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Computational studies are used to show that the crystalline structure of Si causes the waveguide Kerr effective
nonlinearity, γ, to vary by 10% for in-plane variation of the orientation of a silicon nanowire waveguide (SiNWG)
fabricated on a standard silicon-on-insulator wafer. Our analysis shows that this angular dependence of γ can be
employed to form a nonlinear Kerr grating in dimensionally uniform SiNWGs based on either ring resonators or
cascadedwaveguide bends. Themagnitude of the nonlinear index variation in these gratings is found to be sufficient
for phase matching in four-wave mixing and other optical parametric processes. © 2011 Optical Society of
America
OCIS codes: 190.3270, 130.4310.

There has been recent, rapid growth in understanding
and applying nonlinear optical phenomena in silicon (Si)
nanowire waveguides (SiNWGs) fabricated on the Si-
on-insulator (SOI) platform. The high index-of-refraction
(n) contrast between the Si waveguiding region and sur-
rounding cladding allows tightly confined guiding modes
to be realized in devices with submicrometer transverse
size [1,2]. This tight optical confinement, along with the
high intrinsic third-order susceptibility of Si, results in an
effective nonlinear coefficient, γ, which is ∼105 times as
large as that of optical fibers [3,4]. Many all-optical non-
linear devices based on this ultrafast nonlinearity have
emerged [3,5], and thus it is increasingly important to
understand the effect of material parameters on γ.
In this Letter we report the implications of waveguide

orientation with respect to the Si crystallographic axes
on the nonlinear properties of nanowires. Devices that
take advantage of the anisotropic Si nonlinearity have
recently been proposed, including an optical isolator
[6] and a device designed for cavity-enhanced quasi-
phase-matching [7,8], based on either the Kerr or Raman
effect. Here we demonstrate that γ can vary by as much
as 10% with waveguide orientation, allowing one to
achieve periodic variations in γ by means of ringlike
structures or cascaded waveguide bends (CWBs). These
devices enable the formation of a nonlinear Kerr grating
in guiding structures with uniform transverse section.
We further propose phase matching a parametric process
as a potential application for the formation of such a
grating.
Si possesses an intrinsic anisotropic Kerr nonlinearity

due to its crystalline structure [9,10], and as a result, the
nonlinear optical properties of bulk Si are described
rigorously by a third-order (electronic) susceptibility ten-
sor, χ�3�, instead of a single scalar parameter. The tensor
elements of χ�3� are determined by first employing sym-
metry considerations to reduce χ�3� to two independent
elements (χð3Þ1111 and χð3Þ1122) [3,11], the ratio of which has
been experimentally measured [9]. Therefore, χ�3� can

be completely characterized using knowledge of one
element (for details see [3]). In order to determine γ, we
obtain the effective nonlinear susceptibility, Γ, via

Γ ¼ A0

R
A0
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where A0 ¼ ðh ×wÞ is the transverse section of the
SiNWG, A∞ is an infinite cross section, r⊥ represents
transverse position, and eðr⊥;ωÞ is the electric field of
the waveguide mode. From Γ, γ is determined by

γ ¼ ð3ωΓ0Þ=ð4ϵ0A0v2gÞ; ð2Þ

where Γ0 is the real part of Γ, and vg the group velocity
[3,11]. All components of the electric field are included in
this formulation, including the longitudinal field [12] and
the anisotropy in optical nonlinearity through χ�3�. Slow-
light enhancement via vg is also explicitly accounted
for, an important phenomenon in strongly dispersive
photonic guiding structures [13].

One important property of γ revealed by Eqs. (1) and
(2) is its dependence on waveguide orientation with
respect to the principal axes of the Si crystal, whereas
the linear guided modes depend only on the isotropic
n. Consider the case of SiNWGs fabricated on a (001)
wafer, the standard orientation of SOI device layers.
For this example, we choose a typical 220 nm × 500 nm
(height × width) SiNWG with air top-cladding and calcu-
late γ for different waveguide orientations. The wave-
guide is initially oriented with its x and z axes along
the ½110� and ½1�10� crystal direction, respectively [see
Fig. 1(a)]; the waveguide is then rotated by π radians
about the ½001� direction. There are differing experimental
reports pertaining to the degree of nonlinear anisotropy
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exhibited by Si [9,14,15]; therefore, we consider ratios
of χð3Þ1111=χ

ð3Þ
1122 between 2 and 3 for comparison (a ratio

equal to 3 indicates no anisotropy). The results of
this calculation show a cyclical change in γ with respect
to the angle of rotation for all χð3Þ1111=χ

ð3Þ
1122 except

χð3Þ1111=χ
ð3Þ
1122 ¼ 3 [Fig. 1(b)]. For the remainder of this

Letter, we assume χð3Þ1111=χ
ð3Þ
1122 ¼ 2:36 as measured in

[9]. For this anisotropy, the maximum (minimum) non-
linearity occurs for θ ¼ mπ=2 (θ ¼ ð2mþ 1Þπ=4), where
m is an integer. The difference in γ between maximum
(γMAX ∼ 320W−1 m−1) and minimum (γMIN ∼ 290W−1 m−1)
is ∼10%.
A rotation about the ½001� direction is of practical

importance, since this rotation is equivalent to changing
the orientation of the waveguide on the chip surface. For
example, a continuous θ ¼ π rotation is equivalent to a
180° bend on-chip, leading to a two-sinusoidal-cycle
variation in γ [Fig. 1(b)]. This result also indicates that
light propagating through a fully circular path, i.e., a ring
resonator [Fig. 2(a)], experiences a sinusoidal variation
in γ, which generates a nonlinear index grating in the
presence of a pump, with a period, ΛNL, given by

ΛNL ¼ πR=2; ð3Þ
with R being the radius of the ring. This nonlinear optical
grating can also be obtained through cascaded bends
[see Fig. 2(b)], in which case Eq. (3) would still hold,
provided that the bends are circular. The grating length
in the case of CWBs (LG;cwb) is simply determined by the
number of bends, NB, via LG;cwb ¼ πRNB, limited by
propagation loss. Note that our analysis ignores the influ-
ence of the waveguide bending on the field profile of the
optical modes and, implicitly, on γ. Our calculations,
however, show that for bends with R > 5 μm this effect
changes γ by <1%.
For the case of a ring resonator, the equivalent grating

length is dependent on resonator quality factor, Q, via the
photon lifetime. In this case, the number of round trips in
the ring gives the equivalent unfolded optical grating
length. More specifically, LG;ring ¼ NRLC ¼ Qλ0=ð2πNGÞ,
where NR ¼ Qλ0=ð2πNGLCÞ is the number of round trips
for a mode in the ring prior to a 1=e intensity decrease
[16], LC is the ring circumference, NG is the group index
of the mode traveling in the ring, and λ0 is the free-space
wavelength. As an example, a ring with R ¼ 30 μm,
Q ¼ 45; 000, and NG ¼ 3:48 at λ0 ¼ 1:512 μm [17] would
give LG ¼ 3:11mm and ΛNL ¼ 47:12 μm, producing a
long-period grating with 66 periods spaced by ΛNL. To

produce a shorter period grating, a smaller ring R would
be required. In fact, very small rings (R < 1:5 μm) with
high Q values have been realized on the SOI platform
[18], where these rings would form gratings with
ΛNL ∼ 2 μm.

The grating strength is directly related to the wave-
guide peak power, Pp. The grating index differential
(Δn) can be estimated by Δn ¼ cPpðγMAX − γMINÞ=ω.
As an example, Fig. 2(c) shows the resulting Δn as a
function of pump Pp. Typical peak pulsed-pump powers
in SiNWG experiments vary from 1 to 1000W; these re-
sult in values of Δn between 10−5 and 10−2. Gratings
with this Δn can be useful for on-chip signal processing
applications such as switching, routing, mode coupling,
or phase matching [19,20]. Note that for the case of high
Pp, a more detailed analysis that included nonlinear ab-
sorption and dispersion would be required to determine
the precise Δn along the unfolded grating.

As an example of a specific application of such a non-
linear grating, consider (degenerate) four-wave mixing
(FWM) in a 220 nm × 500 nm, L ¼ 0:5 cm SiNWG. Finite
element calculations show that such a waveguide is
highly dispersive near λ ¼ 1:55 μm with a large group-
velocity dispersion coefficient of β2 ≈ −3:3 ps2 m−1, which
limits the FWM conversion bandwidth (Δλ). In fact,
for this value of β2, Δλ ≈ ½λ4=ðπc2β2LÞ�1=2 ≈ 35 nm in the
small-gain regime [21]. Consider also a pump (λp ¼
1:55 μm) and signal (λs ¼ 1:8 μm), chosen to be separated
spectrally (250 nm) by ≫ the conversion bandwidth.
Energy conservation shows that the resulting idler is
at λi ¼ ð2λ−1p − λ−1s Þ−1 ¼ 1:361 μm. In the absence of any
grating the nonlinear interaction is not phase matched,
with the corresponding phase mismatch, Δβ, being
expressed by Δβ ¼ 2γPp − ð2βp − βs − βiÞ, where βp;s;i
is the propagation constant of the pump, signal, and

Fig. 1. (Color online) (a) Initial orientation of SiNWG with re-
spect to Si crystal, (b) γ versus Si crystal rotation (about the
½001� direction) for a 220nm × 500 nm SiNWG at λ ¼ 1:55 μm.
χð3Þ1111=χ

ð3Þ
1122 ¼ 2, 2.15, 2.36, 2.75, and 3 are considered.

Fig. 2. (Color online) Nonlinear optical grating on-chip via
(a) ring resonator or (b) CWBs. (c) Δn (as defined in inset)
experienced by the pump formed by nonlinear grating versus
Pp. A copropagating signal would experience 2Δn due to
cross-phase modulation [4]. (d) Δβ compensated by a grating
formed in a ring resonator or CWBs of varying R. Points 1,
2, and 3 give examples of phase matching with a 100mW pump
at λp ¼ 1:55 μm and R, λs, and λi of (1) 20.7, 2, and 1:265 μm;
(2) 100, 1.714, and 1:415 μm; and (3) 900, 1.601, and
1:502 μm, respectively.
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idler, respectively. Assuming Pp ¼ 100mW [21], Δβ ¼
0:0834 μm−1. However, a nonlinear grating can compen-
sate this phase mismatch if ΛNL ¼ 2π=jΔβj, which is
satisfied if ΛNL ¼ 75:37 μm, and realizable by a ring
resonator or CWBs with R ¼ 47:98 μm.
The conversion efficiency improvement resulting from

this particular grating can be illustrated by performing a
rigorous FWM calculation that takes into account Kerr
effects, two-photon absorption (TPA), free carrier ab-
sorption (FCA), free carrier dispersion, and linear loss.
Considering the same SiNWG, exhibiting 1 dB=cm propa-
gation loss and a 0:5 ns free carrier lifetime, we calculate
the conversion efficiency (defined as the ratio between
the output idler power and input probe power) for a
pump (λp ¼ 1:55 μm), signal, and idler with coupled
powers of 100, 1, and 0mW respectively for varying λs.
The nonlinear grating is taken into account through
the anisotropy of Γ and assuming CWBs with R ¼
47:98 μm. The result is shown in Fig. 3, where a sharp
conversion efficiency enhancement of ∼12 dB is shown
near the target probe wavelength. The inset of Fig. 3
quantifies how the conversion efficiency enhancement
varies with pump power, demonstrating that the 100mW
pump power used here is near the limit for the maximum
enhancement achievable for the CW case at these wave-
lengths due to optical limiting, which saturates the opti-
cal power as a result of TPA and FCA [3]. This saturation
can be ameliorated by moving λp > 2:2 μm to avoid TPA
altogether [22], leading to higher conversion efficiency.
An equivalent method has recently been proposed for

phase matching FWM in a ring using the anisotropic Kerr
effect [7]; however, the use of a ring, as compared to
CWBs, can pose a practical challenge, since all signals
would additionally have to meet the ring resonance
condition. Figure 2(d) shows that a nonlinear grating
formed with a ring resonator or CWBs of varying R
can compensate a wide range of Δβ, illustrating the
broad wavelength range that can be phase matched using

this method. Further, this approach is not restricted to
periodic variations of γ but can be employed to achieve
virtually any predesigned spatial dependence γ ¼ γðzÞ,
such as an apodized grating, limited by bending loss.
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Fig. 3. (Color online) Conversion efficiency for varying λs in
CWBs with R ¼ 47:98 μm and λp ¼ 1:55 μm. A ∼12dB enhance-
ment occurs for λs ¼ 1:78 μm. The inset plots the conversion
efficiency enhancement as a function of pump power.
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