of our theoretical model with experimental data and find
good agreement. We also discuss potential applications to opto-
electronics nanodevices.

The numerical simulations of the coupled mode equations
(32) [or (37)] were carried out by using the split-step fast
Fourier transform method (for details, see [12]), which assumes
that over an integration step the linear and nonlinear effects
act independently. We adopted the symmetrized version of the
method, which has improved computational speed. The basic
procedure is to allow the pulses to propagate half of the step
under the influence of the linear terms only, then the nonlinear
effect along the whole step is added to the pulses at the middle
of the integration step, and finally the pulses are propagated for
the second half of the step with only the linear terms included.
In our calculation, the size of the time domain window is chosen
to be 16 times as large as the pump pulse width, whereas the
number of time domain sampling points is 1024.

To include the free carrier effects, we need to compute the
FC density at each propagation step, which is determined by the
rate equation (34). Since the rate equation and the coupled mode
equations (32) [or (37)] are nonlinearly coupled, we calculated
the free carrier density at the middle of each propagation step.
The integration of both the nonlinear part of the coupled mode
equations as well as the rate equation is performed by using a
fifth-order Cash–Karp Runge–Kutta algorithm [34].

We started by considering noise-seeded Raman amplifica-
tion in the case in which the pump pulse has a temporal width

ps. Because this pulsewidth is considerably larger
than the Raman response time of silicon, the system can re-
spond effectively instantaneously; the pulse dynamics are then
governed by (32). In the SRS process, the critical pump power
for amplification is defined as the pump power that is required
for the Stokes signal to be amplified to the same intensity as the
input pump power [12]. The pump peak power was chosen to be

mW, which is about two orders of magnitude larger
than the critical power. As long as the propagation distance is
much larger than the walkoff length , this critical power is
expressed as [12]

(38)

The broad-band noise power is approximately given by the
product between the energy of the Stokes photon and the
Raman gain bandwidth, here we assume W.
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Fig. 3. Noise-seeded Raman generation from a 30-ps pump pulse and no
intrinsic losses. The pump power is P = 0:1 mW, which corresponds
to a Raman length L = 3:83 mm, and the seed-noise power is
P = 1:0 � 10 W. The left and right panels show the pulse in the
time and frequency domain as it propagates along the waveguide. The units are
in the dimensionless forms described in the text, e.g., paragraph above (31) for
the definition of � and � .

In our first calculation we set the intrinsic loss of the waveguide
to zero but allow the waveguide to have optical losses due to
the FC and TPA processes. The results, presented in Fig. 3,
clearly demonstrate coherent generation of the Raman signal.
Furthermore, as the optical losses are very small and the seeded
energy at the Raman frequency is also relatively low, the
pump pulse is undepleted during the initial stage of the pulse
propagation. However, after a propagation distance of about

the power in the Raman pulse grows to a level at which
its interaction with the pump pulse becomes large enough to
change its temporal profile. This change is seen either near the
peak of the pump pulse (top figure, left panel) or in the side
lobes seen in the bottom of the figure on the right panel.

To illustrate a more realistic case, we considered a wave-
guide with intrinsic losses of 3.5 dB/cm, that is equal to the
losses of waveguides used in recent experiments [3], whereas
the power of the pump pulse was taken to be the same as be-
fore, mW. Fig. 4 shows that in this case the pump
pulse is strongly depleted, as the Raman pulse grows from the
seeded noise. In addition, since the waveguide losses are higher,
the amplification of the Raman pulse over the same propagation
distance is much smaller than the amplification observed in a
lossless waveguide.

Because of the stronger pump depletion in the waveguide
with intrinsic losses the amount of the FCs generated by TPA
is markedly different in the two cases. To illustrate these facts,
we present in Fig. 5 the FC density, calculated for different dis-
tances along the wire waveguide. As expected, in the regime of
strong pump depletion the peak value of the FC density also de-
creases with the propagation distance. However, Fig. 5 shows
that there are similar time dynamics for the FCs generated in
the two cases. The figure displays the carrier density at dif-
ferent propagation distances and for each , the carrier den-
sity is displayed versus the time in the traveling time coordinate

Fig. 4. Results of the same calculation as in Fig. 3 except that a 3.5 dB/cm
intrinsic loss is added to the waveguide.

Fig. 5. Carrier density dynamics at different propagation distances. The
simulation parameters in (a) and (b) correspond to those in Fig. 3 and Fig. 4,
respectively. Note that for the x-axis, normalized time, � , progresses from
right to left. The rise time of the FC density (FCD), i.e., the sharp increase, is
determined by the temporal width of the pump pulse whereas the subsequent
decay time by the characteristic relaxation time t , i.e., the slow decay. Without
intrinsic loss (the upper figure), the maximum value of the FCD remains
nearly constant along the waveguide. With intrinsic loss (the lower figure), the
temporal profile of the FCD is still the same, but its maximum value decreases
in the same manner as the pump-pulse intensity.

system. Note that the time increases from right to left. This car-
rier density rises rapidly with the pulse rise time and decay more
slowly as the carrier recombines. This behavior is explained by
the fact that the rise time of the FC density is determined by
the temporal width of the pump pulse whereas the subsequent
decay time by the characteristic relaxation time ; both these
characteristic times are independent on the pump power.

We have performed a detailed analysis of the Raman ampli-
fication process illustrated in Fig. 3 and Fig. 4. For this, we de-
termined the peak power of the Raman signal that is generated
over a certain propagation distance in the wire waveguide as a
function of the input peak power of the pump pulse. The calcula-
tions were performed both for lossless waveguide as well as for
a waveguide with intrinsic losses of 0.5 and 3.5 dB/cm. For the
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Fig. 6. Raman amplification versus the pump peak power, computed for
a lossless silicon waveguide (- - -) and for waveguide losses of 0.5 dB/cm
(� � �) and 3.5 dB/cm ( ). The waveguide length is L = 2 cm. The inset
shows a zoom-in of the region of low pump power. Both plots are drawn using
semi-logarithm scales.

seed signal pulse we used a Gaussian with the initial amplitude
W and both the signal and the pump

pulse had a temporal width of 30 ps. The data shown in Fig. 6
correspond to a propagation distance of cm. This figure
demonstrates that for waveguide losses that correspond to those
measured in recent experiments [3], a 0.1-mW pump power can
amplify a Raman signal from noise to the power level compa-
rable to that of the pump, over a relatively short distance. Also,
one observes that the amplification process begins to saturate at
lower pump powers if the waveguide losses are decreased. Fi-
nally, the inset in Fig. 6 shows that, as expected, the threshold
pump power required to observe the Raman amplification of
the signal increases with the intrinsic optical losses in the wire
waveguide.

A different Raman pulse interaction regime is that in which
the input pump and the seeded Raman signal have comparable
peak powers. The interaction of such pulses, as well as the corre-
sponding dynamics of the generated FCs is illustrated in Fig. 7.
Note that unlike the case of small power levels of the seeded
signal pulse, see Fig. 4, when the powers of the pump and signal
pulses are comparable, the pump pulse is not only strongly de-
pleted but its temporal profile is also markedly reshaped. Thus,
upon a propagation distance of the central part of the pump
pulse is almost completely depleted so that at the output facet
of the waveguide it emerges at two temporally separated pulses.
The dynamics of the signal pulse also shows interesting features,
namely initially it is amplified over a certain distance and then,
when the losses compensate the Raman amplification, it starts to
decay. From a practical point of view, this suggests that there is
an optimum distance at which the signal amplification reaches a
maximum value. Note also that, as expected, in this case of high
signal pulse power the amount of generated FCs is considerably
increased.

When the temporal duration of the interacting pulses is com-
parable to the Raman response time of silicon (a few picosec-
onds) the effect of the delayed response of the nonlinear medium
must be incorporated into the model, so that (37) must be used
to describe the dynamics of the optical pulses. In addition, for
such short pulses the walkoff length is comparable to the length
of the waveguides used in practical applications and, therefore,

Fig. 7. Raman interaction of a pump and a signal pulse, in a silicon wire
waveguide with 3.5 dB/cm intrinsic optical losses, both pulses having a 30-ps
temporal width. The pump power is P = 0:1 mW, which corresponds to a
Raman length L = 3:83 mm, and the seed signal power is P = 0:05 mW.
The lowest panel shows the dynamics of the optically generated FCs; see the
caption of Fig. 5 for general comments on plot used in this panel.

the pulse walkoff plays an important role. To illustrate this, we
present in Fig. 8 the dynamics of the interaction of a pump and a
signal pulse with the temporal width of 2 ps, for which the cor-
responding walkoff length is cm, as they propagate
a distance cm. Thus, Fig. 8 shows that the
group velocity mismatch between the two pulses reduces they
effective interaction length and, therefore, it limits the efficiency
of the Raman amplification. Furthermore, because of the tem-
poral walkoff between the two pulses, the temporal profile of
the two pulses, at the output facet of the waveguide, is strongly
asymmetric. In addition, the pump pulse self-induces a signifi-
cant large temporal modulation, which is seen clearly in Fig. 8
bottom left panel. This modulation appears as a wide plateau in
the pump spectrum.

It is desirable to compare the output of our theoretical model
with that measured experimentally. Unfortunately, a set of com-
plete experimental data does not exist. However, some guidance
can be obtained using results from other larger waveguides. The
highest Raman amplification in silicon waveguides reported so
far is from [35]. In this case, 24 dB intrinsic Raman gain was
achieved using 50-ps pulses in a 2.5-cm silicon waveguide with
a large cross section of 2 m . The peak power of the pump
pulse was 39 W. By comparison, if we apply a 50-ps pump pulse
with the same power density to the silicon wire waveguide, e.g.,
the peak power of pump at 2 W, our model predicts an intrinsic
Raman gain of about 33 dB. Considering that these two wave-
guides have different dispersion properties, different TPA char-
acteristics and different mode-matching conditions, plus the fact
that the pump pulses used in these two cases are likely to have
different spectral contents, the prediction from our model is well
within the acceptable agreement range with the experimental
results.
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Fig. 8. Raman interaction of a pump and a signal pulse, in a lossless silicon wire waveguide, both pulses having a 2-ps temporal width (the walkoff length is
L = 4:76 cm). The pump power is P = 0:1 mW, which corresponds to a Raman length L = 3:83 mm, and the seed signal power is P = 0:05 mW.
The lowest panels show the input profile of both pulses (dotted line) and the output profile of the pump (continuous line) and the Raman signal (dashed line), both
in the time (left panel) and frequency (right panel) domains. The waveguide in this case is L = 16L = 6:13 cm.

V. CONCLUSION

We have presented a comprehensive analysis of pulsed
Raman amplification in silicon wire waveguides. By using
the coupled mode analysis we have first developed a theoret-
ical model of the Raman interaction of optical pulses upon
propagation in a wire waveguide, which includes both linear
effects such as intrinsic waveguide optical losses, phase shift
and losses due to FCs generated through TPA, or first- and
second-order frequency dispersion as well as nonlinear effects,
which includes SPM and XPM, TPA losses, and the interpulse
Raman interaction. The dynamics of the FCs generated through
TPA has also been incorporated by means of a rate equation,
which is coupled to the system of equations that describes the
dynamics of the two-frequency optical field. The theoretical
model we have developed describes both the interaction of
pulses whose temporal width is much larger than the response
time of the Raman medium (the quasi-CW regime), as well as
the interaction of pulses with the temporal width comparable
or smaller than the Raman response time.

The system of coupled equations that describes dynamics
of both the optical field and the corresponding FCs generated
through TPA has subsequently been numerically integrated, and
phenomena such as noise-seeded Raman amplification, pulsed
Raman amplification, and Raman-mediated pulse interaction
have been described. Finally, we mention the that analytical
model introduced here can be adapted to study the optical prop-
erties of more complex silicon-based optoelectronic devices,
such as ring modulators or Raman lasers.
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