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Abstract: The strong dispersion and large third-order nonlinearity in Si 
photonic wires are intimately linked in the optical physics needed for the 
optical modification of phase. By carefully choosing the waveguide 
dimensions, both linear and nonlinear optical properties of Si wires can be 
engineered. In this paper we provide a review of the modification of phase 
using nonlinear-optical effects such as self-phase and cross-phase 
modulation in dispersion-engineered Si wires.  The low threshold powers 
for phase-changing effects in Si-wires make them potential candidates for 
functional nonlinear optical devices of just a few millimeters in length. 
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1. Introduction 

The last few years have seen an extraordinarily rapid pace in advances in developing new 
active silicon photonics devices and understanding their underlying physics. This area of 
research began more than two decades ago, with a study by Soref and Lorenzo, in which the 
first silicon waveguide was demonstrated [1]. Soon after, work in silicon photonics 
concentrated on electro-optical control through the use of free carriers (FC), e.g., by carrier 
injection, as a means of modulating light either by modifying the refractive index or the 
material absorption [2]. The results of this work led to the development of silicon-based 
optical modulators [3-6]. The work on free-carrier modulation in silicon was then followed by 
research in thermo-optic modulators, which have a surprisingly high performance due to the 
favorable thermo-optic coefficient of silicon [7-11]. Rapid advances in both of these device 
types have continued into the present, including scaling down the device “footprint” and 
power consumption and increasing the frequency response. Because the favorable electronic, 
optical, and physical properties of silicon and in conjunction with the mature complementary 
metal-oxide-semiconductor (CMOS) fabrication processing technology, large-scale 
integration of functional optical devices becomes possible, including integration with 
relatively complex electronic components. The use of CMOS manufacturing also facilitates its 
precise patterning to be applied to integrated optical circuits; this enables, for example, greatly 
reduced sidewall roughness and, hence, very low loss even in the small waveguides mentioned 
here. An excellent overview of the CMOS fabrication process is presented in Ref. 12. A 
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number of review articles and books have been written on this emerging area of silicon 
photonics [13-28]. 

In the last several years, a new set of devices has been developed, which are based on all-
optical control of nonlinear optical properties of Si. For example, soon after observation of 
spontaneous Raman emission in silicon waveguides, [29, 30], Raman amplification in silicon 
waveguides was first demonstrated by Claps et al. in 2003 [31] and later by other groups [32-
39]. Raman lasing was then demonstrated in Si waveguides [40,41,42,43,44], SiGe 
waveguides [37], Si rings [45], and in hybrid AlGaInAs-Si waveguides [46]. In addition, other 
nonlinear optical effects or functionalities such as wavelength conversion via coherent anti-
Stokes Raman scattering (CARS) [47,48] and four-wave mixing (FWM) [49-55], self-phase 
modulation (SPM) [56-62], cross-phase modulation (XPM) and cross-absorption modulation 
[63-66], switching via two-photon absorption (TPA) [67,68], and supercontinuum generation 
[69] have been demonstrated experimentally or studied theoretically. These effects can lead to 
important functionalities such as pulse shaping or optical switching. Note also that, from 
another viewpoint, these effects can introduce impairments to a Si-based optical data system 
via such effects as SPM-induced spectral broadening or inter-channel crosstalk due to XPM.  

From a materials viewpoint, several key properties of silicon make it an ideal integration 
medium for functional photonic devices. The first is silicon’s large refractive index (n ~ 3.5), 
which in conjunction with a low index cladding (n ~ 1 for air or n ~ 1.45 for silica), results in 
very tight light confinement. Such strong light confinement enables scaling down of silicon 
guided-wave devices to ultra-small cross-sections, i.e., < 0.1 μm2. These devices are termed Si 
photonic wires (SPW). This reduction in device dimensions in a high-refractive-index-contrast 
medium leads to three advantageous properties: capability for dispersion engineering, high 
optical-field density, and intrinsically short carrier lifetime due to rapid diffusion into surface 
states. The second key optical property of silicon is an extremely large third-order nonlinear 
optical susceptibility—about 3-4 orders of magnitude larger than that of silica [70]. This large 
cubic nonlinearity in Si, in connection with its strong optical confinement, leads to further 
enhancement of the effective optical nonlinearity. This enhancement results in a low optical 
power requirement or threshold for achieving strong nonlinear optical effects, as well as very 
short nonlinear optical devices of the order of a few hundred micrometers to millimeters in 
length. 

Because of the submicrometer dimensions of SPWs, their dispersion properties become 
markedly different from those of standard optical fibers or even of silicon waveguides that 
have a few micrometers in cross sectional dimension. In particular, due to their ultra-small 
dimensions, their dispersion is controlled by the exact geometry of their cross-sectional area. 
This property leads to the possibility of tailoring of their basic dispersion characteristics such 
as the group-velocity dispersion (GVD). This capability of “engineering” the optical 
dispersion is important to the development of nonlinear optical functionalities of silicon for 
two key reasons:  

 
• Tailoring the phase index enables control of phase matching of nonlinear optical 

properties such as FWM, broadband optical parametric gain, modulation 
instability (MI), and CARS. It also affects more complex effects such as soliton 
generation, pulse compression, and, more generally, pulse dynamics.  

• Due to the large dispersion and effective optical nonlinearity of Si, as compared 
to silica, it is possible to scale down the length × power product for integrated 
nonlinear devices. Thus at low to moderate laser pump powers of a few ~100s 
mW, the nonlinear lengths in Si wires are a few millimeters, compared to km-
scale lengths in standard optical fibers. 

 
The scope of this paper is as follows: We begin by describing our experimental probes. 

We then continue by discussing dispersion engineering in silicon waveguides, including 
computational aspects and some applications. We then provide a description of our theoretical 
model for nonlinear pulse propagation in Si wires, including the effects of optically generated 
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free carriers and the effects of crystalline anisotropy. In this model, we use a rigorous 
approach based on a system of nonlinear coupled-equations describing the pump and probe 
field envelopes and the carrier density, which allows us to interpret accurately the various 
nonlinear processes that are observed, and which agree well with the experimental 
observations. We then discuss nonlinear optical effects as a further means to change 
transiently the effective index of the guiding silicon structure (waveguide), hence the phase of 
light. In particular, after a brief review of the general concepts, we describe our work on SPM 
and XPM in Si wires by comparing results from long pulse and short pulse sources. In this 
work, the interaction length between the pump and the probe pulses is less than the waveguide 
length. Furthermore, the use of ultrashort-pulse lasers of duration ~200 fs allows us to 
investigate an interesting regime where the nonlinear and various dispersion lengths are all 
comparable; such a system yields complex, but rich information on pulse propagation and 
pulse distortion in Si wires. Our observations show clearly that SPWs have the potential to 
form a “fiber-on-a-chip” system allowing for nonlinear optical control of on-chip functions or 
integrated photonic circuits. 

2. Experimental platform 

Our experiments employ single-mode SPWs with thicknesses ranging from 220 - 226 nm, 
widths ranging from 445 - 470 nm, and length of typically L ≈ 4 mm, patterned on Unibond 
silicon-on-insulator (SOI) with a 1-μm-thick oxide layer and aligned along the [110] 
crystallographic direction. The devices, which are described in detail in Refs. 71 and 72, were 
fabricated using the CMOS fabrication line at the IBM T.J. Watson Research Center. Each 
end of the waveguides has an inverse polymer mode-converter, which allows efficient in and 
out coupling. The measured intrinsic waveguide loss is αin ≈ 3.6 dB/cm for the TE 
polarization near λ = 1550 nm; lower losses of 1.7 dB/cm have been measured [73], but these 
waveguides are not used here. All measured spectra or output signals are TE-polarized. The 
laser sources used here are a mode-locked fiber-laser and a Ti:sapphire-based optical 
parametric amplifier, which produce the pulses with pulse durations of T0 ≈ 200 fs and 2 ps, 
respectively, as measured by autocorrelation or frequency-resolved optical gating. To prevent 
nonlinear effects from other optical elements prior to the waveguide, an objective lens was 
used to couple light into the waveguide; the output was then collected by a tapered fiber 
connected to a power meter or an optical spectrum analyzer (OSA). The coupling loss using 
the objective-lens waveguide coupler into the waveguide may range between 25 to 35 dB.  

3. Dispersion Engineering in Si Photonic Wires 

Because of their sub-micrometer cross-sections and high index contrast and, hence, strong 
optical confinement, SPWs offer important and unprecedented flexibility in tailoring the 
dispersive properties of guided-wave devices. Demonstration of dispersion engineering has 
also been accomplished earlier in photonic crystal fibers [74,75] and multimode fibers [76]. 
The design of such silicon waveguide devices can be challenging because the effective index 
method that is generally used in the case of low-index contrast photonic structures fails when 
applied to high-index contrast SOI devices, especially for very small waveguide cross-
sectional dimensions. Instead the most commonly used approaches in this area use finite 
difference and/or finite element methods; these numerical techniques enable rigorous 
calculations to be done with great accuracy. In our calculations we employed the finite-
element method (FEM); in addition, we have also shown that the full vectorial beam 
propagation method (BPM) can be used as well. 

Systematic calculations of dispersion engineering in submicrometer buried silicon wires in 
an SiO2 matrix, were first demonstrated by Chen et al. for several possible dimensions 
including one that exhibited zero GVD (ZGVD) at telecom wavelengths. [77]. Subsequent 
measurements and calculations by Dulkeith et al. [78] and Turner et al. [79] showed clearly 
that such structures could be fabricated and measured. The work by Turner et al. demonstrated 
that GVD in such waveguides could be tuned from −2000 to 1000 ps/(nm⋅km). Later, Yin, et 
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al. [80] calculated the dispersive properties of larger-dimension rib waveguides using the 
effective-index method approximation. Chen et al. also investigated the effect of third-order 
dispersion in waveguides with various dimensions and its effects on pulse propagation [81]. 

In order to show more clearly that the dispersion properties of such ultra-small waveguides 
are determined by the waveguide geometry and, thus, can be readily engineered by the choice 
of waveguide parameters, we determine the modal dispersion of several waveguides with 
different dimensions. To do this, we consider the strip waveguide structure shown in Fig. 1 
fabricated on SOI with the optical propagation along the ]011[  direction, a convenient 
cleavage plane of Si for formation of high-quality end facets. Subsequently, we determine the 
following waveguide dispersion parameters for this structure: effective index, neff, group index, 
ng, GVD coefficient, β2, and the third-order dispersion (TOD) coefficient, β3. We calculated 
neff using the RSoft’s FemSIM, a generalized mode solver based on the FEM. We then fitted 
the values of neff with a 7th-order polynomial and took derivatives of this polynomial to obtain 
ng and β2, which are defined by ng=β1c, where βm = dmβ0/dω m, β0 = neff(ω)ω/c, and ω is the 
carrier frequency. Our calculations were also cross checked by separate fully vectorial BPM 
computations of the same quantities. The effective index obtained from these methods agree 
within 0.1% of each other. The results of these numerical calculations were compared with 
and are found to agree with experimental data [78]. With regard to the calculation of β3, this is 
a more difficult problem because the accumulated errors from each numerical-derivative step 
prevent accurate determination of the consecutive numerical derivatives beyond the second 
order, as discussed in Ref. 62. As a result, we only show the TOD coefficients calculated 
using this approach in Fig. 1 for completeness. As will be discussed in a later section, we have 
used a new experimental approach to determine the TOD coefficient.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Plots of computed effective index of refraction, and first- through third-order dispersion 
as a function of wavelength for four different Si-wire dimensions. Blue: 350×220 nm2, green, 
360×220 nm2, red 450×220 nm2, light blue 450×330 nm2. Inset: waveguide geometry.  

 
In order to provide a more complete description of dispersion engineering, we consider the 

geometry of a silicon channel waveguide surrounded by SiO2, and calculate the corresponding 
ZGVD wavelengths. Figure 2 shows a contour map illustrating the ZGVD wavelength for 
different waveguide dimensions. This ZGVD contour map is created by first calculating the 
dispersion coefficients of SPWs for a series of waveguide dimensions using the methods 
mentioned above. The waveguide width w ranges from 375 to 800 nm and the height h ranges 
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from 225 to 400 nm, in increments of 25 nm for both dimensions. For smaller waveguide 
dimensions, two ZGVD wavelengths are possible. Here we present only the lower value of the 
two wavelengths of the ZGVD. The ZGVD wavelengths for some selected waveguide 
dimensions, reported in a recent work by Turner et al. [79], are in agreement with the results 
of our calculations. An inspection of Fig. 2 clearly reveals that ZGVD wavelengths can be 
achieved in the relevant telecommunications wavelength range using SPWs. In addition to 
being able to design the waveguide dimensions at appropriate ZGVD wavelengths, the ZGVD 
map also provides a sense of the relative fabrication tolerances. For example, we see from Fig. 
2 that for large w and small h, the fabrication tolerances would be much tighter because of the 
higher rate of change of the ZGVD wavelengths per unit waveguide length. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Contours of the zero-GVD map of a silicon photonic-wire channel waveguide. The zero 
GVD wavelengths are expressed in units of micrometers.  

 
 

4. Theory of nonlinear optical pulse propagation in Si photonic wires  

In general, the pulse dynamics for Si wires are governed by the interplay of dispersion and 
nonlinear optical effects whose relative strengths are determined by several characteristic 
lengths, namely the second- and third-order dispersion lengths, defined as LD=T0

2/|β2| and LD′ 
= T0

3/|β3|, respectively, and the nonlinear length LNL, whose definition will be given in the next 
subsection. A comprehensive theoretical model describing pulse propagation in Si photonic 
wires should include nonlinear effects, i.e., SPM, XPM, and two-photon-absorption (TPA), as 
well as linear ones such as the intrinsic optical dispersion and loss, free-carrier absorption 
(FCA) [82,83], or FC-induced optical dispersion. Recently [66,77], by using coupled-mode 
theory, we have developed such a theoretical model that fully accounts for all these linear and 
nonlinear optical effects. The set of the corresponding coupled equations describing the slowly 
varying normalized envelopes up(z,t) and us(z,t) of the co-propagating pump and signal pulses, 
respectively, can be written as  
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where 
,p s

P  are the pulse peak powers, 
, ( , )g p s

v  are the group velocities, A0 is the geometrical 

cross-sectional area, tc is the carrier lifetime, ħ is the reduced Planck constant, αin is the 

intrinsic loss, , 3 2 2 2

0 ,
(1/ 1/ )/p s

FC e ce h ch p s
e N m m cnα μ μ ε ω∗ ∗= +  are the FCA coefficients, and 

, 2 0.8 2

0 ,
( / / )/2p s

FC ce ch p s
n e N m N m nδ ε ω∗ ∗= − +  are the FC-induced changes in the refractive index [2]. 

Here, 
0

0 26
ce

m . m∗ =  (
0

0 39
ch

m . m∗ = ) is the effective mass of the electrons (holes) with m0 as 

the mass of the electron; and μe (μh) is the electron (hole) mobility. The parameters 

, , ,s p s p s p
i′ ′′Γ = Γ + Γ  and 

, , ,sp ps sp ps sp ps
i′ ′′Γ = Γ + Γ  are complex effective third-order nonlinear 

coefficients of the SPW, defined as  

    
0

(3) 2
0 /* *

j j j j j jA
A dAΓ = ⋅∫ e χ e e e� J      (4) 

    
0

(3)
0 /( )* *

jl l j j l j lA
A dAΓ = ⋅∫ e χ e e e� J J      (5) 

where (j, l = p, s), 2 2

,( )| |p,s p sA
n dA⊥∞

= ∫ r eJ  and the waveguide modes are , , ,( ; )p s p s p sω≡e e r . The 

prime and double-prime symbols in Γ designate the real and imaginary parts, respectively. 
According to these definitions, the real parts of the quantities Γs,p and Γsp,ps describe the SPM 
and XPM effects, respectively, and are directly related to the nonlinear refractive index, n2, 
whereas their imaginary parts describe TPA processes, which are quantified by the TPA 
coefficient β. In addition, we take into account the dependence of the pulse dynamics on free 
carriers generated through TPA, such as FCA and FC-induced dispersion. Finally, the 
parameters κp,s are related to the effective area of the mode and are given by 

2 2| | /p,s p,s p,sn dAκ = ∫ e J . It should be noted that the power-dependent terms in Eqs. (1-3) differ 

those from the original derivation of Chen et al. [77] by a factor of 1/4 due to the mode 
normalization employed in [77]. In order to compare the values of the resulting effective 
nonlinearity coefficient (see below) with those reported by others, e.g., Koos et al. [89], we 
use throughout this paper the convention for defining the real field E(r,t)  = 

..)exp()(2
1 ccti +− ωrE  and other relevant physical quantities, as is used in Ref. 88. The values 

for the nonlinear optical susceptibility )3(
χ
�

 are based on previous measurements by Dinu et al. 
[84]. Dinu also carried out a theoretical analysis of the dispersion curves and scaling rules for 
phonon-assisted third-order nonlinear optical coefficients of silicon [85]. Recently, more 
comprehensive measurements of silicon’s nonlinear parameters have been performed by 
Bristow et al. [86] and Lin et al. [87]. 
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In this general case of co-propagating optical pulses, the overall nonlinear phase shift of 
each pulse has two sources: SPM, which is induced by the pulse itself, and XPM, arising from 
the nonlinear change of the refractive index induced by one pulse and probed by the co-
propagating one. If the powers of both pulses are such that dispersion and nonlinear terms in 
Eqs. (1) and (2) have comparable magnitudes, the nonlinearly induced phase shifts can only 
be found by numerically solving these equations. If, however, the SPM and XPM terms in Eqs. 
(1) and (2) dominate, one can derive [88] an analytic formula for the nonlinearly induced 
phase shift of the probe, φs. Neglecting for the moment the TPA effects, we can write the 
nonlinear phase shift φs(z,T) as           

∫ ′Δ′++=
z

pppsssss zzTuPTuPzTz
0

22 d|),0(|2|),0(|),( γγφ   (6) 

Here, T = t−z/vg,p is the time in the reference frame of the pump pulse,  
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=     (8)  

are the SPM and XPM coefficients, respectively, with i or j = {s,p}, and Δ = 1/vg,s−1/vg,p is the 
temporal walk-off. For a weak probe pulse, the first term of Eq. (6) can be neglected, and, 
assuming that both pump and probe are Gaussian pulses, namely up(0,T) = exp[−(T−Td)

2/2Tp
2] 

and us(0,T) = exp(−T2/2Ts
2), we can write the XPM-induced phase shift in Eq. (6) as   

         ( , ) erf ( ) erf ( ) ,ps p
s d d

P z
z

γ π
φ τ τ τ δ τ τ

δ
= − + − −⎡ ⎤⎣ ⎦       (9) 

where τ = T/Tp, τd = Td/Tp, and δ = zΔ/Tp. Td is defined as the temporal separation between the 
maximum intensity points of these two pulses prior to their entry into the waveguide. In the 
convention we use here, this time delay is positive (negative) when the probe leads (trails) the 
pump. Using Eq. (9), we can derive the frequency shift of the probe due to the XPM as 

{ }2 22( , )1
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5. Effects of strong optical confinement on optical nonlinearity 

To illustrate the effect of strong optical confinement on the optical nonlinearity of SPWs, we 
first consider the propagation of a single pulse through a Si wire. The pulse dynamics are 
governed by the coupled nonlinear differential equations [62, 77]: 
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where u(z, t) is the pulse envelope and P0 is the in-coupled peak power. The effective 
nonlinear susceptibility, Γ = Γ ′′+Γ′ i , similarly defined as jΓ  in Eq. (4), describes the 

nonlinear effects incorporated in our model, i.e., SPM and TPA, and is determined by an 

overlap integral of the bulk third-order susceptibility tensor (3)
χ
�

of silicon and the waveguide 
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mode. It should be noted, that the resulting expression for the optical nonlinearity of SPWs, 
2

0 0
3 /4

g
A vγ ω ε= Γ , is considerably different from the well-known expression commonly used 

in optical fibers, 
2 0 eff

/n cAγ ω= where Aeff is the effective modal area, defined as a weighted 

integral over the transverse field profile, used in describing the nonlinear property of optical 
fibers. Because of the large group index in small-cross section Si waveguides, compared to 
those of larger waveguides, the group velocity vg is smaller in the former case; hence this 
reduced vg provides a further enhancement in the effective nonlinearity in addition to the 
effect of decreased area A0.  In the limit of low-index contrast structures such as optical fibers, 
the general expression for γ reduces to the standard definition of γ. Thus, there exists a 
significant distinction between high- and low-index contrast waveguide structures. The latter 
or standard fiber expression (for γ) neglects the nonlinear anisotropy of Si, the contribution to 
γ of the longitudinal component of the electric field, and the strong spatial inhomogeneity of 
the waveguide mode. Note, however, that an effective area can be introduced in the case of Si 
wires, too, but the definition of the Aeff must be properly changed [89]. For the case of a SPW, 
the large difference between ng and n, makes it important to use the γ as defined here in 
describing the nonlinear optical behavior of wave propagation in such waveguides. The 
quantities Γ′ and Γ″ can be used to define an effective Kerr nonlinear refractive index, n2, and 
an effective TPA coefficient, β, respectively, according to  

2 2
0

3

4
n

cn

′Γ=
ε

       (13) 

and 

2 2
0

3

2n c

′′Γ= ωβ
ε

.        (14) 

Using the values )3(
1111χ  =  (2.20+i0.27)×10−19 m2/V2 and )3(

1122χ  = (5.60 + i1.82)×10−20 m2V−2 

[77] extracted from the data of Ref. 84, we obtain a nonlinear coefficient, Γ = 
(2.38×103+i7.25×102).  The value of Γ strongly depends on the dimensions and geometry of 
the waveguide. This value was obtained for a 220 nm × 450 nm cross-section waveguide.  
Recently, Koos et al. carried out similar calculations, which was used in evaluating the 
nonlinear parameter from strip and slot waveguides, which showed that large values of 
nonlinearity could be obtained by optimizing the waveguide geometry [89]. 

The evolution of the pulse spectra as the pulse propagates in the waveguide is governed 
by the interplay of the linear dispersion and nonlinearity. These effects can be described in 
terms of several characteristic lengths, namely the GVD length LD, the TOD length LD′, and 
the nonlinear length LNL, defined as LNL = 4ε0A0vg

2/3ωP0Γ′. For ps or longer pulses with P0 = 
0.2 W or larger, LNL/LD << 1 and LNL/LD′ << 1. In this case, the second and the third terms on 
the LHS of Eq. (11) may be ignored and SPM dominates the pulse evolution inside the 
waveguide. If, instead, the pulse width is in the fs regime, LD, LD′, and LNL are comparable for 
mW-level powers. In order to appreciate the importance of these lengths scales, we list in 
Table 1 some specific values of these characteristic lengths for T0 = 200 fs and 10 ps for a 
SPW. The short pulse case is then compared with that of a typical single mode optical fiber. 
The values for the characteristic lengths, LD ≈ 10 mm and LD′ ≈ 11 mm are based on 
calculations and measurements for the 220 nm × 450 nm waveguide cross-section. The 
nonlinear length LNL depends on power, e.g., if P0 = 0.2 W, LNL ≈ 8 mm. Consequently, near 
or above P0 ≈ 0.2 W, the GVD, TOD, and SPM all become relevant to the overall pulse 
dynamics. It should be noted that β3, which yields LD′, is extracted from the data of Ref. 62 
and is described below. 
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Table 1. Comparison of characteristic lengths for ultrashort (200 fs) and long (10 ps) pulses, 
and the γ parameter in a Si photonic wire (dimensions: 220×450 nm2) and a single-mode 
optical fiber for λ = 1.55μm.  

 
Dispersion and 

nonlinear parameters 
SPW 

Tp = 200 fs 
SPW 

Tp = 10 ps 
Optical Fiber 
Tp = 200 fs 

LD ~ 1 cm ~ 25 m ~ 2 m 
LD′ ~ 1 cm ~ 2.5 km ~ 80 m 

LNL at P0 = 0.2W  ~ 8  mm  ~ 8 mm ~ 2 km 
γ (m−1W−1) ~ 6×102   ~ 6×102  ~3×10−3  

 
An examination of the Table 1 leads us to several important conclusions. First, the SPW 

has dispersion lengths LD and LD′ two orders of magnitude shorter than those corresponding to 
optical fibers. Also, the nonlinear length of a wire-waveguide is seen to be several orders of 
magnitude shorter than in optical fibers, for a typical peak power of a few tenths of 1 W. The 
short nonlinear length is due to the very high nonlinear parameter, γ, which is approximately 5 
orders of magnitude higher in Si photonic wires than in typical standard optical fibers. In 
addition, dispersion and nonlinearity lengths are also pulse-length dependent. Thus the 
dispersion length for a typical ps pulse is several orders of magnitude longer than that for a fs 
pulse. However, the nonlinear length is the same for both short and long pulses as long as the 
pulse power is the same. Therefore, with ultrashort pulses, we can simultaneously observe 
linear and nonlinear optical effects if the dispersion length and nonlinear length are 
comparable to the waveguide length. Below, we will illustrate how the above equations 
describe the strong nonlinear optical effects observed in our experiments. As a further note, γ 
strongly depends on the cross-section geometry at these deeply scaled dimensions. For 
example, for a fixed height of 220 nm, the various values of γ are 680, 566, and 463 (W−1m−1) 
for waveguide widths of 360, 450, and 520 nm, respectively, using the measurements from 
Ref. 84 and neglecting the longitudinal field component. Note that these values are 
comparable to the ones obtained by Koos et al. [89]. Note in addition that in a few of our 
previous papers [66,69,81], a coding error led to our stating erroneously high values of γ; this 
has been corrected in the present paper. 

5.1 Optical Limiting 

The most immediate and readily observable nonlinear response in such a tightly confined 
waveguide is optical transmission limiting; a measured example is shown in Fig. 3. In this 
figure, the two examples illustrate limiting in two important temporal regimes: (i) ps-pulse 
pumping, a regime where GVD is minimal, so that the SPM is the main effect that affects the 
pulse propagation, and (ii) ultrashort (~100 fs)-pulse pumping, where GVD becomes 
significant enough such that, in conjunction with the SPM, it severely distorts the temporal 
and spectral pulse profile as is shown in the next section. Data were taken from references 61 
and 62, respectively. Specifically, the graph shows results corresponding to a train of 1.8 ps 
and 200 fs pulses, injected into waveguides of nearly identical cross sections, i.e., ~220×450 
nm2, so as to have the same time-averaged carrier lifetime. The maximum coupled-input peak 
powers for both cases are a few W. In case (ii), our simulations show that the TOD effects 
also become sufficiently strong to significantly distort the output pulse spectrum, so a better 
measure for the optical power carried by the pulse train is the average power. Consequently, 
Fig. 3(a) displays the output peak power vs. the input peak power while Fig. 3(b) displays 
average power vs. input peak power.  
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Fig. 3. Dependence of output power on coupled input power for (a) 1.8 ps (from Ref. 61) and  
(b) 200 fs pulses (from Ref. 62). Experiment: squares. Simulations: curves.  

 
For both cases, the output power scales linearly with the input power for input peak 

powers below ~50 mW and saturates above this input power. Although the powers required to 
achieve the onset of saturation are similar, the saturation mechanism for each case is different. 
For the case of the longer pulses, saturation occurs due to absorption from free carriers 
generated by TPA while for the short pulses, saturation is due predominantly to direct optical 
loss from the TPA process itself. The onset of saturation in both cases is predicted accurately 
by the numerical solution of Eqs. (11) and (12), which is shown by the curves in each panel. 
In particular, our model predicts that for optical peak powers of in the range ~50-100 mW, 
near the onset of saturation, the FC-induced loss for the 1.8 ps case is approximately 8× larger 
than that of the 200 fs case. This may also be seen as follows: Due to the difference in the 
pulse durations, the relative pulse energy is approximately 10:1 for the long pulse as 
compared to the short pulse; thus the longer pulse yields more carriers than the shorter pulse 
by an order of magnitude, as seen from Eq. (12), and therefore the corresponding FC-induced 
losses are also larger. 

The mechanism for the saturation behavior in each of the two cases was investigated in 
detail by numerically solving Eqs. (11) and (12). The solid lines in Fig. 3 denote the 
theoretical predictions for both cases. The calculation in this case takes into account the total 
dispersion and other linear effects, including FCA. For the case of ps pumping shown in Fig. 
3(a), near the saturation threshold power value of, say, ~ 60 mW, the optical power leads to a 
FC-density of N ~ 2×1017 cm−3, which is about two orders of magnitude greater than the 
carrier density in the unexcited waveguide (p-doped, N ~ 1×1015 cm−3). The corresponding 
FC-density for the case of the short pulse pumping is N ~ 3×1015 cm−3, which is comparable to 
the unexcited carrier density. Hence, the effect of losses from carriers generated by TPA, in 
the case of the short-pulse pumping, is negligible; however, in this case, the TPA process 
itself is important and in fact causes the optical limiting at high peak powers. For the case of 
the shorter pulse excitation, the numerical simulations were done both in the presence and the 
absence of FCA and, as expected, no difference was observed between these two cases as 
shown in Fig. 3(b). Our numerical calculations also showed that choosing sech- or Gaussian-
shaped pulses leads to the same results, as long as the FWHM is kept the same. Finally, note 
that the carrier accumulation from multiple pulses is negligible in our experiments since the 
temporal separation between adjacent pulses is significantly longer than the carrier lifetime. 

5.2 Self-phase modulation and third-order dispersion  

In addition to optical limiting behavior, optical pulses propagating in a SPW show increasing 
spectral modulation, as the pump power is increased. Our measurements show that as the 
input power is increased, the pulse spectrum broadens and then develops a multiple-peak 
structure. This behavior, which is a signature of the SPM, is the result of the phase 
interference between the pulse-frequency components with a time-dependent SPM-induced 
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frequency chirp. We find through our simulations that in Si wires, the SPM can be strongly 
influenced by the optical properties of the medium including TPA, TPA-induced free carriers, 
and TOD. Because of the small energy carried by an ultrashort pulse, the effect of FCA is 
generally less severe if not absent, as observed for the case of optical limiting above. 
Moreover, the laser repetition rate can play an important role if the lifetime of the carriers is 
longer or comparable with the interpulse temporal separation, since in this case, the carriers 
will accumulate over time and may become a source of loss as well as a source of phase shift. 
Accumulation is important if the carriers have a sufficiently long lifetime, as is typical for 
unbiased large cross-section waveguides, i.e., A0 > 1 μm2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Experimental observation of SPM with (a) 1.8 ps pulses (figure from Ref. 61) (b) 200 fs 
pulses (data from Ref. 62).  

 
Figure 4 illustrates the spectral broadening of ps- and fs-pulses upon propagation in SPWs 

with similar dimensions. One striking behavior, which is shown in Fig. 4(b), is the strong 
modulation of the spectra, as well as a more pronounced asymmetry of the pulse profile, 
which increases with the input power. Spectral asymmetry, in general, may result from FCA, 
TOD, or the initial input-pulse asymmetry but our simulations indicate that TOD is the 
dominant effect for the short-pulse data shown in Fig. 4(b). In optical fibers, SPM-induced 
spectral broadening of ps-pulses is normally symmetric around the center frequency and 
similarly, for propagation of such pulses in SPWs, only minimal asymmetry is observed [88]. 
For much larger Si waveguides, carrier lifetimes are longer and the resulting FCA can cause 
spectral asymmetry [57]. As we have discussed above, while FCA may become a significant 
effect for ps or longer pulses, it is greatly reduced for fs pulses, as is the case for the optical 
limiting experiments above. Hence, for the case of the ultrashort-pulse pumping in Si wires, 
TOD becomes the dominant factor responsible for the spectral asymmetry seen in Fig. 4(b). 
Our numerical simulations, as discussed in the next subsection, further support this 
observation.   

Our theoretical model accurately describes the spectral changes in the output pulse 
induced by the SPM effect. Figure 5 shows the experimental and simulation results using 
hyperbolic-secant pulse shape for the 200 fs pulse; the numbers 1-8 indicate a series of smaller 
features or peaks. The agreement between data and simulations is excellent. The output 
spectrum obtained with the hyperbolic-secant pulse shape agrees with the experimental data in 
Fig. 5(a), particularly with regard to the output spectral shape and the spectral shift of the split 
peaks. Note also the spectral peak at 1590 nm, peak 7; this feature is not a simple SPM peak 
but rather we attribute this feature to the effects of soliton physics. This point will be 
discussed in the next subsection. We have also performed simulation using Gaussian-shaped 
input pulses. The output spectrum corresponding to the Gaussian input contains less spectral 
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features, but the imbalance between the left and right peaks is closer to the experimental result. 
This demonstrates some degree of sensitivity of the output spectrum to input pulse shape.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 5. Measured and experimental transmission through a Si photonic wire waveguide with γP0 

= 56.3 cm−1. Left panel: measured spectra (brown). Right panel: simulation using hyperbolic 
secant input pulse (red). Blue curves on both panels correspond to γP0 = 1.1 cm−1  (with sech 
input pulse for simulation). Dashed line: OSA noise floor. The numbers are shown to illustrate 
the correspondence between experiment and simulation. From Ref. 62. 

 
At pump peak powers approaching 1 W, (or correspondingly 0Pγ ≈ 22.5 cm−1 for a 220 × 

450 nm2 cross-section waveguide), intensities of ~ 1GW/cm2 can be attained inside the 
waveguide, which give rise to the nonlinear effects discussed above. At higher powers, the 
level of the light intensity is sufficient to generate supercontinuum arising from a cascade of 
nonlinear effects. In addition, the efficiency of supercontinuum generation is enhanced if the 
input pulse is launched in the anomalous dispersion regime, near the ZGVD point so that the 
optical dispersion is small and, thus, does not reduce the strength of the nonlinear effects due 
to temporal pulse spreading. Recently, we have experimentally demonstrated supercontinuum 
generation in a 4.7-mm-long SPW waveguide upon propagation of ultrashort, ~100 fs, 1.3-
μm-wavelength optical pulses near its ZGVD wavelength [69]. 

5.3 Soliton generation 

As indicated above, soliton radiation and its effects can be readily seen in SPW. The work of 
Hsieh et al. [62] described below constitutes the first observation of soliton effects in silicon 
photonic wires, supported strongly by numerical simulations. Recently, in a related 
measurement, Zhang et al. have also observed soliton propagation in larger Si rib-waveguides 
having dimensions of 860×400 nm2

 and an etching depth of 300 nm [90]. In a recent 
theoretical study, it has been demonstrated that fission of higher-order solitons in Si 
waveguides may generate supercontinuum [91], an important functionality. As in optical 
fibers, soliton radiation is generated during the propagation of soliton pulses, which are 
perturbed by higher-order dispersive effects, namely TOD [88]. However, in the case of Si 
wires the effective nonlinear coefficient is ~105 larger and thus soliton effects are seen in 
wires of only millimeters in length. Thus, in addition to SPM frequency broadening, Fig. 5 
shows a spectral feature, which is attributable to soliton radiation. The evolution of the spectra 
with power is shown in Fig. 6, which displays both experimental and numerical simulation 
results. This figure shows that as the input power increases, a spectral feature develops near 
1590 nm for 0Pγ  = 45 cm−1 (brown curve). There are several reasons why the emergence of 
this spectral feature can be viewed as the result of the influence of the TOD on the soliton 
propagation: (1) the soliton number is Nsoliton = (LD/LNL)1/2 = 6.6, i.e., the pulse propagation is 
in the soliton regime; (2) the pulse propagation is in the anomalous GVD regime, a key 
requirement for the soliton existence; and (3) the location of this peak remains constant over a 
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large range of powers.  In addition, since the peak is significantly shifted from the main SPM 
features, it cannot be attributed to SPM effects.  

The location of this peak can also be used to determine the waveguide TOD coefficient, by 
using a similar procedure to that used to measure β3 of optical fibers [92]. In particular, by 
using the position of this spectral peak we can infer the value of β3 by using the relation β3 = 
3|β2|Τ0 /ωr, where ωr is the normalized angular frequency separation between the center 
frequency and the soliton feature [93,94]. Note that this relation does not account for the 
dependence of ωr on dispersion coefficients beyond the third-order, as well as the power 
dependence of the waveguide dispersion. These effects are small and are commonly neglected. 
In addition, we used the pulse width T0 in the relation that determines the frequency of 
resonantly emitted radiation. In a more rigorous approach, which is beyond the scope of this 
review, one should first determine the soliton content of the input pulse, use a perturbative 
approach based on, e.g., the inverse scattering transform to determine the dynamics of the 
corresponding solitons, and then use the width of the first emitted soliton. As an alternative, 
we can determine β3 by fitting the numerically found spectra to the experimental data. Thus 
we solve Eqs. (11) and (12) for several values of β3 in the vicinity of the estimated value until 
the various features of the spectrum shown in Fig. 5(a), such as the peaks and dips, are 
reproduced. This method yields β3 = –0.73 ± 0.05 ps3/m. 

 

 
Fig 6. Evolution of spectra at different excitation conditions γP0 = 1.1, 11.3, 33.8, 45.0 cm−1 
(bottom to top) spectra. Note also the evolution of soliton radiation (dashed line) at 1590 nm. 

 
5.4 Cross-phase modulation 

As we have shown above, SPM alters the phase of the optical pulse and as a result this effect 
can have important practical applications. Increased design flexibility can be achieved by 
controlling the phase of a pulse at one wavelength with a second, co-propagating pulse, at a 
different wavelength, i.e., cross phase modulation. Cross-phase modulation is also described 
by our general coupled-mode theory by means of Eqs. (1)-(3). We illustrate XPM in SPW by 
using two pulses of different wavelengths that co-propagate in the same waveguide, as 
described in the experiments above and using the data from Ref. 66. These two pulses are 
derived using an ultrafast mode-locked Er-doped fiber-laser having a pulse repetition rate of 
37 MHz and a bandwidth of 80 nm. After passing through a beam splitter and bandpass filters, 
this laser beam is split into the pump and probe beams, with center wavelengths at λp = 1527 
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nm and λs = 1590 nm, respectively. The pulse width and bandwidth of the resulting pulses are 
approximately 200 fs and 15 nm, respectively. Both pulses are free-space coupled into the 
waveguide and are polarized along the direction of the field of the TE waveguide mode. The 
output was collected by a tapered fiber and sent to an OSA. Free-space coupling, rather than 
tapered fiber coupling, is employed to rule out SPM and XPM in the input fiber. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 7. Demonstration of cross-phase modulation in silicon photonic wires. Dependence of 
probe spectrum on pump power and pump-probe delay for (a) τd = δ and (b) τd = 5δ. Red and 
blue curves denote spectra in the absence and presence of pump, respectively. 

 
Figure 7 illustrates the effect of cross-phase modulation of a weak probe pulse by the 

pump pulse with peak powers corresponding to pps Pγ = 5.2, 10.4, and 15.6 cm−1, for several 

values of the pump-probe delay time. The figure shows the dependence of the strength of 
XPM on both the pump power as well as the temporal overlap between the two pulses. These 
results illustrate clearly spectral variations in the probe spectrum, which can be induced by 
XPM. 

Additional insight into the characteristics of the XPM-mediated pulse interaction can be 
obtained by investigating the temporal evolution of the XPM spectra as the delay between the 
pump and probe pulses prior to injection into the waveguide, is varied. In particular, XPM 
occurs because the probe pulse experiences a change in refractive index induced by the co-
propagating pump pulse. It has been demonstrated previously that ultrafast pulses, which 
overlap in a nonlinear dispersive medium, experience a substantial shift in their carrier 
frequencies [95]. In this work, we describe this effect in terms of the centroid wavelength of 
the spectrum, defined as λc = dλ)λ(dλλ)λ( ∫∫ PP . The quantity λc shifts as the temporal delay 
between the pump and probe pulses is varied. Figure 8 illustrates this effect, namely, the 
nonlinear frequency shift of the centroid wavelength induced by changes in the pump-probe 
delay. This frequency shift is given by Eq. (10), ]})(exp[])({exp[ 22

dds ττδττδω −−−+−−−∝ . 

Recall that τ, τd , and δ, are the normalized time, normalized time delay, and temporal walk-
off, respectively. For our waveguide δ  = LΔ/Tp = 4.78 [66].  At large absolute values of τd, no 
wavelength shift is observed. At τd = 0 and τd = δ, the XPM interaction induces a large 
nonlinear wavelength shift (more than 1 nm), whereas near τd = δ/2, no shift is observed. 
Notice that in addition to the good agreement between theoretical analysis and experimental 
results, the sign of the shift (Δλ < 0 at τd = 0 and Δλ > 0 at τd = δ) agrees with our 
measurements. The asymmetry in the nonlinear shift of the probe centroid wavelength is 
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explained by the fact that in the case in which τd = 0 the pump-probe interaction takes place 
mostly near the input facet of the waveguide whereas when τd = δ the pump interacts with the 
probe mostly near the output of the SPW, i.e., after the pump has lost part of its optical power 
due to intrinsic and TPA losses. Note further that the peak near τd = 0 is narrower than the one 
near τd = δ, a behavior that is attributable to the slight temporal broadening of both the pump 
and probe pulses due to frequency dispersion. Although the temporal broadening is small, the 
numerical simulation shown in Fig. 8 predicts a small difference in the width of the two lobes. 

As suggested above, a potential application of XPM is nonlinear frequency (wavelength) 
shifting, which has important use, e.g., for providing wavelength-channel dropping 
functionality. As shown above in Eq. (10), the amount of wavelength shift scales with the 
pump power. For example, Dekker et al. have demonstrated XPM-induced wavelength shifts 
of as much as >10 nm, which are comparable to the spectral width of the input probe pulses 
[65]. Therefore, a XPM-induced frequency shift can be employed in designing ultra-fast all-
optical switches, which can be used to switch-off pulses as short as a few hundred 
femtoseconds. 

 

 
Fig. 8. Experimental (red) and numerical simulation (blue) results showing the dependence of 
cross-phase modulation on the normalized time delay. The center wavelength of the probe is 
~1590 nm.  

 
5.5 Modulation Instability in Si photonic wires 

A critical functionality that SPWs can readily provide is tunable optical gain at one or more 
frequencies. Recently, Panoiu et al. proposed an all-optical scheme that allows one to achieve 
strong optical gain in a millimeter-long SPW [96]. Specifically they numerically demonstrated 
that two optical continuous-wave (cw) beams that copropagate in a SPW could generate a 
strong modulation instability (MI). MI is manifested within a propagation distance of just a 
few millimeters. The MI gain depends on the power of the optical waves so that it can be 
optically tuned, and it reaches its maximum value when both waves experience anomalous 
GVD. As a result of the MI, the optical waves develop deep subpicosecond modulations. 
These findings could play an important role in designing on-chip sources of ultrashort optical 
pulses. We present here two cases: case A, in which one wave propagates in the normal GVD 
region, and the other one experiences anomalous GVD; and case B, in which both waves 
propagate in the anomalous GVD region. 

The SPW has width w = 360 nm and height h = 220 nm, dimensions for which the ZGVD 
point is at λ0 = 1550 nm. It should be noted that λ0 belongs to a second set of ZGVD 
wavelengths not shown in Fig. 2. The dynamics of the two optical waves propagating in the 
SPW is governed by the system of Eqs. (1)-(3). To investigate the MI of two optical waves 
whose propagation is described by this system, we first determine its steady-state (cw) 
solutions, i.e., z-independent solutions, and then analyze the linear dynamics of small 
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perturbations of the cw solutions [88,97-102]. Thus, simple calculations show that, if we 
neglect the linear and nonlinear losses, the MI gain spectrum defined by G(Ω)=2 Im[Λ(Ω)] is 
determined by the equation 

   ( )[ ] ( )[ ] 42

,

2

, // Ω=−Ω−Λ−Ω−Λ ηρρ ssgppg vv   (15) 

where Ω and Λ are the frequency and wavevector of the modulation, respectively, η = 
4γpsγspβ2pβ2sPpPs, ρp,s = β2p,sΩ2(γp,sPp,s+β2p,sΩ2/4). Now consider the MI gain in two cases. In 
case A, the pump beam propagates in the normal GVD region, λp = 1625.3 nm, whereas in 
case B it experiences anomalous GVD, λp=1400 nm. In both cases the signal beam propagates 
in the anomalous GVD region, at λs=1450 nm. In case A, we chose the two wavelengths so 
that the waves have the same group velocity, and thus there is no temporal walk-off, whereas 
in case B the walk-off parameter is Δ = |1/vg,p−1/vg,s| = 86.3 ps/m. By using Eq. (15), we 
determined the dependence of the gain spectra versus the pump power Pp, for a signal power 
Ps = 200 mW in case A, and Ps = 40 mW in case B. The results, presented in Fig. 9, show that 
in both cases the co-propagating waves experience strong MI, with a bandwidth of the gain 
spectrum of 10 THz. For comparison, the Raman gain bandwidth of silicon is in excess of 0.1 
THz [29]. Potentially comparable gain bandwidth is expected in broadband FWM when the 
guide has anomalous dispersion; gain bandwidths of a few THz have been demonstrated 
experimentally [53].  

Note that although the powers Pp, Ps are smaller in case B, a larger MI gain is observed in 
this case, namely when both waves experience anomalous GVD. However, note that in both 
cases the MI gain is 102-103 times as large as the MI gain achievable in optical fibers, for 
similar values of the optical powers. This is because the γ  parameters, which determine the 
strength of the MI gain, are much larger for SPWs as compared with that of optical fibers. In 
addition, the frequency corresponding to the maximum MI gain can be tuned by changing the 
power of the interacting waves, so our results suggest that MI can be employed to design on-
chip optical amplifiers that provide tunable optical gain.  

 
 
 
 
 
 
 
 
 

Fig. 9. Calculated modulation instability gain spectra for (a) case A and (b) case B as described 
in the text.  

 
5.6 Pulse Compression in Si photonic wires 

Pulse compression is a particularly interesting application of cross phase modulation since it 
makes use of both the dispersion-engineered properties of the waveguide and the strong 
nonlinearity of silicon. Pulse compression is an important functionality, which can potentially 
be achieved in millimeter-long devices implemented in the SOI platform. Recently, Chen et al. 
demonstrated theoretically that dispersion engineering in conjunction with SPM and TOD can 
be used to compress pulses [81]; in addition, Tien et al. experimentally demonstrated pulse 
compression in Si waveguides, but using FCA [103]. Below we show that XPM can provide 
an optically controlled pulse-compression process. In this approach, a strong pump modifies 
the phase experienced by the probe beam and thus generates additional bandwidth that can 
support shorter pulses. This requires that the pump-probe interaction length be equal to or 
larger than the waveguide length, and that a weak signal (probe) beam experience anomalous 
dispersion regime. The first requirement implies that the group velocity of the two pulses is 
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equal or close enough so that the probe pulse interacts with the pump over the entire length of 
the waveguide. After the probe acquires sufficient bandwidth via XPM interaction, it is then 
compressed temporally as the probe propagates in the anomalous GVD regime. In the 
numerical simulations, shown in Fig. 10, the waveguide is dispersion engineered such that the 
probe and pump pulses have the same group velocity but have negative and positive GVD, 
respectively. The figure shows that SPW enables compression in particularly short guided 
wavelength; namely, after a propagation length of just 0.8 mm the probe pulse is compressed 
by a factor of ~5.  
 

 
 
Fig. 10. Simulation of pulse compression via cross-phase modulation. Signal (left panel) and 
pump (right panel) field envelopes vs. time and propagation distance. The temporal width is 
200 fs for both the pump and signal pulses. Here γpsPp ≈100 cm−1 for the pump, with a center 
frequency of 1625 nm. For the signal Ps << Pp and the center frequency of it is 1451 nm. 
Insets: initial and final pulse envelopes. The waveguide dimensions are w×h = 360 × 220 nm2. 
 

6. Conclusion  

In this article, we have presented a review of our previous and current work on linear and 
nonlinear optical effects in Si photonic wires. In particular we have demonstrated 
experimental and theoretical studies of dispersion engineering and of optical nonlinearity with 
particular emphasis on SPM and XPM from ps and fs pulses in Si wires. As a consequence of 
dispersion engineering, such photonic wires can be designed to operate over a wide range of 
GVD values at telecom wavelengths. By operating in a regime where the waveguide, 
characteristic dispersion, and nonlinear lengths are comparable to each other, we have been 
able to probe the complex interplay among all these effects at low peak powers of the order of 
a few hundreds of mW and with waveguide lengths of a few mm. In addition, a further 
reduction in the Si wire cross-sectional dimension provides further scaling down of the length 
× power required for nonlinear optical functionalities, which arises from both the reduced area 
and reduced group velocity of the optical waves. The low threshold powers for phase-
changing effects in Si photonic wires make them potential candidates for various functional 
nonlinear optical devices in an integrated platform. 
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