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The nonlinear optics of Si photonic wires is discussed. The distinctive features
of these waveguides are that they have extremely large third-order
susceptibility ��3� and dispersive properties. The strong dispersion and large
third-order nonlinearity in Si photonic wires cause the linear and nonlinear
optical physics in these guides to be intimately linked. By carefully choosing
the waveguide dimensions, both linear and nonlinear optical properties of
Si wires can be engineered. We review the fundamental optical physics and
emerging applications for these Si wires. In many cases, the relatively
low threshold powers for nonlinear optical effects in these wires make them
potential candidates for functional on-chip nonlinear optical devices of just a
few millimeters in length; conversely, the absence of nonlinear optical
impairment is important for the use of Si wires in on-chip interconnects. In
addition, the characteristic length scales of linear and nonlinear optical effects
in Si wires are markedly different from those in commonly used optical
guiding systems, such as optical fibers or photonic crystal fibers, and therefore
guiding structures based on Si wires represent ideal optical media for
investigating new and intriguing physical phenomena.

OCIS codes: 190.4390, 130.4310, 190.7110, 060.5060, 130.2790, 230.3990,
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ngineering nonlinearities in nanoscale
ptical systems: physics and
pplications in dispersion-engineered

ilicon nanophotonic wires

. M. Osgood, Jr., N. C. Panoiu, J. I. Dadap, Xiaoping Liu,
iaogang Chen, I-Wei Hsieh, E. Dulkeith, W. M. J. Green, and
. A. Vlasov
. Introduction

.1. Introductory Remarks

onlinear optics is one of the major successes of modern optics. Practical
tilization of nonlinear optical processes and in most cases even the simple
bservation of the phenomena relies on high-intensity near-monochromatic light
ources and control of phase and coherence in the optical system; both of
hese capabilities are now available thanks to laser sources. Nonlinear optics is
lso eminently practical, with hundreds of applications being pursued in the
ommercial arena, including wavelength converters for telecommunications,
ptical signal processing, and optical switching.

n the past decade, major advances in our ability to pattern and fabricate a
ariety of materials have led to the focusing of research in nonlinear optics on
he topic of nanoscale nonlinear optic methods. However, despite its
ontemporary name, nanoscale nonlinear optics has a long and distinguished
ast! This is well illustrated by the early use of optical frequency mixing
t the ångstrom-dimension tip of point contact diodes [1]. In fact this approach
as recently been revived in the use of the surfaces of scanning tunneling
icroscope tips to enhance nonlinear optics for local generation of optical higher

armonics [2]. In addition the need to make integrated optical structures,
hich enable efficient phase matching by using artificial periodic media, is

learly a micrometer-scale precursor to today’s nanoscale nonlinear optics. The
est example of this approach is the progress in making periodic-domain
oled LiNbO3 (PPLN) structures [3]. In fact, these structures have recently been
ushed to nanoscale dimensions by using two-dimensional poling methods
4].

ore recently, research in nonlinear nano-optical phenomena has taken two
ery different directions. The first has used the excitement in metamaterials to
evelop a new, generally metal-film-based approach to driving strong
onlinearities in metals and metallodielectric materials [5–8]. Typically this
etamaterials approach uses a surface normal configuration. These
etallodielectric nanostructures can make nonlinear optical conversion at a
maller scale and broader band, with a lower optical loss. Metamaterials can also

dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 164
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ive more flexibility in wavelength range via the choice of the dimensions of
he nanostructure metal array and its selection of materials. This approach has
een examined for important potential applications in optical signal
rocessing; however the focus has generally been on investigating new optical
hysics. The second direction has examined in-plane optical nonlinearities
n dielectric structures with nanometer-scale cross sections. In this case, the
sual guided-wave nonlinearities are generated in a structure, which also
ontrols to all orders the optical dispersion of the guiding structure. The
onlinearities are sufficiently large that the waveguides act in the same manner
s they do in optical fibers—but since the structures are of chip scale, their
ubwavelength characteristics strongly affect their optical properties.
onsequently, both new physical and new optical phenomena are present, and
earer-term applications are apparent. These high-confinement Si devices
re a natural complement to fiber optic guided-wave interconnect systems.

his second nano-optical approach, which is the subject of this review, is based
n the recent advances in developing the area of active Si photonics devices
nd understanding their underlying physics. This area of research began more
han two decades ago by using clearly nonnanoscale devices based on the
deas of Soref and Lorenzo, in which the first Si waveguide was demonstrated
9]. Soon after, work in active Si photonics focused on realizing electro-optical
odulators, through the use of free carriers, e.g., by carrier injection,

10–14], and thermo-optic modulators, by using the favorable thermo-optic
oefficient of Si [15–19]. An important goal for these modulators, as well as for
ther Si optical passive and active devices, is scaling down the device
ootprint and power consumption and increasing the frequency response so as
o allow for full integration with Si electronics. In fact, because of the
avorable electronic, optical, and physical properties of Si and the mature
omplementary metal-oxide-semiconductor (CMOS) fabrication processing
echnology, large-scale integration of functional optical devices has
ecome possible, including integration with relatively complex electronic
omponents. The use of CMOS manufacturing [20] also facilitates its precise
atterning to be applied to integrated optical circuits; this enables, for
xample, greatly reduced sidewall roughness and, hence, very low loss even in
he small waveguides mentioned here. The rapid growth of Si photonics has
lready generated several excellent review articles and books [21–39].

his work in active devices has led to increasing interest in nonlinear Si
hotonics. Generally speaking this interest stems from two separate but related
esearch goals: the development of all-optical control of dramatically
caled-down optical devices and the interest in small-dimension waveguides as
n-chip transport light guides. In the latter case, one of course primarily
ishes to minimize nonlinear effects, although they could have an important

unctionality in applications such as light amplification or on-chip optical
ources. Again, progress in this area of Si photonics has been rapid. For example,
oon after observation of spontaneous Raman emission in Si waveguides,
40,41], Raman amplification in Si waveguides was first demonstrated by Claps
t al. in 2003 [42] and later by other groups [43–50]. Raman lasing was then
emonstrated in Si waveguides [51–55], SiGe waveguides [48], Si rings [56],
nd in hybrid AlGaInAs–Si waveguides [57]. In addition, other nonlinear
ptical effects or functionalities such as wavelength conversion via coherent
nti-Stokes Raman scattering (CARS) [58,59] and four-wave mixing (FWM),
60,62–66], self-phase modulation (SPM) [67–73], cross-phase modulation
dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 165
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XPM) and cross-absorption modulation [74–77], switching via two-photon
bsorption (TPA) [78,79], and supercontinuum generation [80] have been
emonstrated experimentally or studied theoretically. These effects can lead to
mportant functionalities such as pulse shaping or optical switching. From
he point of view of optical transport, these effects can introduce impairments
o a Si-based optical data system via such effects as SPM-induced spectral
roadening or interchannel cross talk due to XPM.

he linear and nonlinear optical properties of crystalline Si make it an ideal
edium for nanoscale integrated photonic devices. First, Si’s large refractive

ndex (n�3.5), in conjunction with a low-index cladding (ncladding�1 for
ir or ncladding�1.45 for silica), results in very tight light confinement. Such
trong light confinement lets Si guided-wave devices be scaled down to
ltrasmall cross sections, i.e., �0.1 µm2. These devices are termed Si photonic
ires (SPWs). This reduction to nanoscale cross section, which is possible

n a medium with high refractive index contrast, leads to three distinct
dvantages: the capability for dispersion engineering, a high optical field
ensity, and an intrinsically short carrier lifetime due to rapid diffusion into
urface states. A second optical property of Si affects its use for nonlinear optics.
n particular, while Si does not have a second-order nonlinearity, it does
ave an extremely large third-order nonlinear optical susceptibility in the near
nfrared—about 3–4 orders of magnitude larger than that of silica [81].
his large cubic nonlinearity in Si, in connection with its strong optical
onfinement, leads to further enhancement of the effective optical nonlinearity.
his enhancement results in a low optical power requirement or threshold

or achieving strong nonlinear optical effects, as well as in very short nonlinear
ptical devices, of the order of a few hundred micrometers to millimeters in
ength.

et us return to the issue of dispersion in SPWs. Because of their nanoscale
ross sections, their dispersion properties become markedly different from those
f standard optical fibers, photonic crystal fibers (PCFs), or even of Si
aveguides with micrometer cross-sectional dimensions. In particular, because
f their ultrasmall dimensions, their dispersion is controlled by the exact
eometry of their cross-sectional area. This property leads to the possibility of
ailoring of their basic dispersion characteristics such as the group-velocity
ispersion (GVD). Note that this same concept has been discussed extensively
n conjunction with high-index-contrast fibers; in that case dimensional
hanges in dispersion are not as pronounced as in the case of SPWs, but their
onger propagation length makes them important nonetheless. In general,
his capability of engineering the optical dispersion in SPWs is important for
ailoring the phase index, as it enables control of phase matching of
onlinear optical processes such as FWM, broadband optical parametric gain,
odulation instability (MI), and CARS. It also affects more pulse dynamics,

ncluding soliton generation and their dynamics, pulse compression and
eshaping, etc. In addition, because of the large dispersion and effective optical
onlinearity of Si, it is possible to scale down the length�power product
or integrated nonlinear devices more than in glass materials. In fact, at low to
oderate laser pump powers of a few �100 s mW, the nonlinear lengths in
i wires are just a few millimeters.
dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 166
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.2. Scope of This Review

ur review is organized as follows: first, the optical properties of SPWs are
eviewed in Section 2, including methods for dispersion engineering of these
ightly confined waveguides and their limitations. In Section 3, a discussion
f the basic nonlinear optical response of Si is presented. This section will
nclude a discussion of the basic phenomena and the various relevant
onlinear optical parameters for Si and Si-wire waveguides. In Section 4, a
omplete theoretical framework for modeling nonlinear pulse propagation in Si
ires and the current state of knowledge of the nonlinear optical properties
f these light guiding devices are introduced. Our model uses a fully rigorous
pproach based on a system of nonlinearly coupled equations describing
he pump and probe field envelopes. It also incorporates the effects of optically
enerated free carriers and the effects of crystalline anisotropy of the optical
onlinearity. In Section 5, nonlinear optical phenomena, such as stimulated
aman scattering (SRS) and two-photon absorption (TPA), are discussed. In
ection 6, the relevant nonlinear optical effects that transiently change

he effective index of the guiding Si structure (waveguide), and hence the
hase of light, are reviewed; in addition, this section will also discuss basic
arametric processes in these waveguides, such as SPM, XPM, FWM, and MI.
he effects of waveguide dispersion for each of these nonlinear optical
rocesses will also be discussed. In the case of ultrashort laser pulses, i.e., of
uration �200 fs or less, the physics are such that the nonlinear and various
ispersion lengths are all comparable; such a system yields complex, but rich
nformation on pulse propagation and pulse distortion in Si wires and
pens new avenues for research in future applications.

inally, our review will conclude with a discussion of the emerging applications
f nonlinear optics in Si wires in Section 7. Because in many cases that are
elevant for important practical applications the characteristic lengths of linear
nd nonlinear optical effects are less than or comparable with the waveguide
ength, phenomena that are important in optical fibers are possible in a
ownscaled integrated form. In effect, these observations show clearly that
PWs have the potential to form a fiber-on-a-chip system, allowing for nonlinear
ptical control of on-chip functions or integrated photonic circuits. They are
lso important devices for on-chip optical data buses for ultrahigh-bit-rate data
ransport.

. Si Photonic Wires: Optical Characterization and
ispersive Properties

n this section we discuss the main linear optical properties of SPWs, with a
articular emphasis on the interrelations between the transverse size of
he device and the main physical quantities that determine their guiding
roperties, namely, the waveguide modes and the corresponding propagation
onstant. In our discussion, we will focus on a property that is particularly
mportant for subwavelength guiding devices, namely, the frequency dispersion
f these quantities.
dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 167
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.1. Si Photonic Wires and Their Optical Characterization

PWs are typically patterned on Unibond Si-on-insulator (SOI) with a 1 µm
hick oxide layer and with the wire aligned along the �110� crystallographic
irection. Si wires make use of the superior vertical dimension control and thick
ptical-decoupling oxide that is possible with Unibond material. A convenient
leavage plane of Si for formation of high-quality end facets typically
etermines the choice of this crystal direction. Initial comparison of the optical
oss in SOI technologies involved an investigation with several of the
merging SOI wafer types. As a result, Unibond material was shown to be a
seful basis for extremely compact single-mode SOI-based devices [82].
ubsequent research showed that optical losses in Si wires could be made
ufficiently low that chip-scale lengths were feasible. These low-loss Si-wires are
escribed in detail in [83,84]. For our work described in this review, all
aveguides were fabricated by using the CMOS fabrication line at the IBM T.

. Watson Research Center. For these and other waveguides of many of the
roups referred to here, each end of a wire uses index tapering to couple the
uch larger optical fiber mode to that of the waveguide. The use of inverse taper

oupling techniques have been developed, including polymer-clad [85] and
xide-clad mode converters [86], which allow particularly efficient incoupling
nd outcoupling (see Fig. 1). Single-mode SPWs typically have dimensions
f �200 to 300 nm in height and 400 to 500 nm in width. The waveguides are
enerally cut off for the lowest-order TM mode, although quasi-single-mode
uides, that is, slightly multimode guides, are sometimes used to reduce loss and
ispersion sensitivity. These wires can be fabricated to be as long as many
entimeters, with the longest guides using very tight radius bends for compact
olding. The measured intrinsic waveguide losses are typically �in

3.0 dB/cm for TE polarization near �=1550 nm; however, lower losses of
.7 dB/cm have been measured [87]. The issue of loss in such
igh-index-contrast waveguides has been examined by using an analytic
oupled-mode theory along with numerical finite-difference time-domain

Figure 1

ypical experimental setup. In nonlinear optical experiments, input tapered
ber is often replaced by a microscope objective to mitigate SPM in the fiber
ecause of the high intensity of the ultrashort pulses used.
dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 168
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alculations; the loss in these waveguides is entirely attributable to residual
oughness on the waveguide walls, as long as the oxide substrate layer is
ufficient to prevent coupling to the underlying Si wafer [88]. These calculations
ield loss as a function of the correlation length of the roughness as well as
ts amplitude.

.2. Dispersion Engineering in Si Photonic Wires

.2a. Introduction

ontrol of dispersion in guided-wave optics is important in order to implement
ore efficient functions such as wavelength conversion or modulation and

o control the temporal properties of short pulses as they propagate within the
aveguide. Engineering of dispersion had been demonstrated earlier in
CFs [89], submicrometer waveguides [90], and multimode fibers [91]. Because
f their submicrometer cross sections and high index contrast and, hence,
trong optical confinement, waveguide dispersion in SPWs can be much larger
han in fibers. This strong dispersion makes it possible to manipulate optical
ulse properties within the scale length of a Si chip. It also means that during
aveguide or waveguide device design great care needs to be taken when
esigning the dispersion characteristics of these Si wires so as to achieve the
equired behavior of optical pulses propagating in these waveguides.
alculations of the dimensional variation in dispersion in submicrometer
uried Si wires, in a SiO2 cladding, were first demonstrated by Chen et al. [92].
his possibility of dispersion engineering was shown for several possible
ire cross-sectional dimensions, including one that exhibited zero GVD

ZGVD) at telecommunications wavelengths [92]. Subsequent measurements
nd calculations by Dulkeith et al. [93] and Turner et al. [94] showed clearly
hat such structures could be fabricated and their dispersion measured. For
xample, the work by Turner et al. demonstrated that the GVD parameter

in such waveguides could be tuned from −2000 to 1000 ps/ �nm km�. Later,
in et al. [95] calculated the dispersive properties of larger-dimension rib
aveguides by using the effective-index method approximation. Chen et al. also

nvestigated the effect of third-order dispersion (TOD) in waveguides with
arious dimensions and its effects on pulse propagation [96]. More recently an
nvestigation of the utility of conformal thin overlayers of Si3N4, with or
ithout SiO2, to flatten or reduce dispersion in SPWs was carried out [97,98].

.2b. Dispersion in Si Nanophotonic Wires

he strong optical confinement in ultrasmall Si-wire waveguides causes the
aveguide geometry to dominate their dispersive properties. This property can
e shown clearly by comparison of the calculated dispersion coefficients of
everal dispersive orders for several single-mode waveguides of different
imensions. To do this, consider the strip waveguide structure shown in Fig. 2

ith the optical propagation along the �11̄0� direction of the single-crystal-Si
ayer on an SOI wafer. This comparison will consider the following
aveguide dispersion orders for this structure: the effective index, neff, defined
y �=neff� /c, where � is the mode propagation constant, the group index

g is defined as ng=c /vg=�1c, where vg is the group velocity of the mode, the
VD coefficient is �2, and the TOD coefficient is �3. The dispersion

oefficient of the nth order is defined as �n=dn� /d�n. Also note the relation of
he frequently used GVD parameter D to �2, i.e., D=−2�c�2 /�2. Such
dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 169
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alculations use either the finite-element method or vectorial beam propagation
ethod computations of the same quantities. Note that the material frequency

ispersion of bulk Si is incorporated into the numerical calculations via
he Sellmeier relation [99]

n��� = � +
A

�2
+

B�1
2

�2 − �1
2

. �1�

or Si, the material constants in Eq. (1) are �1=1.1071 µm, �=11.6858, A
0.939816 µm2, and B=8.10461�10−3 (in what follows, unless otherwise

pecified, n refers to the index of refraction of Si). The results of these numerical
alculations have been compared with and found to agree with experimental
ata [93]. Two examples illustrate the values of dispersion in these waveguides
hat have been both measured and calculated. In the first, for a 226 nm

525 nm waveguide at 1550 nm the dispersion is found to be
400 ps/ �nm km�, a value that is 3 orders of magnitude greater than that in
tandard optical fiber. The TOD of this same waveguide is found to be
±50 ps/ �nm2 km�. Both values agree well with the values calculated by using
nite-element methods [93]. Finally, in some cases, even higher orders of
ispersion can be important! An excellent example of this point is the
mportance of fourth-order dispersion for nonlinear frequency mixing when
perating at wavelengths near the ZGVD point of a waveguide [100]; this
xample is discussed below in Subsection 2.2c and subsequently in Section 7.

ne of the more important goals of dispersion engineering is to minimize
ulse broadening via the design of waveguides to be at the ZGVD point for a
iven operational wavelength. While there are limitations to the application
f this technique, e.g., the presence of higher-order dispersion or inaccuracy in

Figure 2

lots of computed effective index of refraction, and first-order dispersion
hrough TOD as a function of wavelength for four different Si-wire dimensions.
lue, 220 nm�350 nm; green, 220 nm�360 nm; red, 220 nm�450 nm;

ight blue, 330 nm�450 nm. Inset, expanded view of the second-order
ispersion indicating the ZGVD line. Also shown is the waveguide geometry.
dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 170
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atterning, it is important to minimize pulse broadening for applications
nvolving pulse propagation in waveguide interconnects. Consider, as a generic
xample, the case of a Si channel waveguide surrounded by SiO2. Figure 3
hows a contour map illustrating the ZGVD wavelength for different waveguide
imensions [37]. This ZGVD contour map is created by first calculating the
ispersion coefficients of SPWs for a series of waveguide dimensions.
he waveguide height h ranges from 225 to 400 nm, and the width w ranges

rom 375 to 800 nm, in increments of 25 nm for both dimensions. For smaller
aveguide dimensions, two ZGVD wavelengths are possible. Here we
resent only the lower value of the two wavelengths of the ZGVD. The SPW
GVD wavelength data reported by Turner et al. [94] are in general agreement
ith the results of our calculations. As is apparent from data such as in Fig.
, single-mode SPW waveguides with zero dispersion can be realized in the
elevant telecommunications wavelength range. In addition, this ZGVD
ata also provides a sense of the relative fabrication tolerances. For example,
e see from Fig. 3 that for small h and large w the required fabrication tolerances
ould be much tighter because of the higher rate of change of the ZGVD
avelengths per unit waveguide length. Finally, the use of an almost

quare-shaped cross section allows the ZGVD points to be matched for the TE
nd TM modes in a two-mode waveguide [66].

arlier in this review the measurement of dispersion in SPWs was alluded to.
ecause of the different geometry from optical fibers and the large values
f dispersion in SPWs, different approaches have been adopted to measure this
ptical dispersion.These schemes have included Mach–Zehnder interferometric
ethods, modulation phase shift methods [98], and frequency mixing using

igh-frequency spectrum analyzers. In addition, in the case of femtosecond
henomena the role of TOD coefficient �3 may be essential in determining the
aveguide’s optical properties. There are several, physics-based, approaches

o determining this quantity. For example, �3 can be determined by fitting the
xperimental data on the spectral output from a waveguide to numerically
enerated spectra, using simulations that incorporate �3 [73]. Thus in this case
imulations are done using values of �3 in the vicinity of the estimated

Figure 3

GVD map for SPW channel waveguides. The ZGVD wavelengths are
xpressed in units of micrometers.
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alue until the various features of the spectrum, such as the peaks and dips, are
eproduced. This fitting method has been used to determine the TOD for Si
ires.

.2c. Dispersion Control for Nonlinear Waveguide Optics

he large third-order nonlinear optical susceptibility ��3� of Si makes it
ossible to consider a variety of chip-based nonlinear optical applications that
ely on the extended interaction of optical waves at multiple wavelengths
nd at significant powers. The latter requirement demands that the nanophotonic
ires exhibit a small but finite anomalous GVD, that is, having a GVD
arameter D	0 ps/(nm km) [101]. Anomalous dispersion can be achieved in
PW waveguides as a result of the strong optical confinement; for example,
s we have just discussed, a large net anomalous GVD, i.e., D
4000 ps/ �nm km�, occurs for air-clad wires with a cross section of 226 nm
525 nm [93]. However, this same large GVD (�200� larger than that

f single-mode fiber, SMF) can reduce the overall bandwidth of parametric
rocesses such as FWM, since the spectral bandwidth over which efficient
onlinear optical interaction can be maintained depends on phase matching the
otal phase of the input, pump, and converted waves such that 
ktotal=0. In
ractice, this means that it is best to operate near the ZGVD point of the
aveguide, so as to cause the nonlinearly induced change in the wave vectors
f the interacting beams to cancel the residual linear phase mismatch. In
ddition, it is also important to reduce the wavelength dependence of the GVD
o as to have similar nonlinearly induced phase changes at each wavelength.

here are several approaches to ameliorating a large, wavelength-dependent
VD. For example, as described above, a near-zero, but still anomalous, GVD

an be engineered most simply via control of the geometrical dispersion
hrough the dimensions and/or aspect ratio of the Si waveguide core [92–95].
owever this approach also can increase the waveguide cross-sectional

rea and result in a reduction in the effective waveguide nonlinearity (see the
efinition below in Subsection 4.2). An alternative approach to engineering
PW wire dispersion, which flattens GVD and better retains the SPW effective
onlinearity, is to use a thin conformal layer of silicon nitride �Si3N4�
verlayers and/or oxide [97]. This approach is conceptually similar to that used
n the design of dispersion-shifted fiber [102,103]; in the case of fiber, the
hickness and refractive index of thin cladding layers surrounding its core are
djusted to control the balance of geometrical and material dispersion,
roducing the desired net dispersion characteristics.

ccurate numerical experiments have been done using computations based on
he finite-element method to determine the efficacy of this conformal
hin-film method for dispersion control [97]. The geometry of this approach is
hown in the inset of Fig. 4 (left-hand panel), i.e., a Si core of height h and
idth w etched in a buried-oxide (BOX) layer. The Si core is covered with a

onformal Si3N4 overlayer of thickness t and then capped with a thick oxide
ayer. Figure 4 (left-hand panel) plots the calculated GVD versus wavelength
or a 220 nm�450 nm wire, for several Si3N4 overlayer thicknesses. With oxide
ladding only (t=0 nm, no Si3N4 coating), the GVD at �=1.55 µm has a
alue of 532 ps/ �nm km�. However, using a conformal Si3N4 overlayer of 60 nm
ignificantly reduces this dispersion to 38 ps/ �nm km�, a value sufficiently
ow to achieve efficient phase-matched wavelength conversion or FWM
arametric gain at low pump powers [64,66,100]. In addition, the use of thin
dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 172
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verlayers also reduces fourth-order dispersion, producing wide spectral
egions with small GVD curvature and facilitating broadband phase matching
66,100].

y altering the Si3N4 overlayer thickness, the ZGVD points can be shifted in
avelength. Figure 4 (right-hand panel) illustrates this behavior with a contour
lot of the short-wavelength ZGVD point versus the wire width and Si3N4

hickness, for a wire height of h=220 nm. The ZGVD point shifts to longer
avelengths as the width becomes larger and/or the Si3N4 overlayer becomes

hicker, indicating that these two parameters may be used as independent
egrees of freedom in tailoring the spectral dispersion of a Si nanophotonic
ire waveguide. Engineering the phase matching over a broadband wavelength

ange makes this approach useful for designing highly compact, broadband
i nonlinear devices. The most important aspect of using the conformal overlayer
ethod for dispersion management is that it does not reduce the effective

onlinearity of the wire waveguide to the extent done by a simple expansion of
he waveguide dimension [97].

s a final consideration in this subsection, higher-order dispersion can be
mportant in several nonlinear optical phenomena. For example, the case of SPW
OD can lead to asymmetries in the sidelobes of the pulse; this case is
iscussed in Subsection 6.2. In another example, when operating near the
GVD point, fourth-order dispersion in fact limits the bandwidth of the FWM
rocesses and must therefore be carefully controlled, as is discussed in
ubsection 6.5. As mentioned above, certain approaches such as the conformal

hin films reduce these higher-order dispersion coefficients as well as the
VD. Furthermore, for accurate modeling of ultrashort optical pulses, which

s important for applications that rely on the propagation or generation of
ltrabroadband pulses, such as supercontinuum generation or ultrabroadband
ptical sources, one customarily requires using values of the dispersion
oefficients beyond the tenth order [101,104,105]. In the case of SPWs,

Figure 4

eft, plot of GVD, D, versus different Si3N4 overlayer thicknesses, for the
undamental TE-like mode of a Si nanophotonic wire with dimensions
=220 nm, w=450 nm, for different Si3N4 overlayer thicknesses. Inset,
ross-section geometry. Right, ZGVD wavelength contours for lowest quasi-TE
ode versus Si3N4 layer thickness, for several wire widths. Waveguide

eight is 220 nm. From [97].
dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 173
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etrieving this information from the numerically computed frequency
ependence of the propagation constant, �=����, can lead to large errors, and
herefore in this case it is important to employ theoretical and experimental
ools that would allow us to understand and control the interplay between the
lobal characteristics of the waveguide dispersion and pulse dynamics.

.2d. Active Control of Birefringence

ctive control of phase mismatch in Si waveguides has been demonstrated
106]. Such an active-dispersion-control capability could be used, for example,
o correct fabrication errors in the designed dispersion or changes in
ispersion due to variations in the environmental conditions. In the method of
106], a thin-film piezoelectric transducer integrated on the waveguides
as shown to allow adjustment of Si-waveguide dispersion. Specifically, the
irefringence induced by the piezoelectric transducer was demonstrated to allow
ctive control of phase matching for nonlinear optical mixing (specifically
ARS). This device alters the dispersion for cross-polarized beams by varying

he stress in the waveguide and can thus be useful for trimming its
avelength-dependent GVD values.

n the device, a bare SOI rib waveguide was first clad with oxide, to act as an
ptical decoupling layer, and then an overlayer of thin-film zirconate
itanate was added to act as a piezoelectric capacitor. This piezoelectric
ransducer (PZT) consisted of a thin-film PZT layer with top and bottom
latinum/titanium (Pt/Ti) electrodes. Stress generated in the structure changed
he waveguide dispersion. In addition to an improvement in the efficiency
hat was due simply to the residual stresses of the cladding layers, an additional
unable stress was applied by biasing the PZT, which realized a further
–6 dB enhancement of the efficiency. This tunable phase-match transducer
as not enough to bring the waveguide to the zero phase-mismatch condition;
owever, it was sufficient to compensate for fabrication-induced error in
aveguide dimensions.

. Basic Parameters of Nonlinear Optics in
rystalline Si

uch of the impetus for considering nonlinear optical phenomena in SPWs is
he tight optical confinement in these submicrometer waveguides. Because
f the high index contrast and ultrasmall cross section of the waveguide, the
ntensity of the optical field, which is proportional to �E�r , t��2, is, for
xample, orders of magnitude higher than that inside the core of the SMF, for a
imilar value of the optical power P. In addition, as will be discussed below,
he nonlinear response of crystalline Si is extremely strong. As a result, even for
n optical signal with a peak power in the range of a few tens of milliwatts,
he nonlinear optical effects can be significant.

.1. Basic Nonlinear Optical Physics in Si

o examine the nonlinear response of crystalline Si, consider the constitutive
elation leading to the electric polarization P�r , t� of the medium. Using a
ower series for the electric field,
dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 174
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P = D − �0E = �0���1� · E + ��2�:EE + ��3�
] EEE + ¯ � , �2�

here D is the electric displacement field and ��i� is the ith-order optical
usceptibility, which is generally a �i+1�th-rank tensor. Susceptibilities depend
n the crystal structure of the medium, and for isotopic or amorphous
aterial, such as in a silica optical fiber, the susceptibilities are characterized

y scalar quantities. In crystalline Si, whose optical nonlinearity is
nisotropic, the tensor nature of the nonlinear susceptibilities has to be taken
nto account. Further, the polarization can be categorized into linear and
onlinear parts, P=PL+PNL, according to its power dependence on the incident
lectric field, where

PL = �0�
�1� · E ,

PNL = �0�
�2�:EE + �0�

�3�
] EEE + ¯ . �3�

ecause the Si-crystal lattice is invariant to an inversion symmetry
ransformation, as it belongs to the point group symmetry m3m, the
econd-order susceptibility vanishes identically within the dipole
pproximation; that is, ��2��0. The lowest-order optical nonlinearity in Si is
hen the third-order nonlinear response, which gives PNL��0�

�3�
]EEE. Figure

summarizes a set of various third-order nonlinear optical phenomena that
ave been demonstrated in Si photonics.

o simplify the discussion, consider first only the electronic contribution to the
onlinear polarization; this contribution has two components, namely the
err and the TPA effects as shown in Fig 5(d). The Kerr effect is the result of

he nonlinear electronic polarizability of Si, which has a response time of
pproximately tens of femtoseconds and, therefore, is effectively an
nstantaneous response. This same instantaneous response is characteristic of
PA as well, since it involves virtual intermediate levels. The real part of
�3� is directly related to the nonlinear refractive index, n2, whereas the

maginary part governs the TPA, which is quantified by the TPA coefficient

TPA.

nder these circumstances, for a harmonic electric field,

E�r,t� =
1

2
E�r,��e−i�t + c.c., �4�

here c.c. stands for complex conjugation, the electronic nonlinear polarization
t frequency �, PNL�r ,��, can be written as

PNL�r,�� =
3

4
�0�

�3���;�,− �,�� ] E�r,��E*�r,��E�r,�� , �5�

here ��3��� ;� ,−� ,�� is the electronic third-order susceptibility tensor of Si.
ere we assume that sum-frequency generation processes are not phase
atched, and therefore their contribution to the polarization, Eq. (5), can be

eglected. The real part of this nonlinear susceptibility describes parametric
rocesses, such as SPM, that lead to a change in the refractive index. The
maginary part corresponds to loss or gain processes, such as TPA. Because Si
elongs to the crystallographic point group m3m the susceptibility tensor
�3� �3�
has 21 nonzero elements, of which only 4 are independent, namely, �1111,

dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 175
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1122
�3� , �1212

�3� , and �1221
�3� [81]. Moreover, symmetry considerations lead to an

dditional relation, �1122
�3� =�1221

�3� . In addition, although the electronic nonlinear
usceptibility shows frequency dispersion (see Subsection 4.4) in the
requency range considered here, since the corresponding photon energies ��
n typical experiments are smaller than the bandgap energy Eg of Si, this
onlinear frequency dispersion is rather small. Consequently, we assume that
he Kleinman symmetry relations are obeyed, which imply that �1122

�3�

�1212
�3� . Therefore, the remaining independent components of the susceptibility

ensor are �1111
�3� and �1122

�3� . It is important that recent experiments have
emonstrated that across a broad range of wavelengths, between 1.2 and
.4 µm, the ratio of these two components is constant, that is, �1111

�3� �2.36�1122
�3�

107]. Finally, while in much of this paper it is reasonable to assume that
�3� is frequency independent, the possibility of its dispersion in waveguides is
iscussed in detail in Subsection 4.4.

hereas it might be difficult to measure the nonlinear susceptibility ��3�

irectly, its value can be easily derived from the Kerr coefficient n2 and the
PA coefficient �TPA; these quantities are related through the equation

Figure 5

elevant nonlinear optical processes in Si photonics: (a) spontaneous Raman
Stokes and anti-Stokes) emission, (b) stimulated Raman emission, (c)
ARS, (d) Kerr effect and TPA, and (e) FWM.
dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 176
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�

c
n2 +

i

2
�TPA =

3�

4�0c
2n2

�eff
�3�, �6�

here for Si’s symmetry group, the effective susceptibility �eff
�3� is defined by

�eff
�3� = �1122

�3� ��â* · b̂��ĉ · d̂� + �â* · ĉ��b̂ · d̂� + �â* · d̂��b̂ · ĉ��

+ ��1111
�3� − 3�1122

�3� �	
i=1

3

âi
*b̂iĉid̂i. �7�

ere â is a unit vector along the direction of the induced polarization, b̂, ĉ, and
ˆ are unit vectors along the polarization direction of the interacting fields,

nd âi, b̂i, ĉi, and d̂i are the direction cosines of these unit vectors. For example,
long the 
110� and 
111� directions, the effective susceptibilities are �eff


110�

��1111
�3� +3�1122

�3� � /2 and �eff

111�= ��1111

�3� +6�1122
�3� � /3. The wavelength dependence

f both nonlinear coefficients is discussed in Subsection 4.4.

he growth in Si photonics has recently led to several new measurements of
he nonlinear optical susceptibility ��3�, typically via the TPA coefficient, �TPA,
nd the Kerr nonlinearity, n2; the first of these measurements was obtained
y Dinu et al. [108] in the vicinity of 1550 nm. Dinu also carried out a theoretical
nalysis of the dispersion curves and scaling rules for phonon-assisted
hird-order nonlinear optical coefficients of Si [109]. Recently, more
omprehensive measurements of Si’s nonlinear parameters were performed by
ristow et al. [110] and Lin et al. [111].

he wavelength dependence of �TPA and n2 have been particularly closely
xamined over the range from �1100–2100 nm. The results of these
easurements are shown in Fig. 6. In the case of �TPA, the data, along with a

ecent theoretical investigation [112], show that this parameter has a broad
eak at �Eig, the indirect bandgap energy, and slowly decreases by a factor of

Figure 6

easured value of �TPA and n2 versus wavelength as described in [110]. The
olid curve in the left panel is a best fit based on the theory of Garcia and
alyanaraman [112]. Right, n2 (squares) versus wavelength; in this panel the
ashed curve is a guide to the eye and the solid curve is based on a Kramers–
rönig transformation of the solid curve for �TPA shown in the left panel. Most
ata shown here were taken by Bristow et al. [110].
dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 177
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1/8 at 2000 nm and is essentially zero at �2100 nm. The behavior of �TPA

hown in this plot is a sum of the contributions from three sets of indirect
ransitions—forbidden–forbidden, allowed–forbidden, and allowed–allowed—
nd the theory describing this behavior is in good agreement with the data.
n the other hand, the value of the Kerr nonlinearity, also shown in Fig. 6,
ehaves in the opposite manner and increases with wavelength. Its value
ncreases by a factor of �4 in going from 1550 to 1800 nm. It is possible to
elate the wavelength dependence of n2 to �TPA via a Kramers–Krönig-type
ransformation, and this relation is shown by the solid curve in Fig. 6.

hile the shape of the solid curve is correct, it is obviously much lower than
he measured data; this difference is attributed to the neglect of Raman
nd quadratic Stark contributions.

.2. Raman Response

n Si, as in other crystalline solids, Raman scattering constitutes an additional
hird-order nonlinear optical process. In stimulated Raman scattering, two
ptical pulses, whose spectral difference is close to that of the strong Si Raman
ibrational frequency, copropagate through a SPW. In this case, pulse
ynamics are driven by a nonlinear process that couples light and phonons,
amely, stimulated Raman scattering. If the spectral spacing of the two center
requencies does not match within a few Raman linewidths of the Raman
requency, the copropagating beams interact not via the Raman process, but, as
s the case with XPM, rather only through the Kerr nonlinearity.

onsider the Raman process now in more specific detail. When a
uasi-monochromatic pump wave at frequency �p propagates in a Raman-active
olid medium such as crystalline Si, it creates a scattered Stokes signal at
he frequency �s, which is downshifted with respect to �p by the Raman
requency �R=�p−�s, corresponding to the frequency of optical phonons at the
rillouin-zone center. For Si, this frequency shift is �R /2�=15.6 THz

113], with a spectral width of 
� /2�=105 GHz, which amounts to a response
ime of the Raman interaction of 
�10 ps. If the pulse widths of the pump
nd Stokes pulses are comparable with or less than the Raman response time, the
nteraction of the two pulses is strongly driven by the third-order nonlinear
aman susceptibility at frequency �R.

ow let us consider the Raman nonlinear polarization, PR via the third-order
aman susceptibility �R, defined as [114–118]

�ijkl
R ��� =

�Nv

3�
	
�

����ij,��kl,� + �ik,��lj,��

��
2 − �2 + 2i�
�

, �8�

here �=�1−�2, �1 and �2 are the input frequencies, N� is the number of
ibrational oscillators per unit volume, �� is the vibrational resonant frequency,
nd the matrix elements �ij,� are given by the derivatives of the polarizability
ensor �̂ with respect to the coordinate of the normal mode �. There are
hree degenerate Raman-active optical phonons in Si with ��=�R ��=1,2 ,3�,
aving the symmetry of the irreducible representation �25�, and the
orresponding Raman tensors are given by [118]

R1 = �0 0 0

0 0 1
, R2 = �0 0 1

0 0 0
, R3 = �0 1 0

1 0 0
 . �9�

0 1 0 1 0 0 0 0 0
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ecause of this symmetry property there is only one independent component
f the Raman tensor, namely, �1122

R . Furthermore, close to the Raman
esonance ���R, and Eq. (8) becomes

�ijkl
R ��� =

�Nv

6�
	
�

�ij,��kl,� + �ik,��lj,�

�R − � + i
�
. �10�

he real part of this susceptibility describes parametric processes that lead to a
hange in the refractive index, whereas the imaginary part of the Raman
usceptibility describes the Raman amplification process. At resonance, �=�R,
he Raman susceptibility is pure imaginary, its value being �1212

R ��=�R
�−i�R

−i11.2�10−18 m2 V−2. Under these conditions, the Raman part of the
onlinear polarization can be written as

PR =
3

2
�0��R�− �R� ] E�r,�s�E*�r,�s�E�r,�p���� − �p�

+ �R��R� ] E�r,�p�E*�r,�p�E�r,�s���� − �s�� . �11�

ote that, since �R���=�R*�−��, the Raman interaction leads to the
mplification of the Stokes signal, whereas it acts as a loss term at the frequency
f the pump. Of course the total nonlinear polarization must include both
he Raman and the electronic contributions, PNL=Pe+PR. Manipulating these
quations and using the same coupled-mode procedure as in the case of
he pulse-propagation system to be described in Subsection 4.2, one may obtain
he final set of coupled partial differential equations that describe the
ynamics of Raman-mediated pulse propagation in a SPW [92]. Because of
he overall similarity of the equations to those to be presented below, we will not
xamine these pulse dynamics in detail. Instead we will limit our discussion
elow to a more heuristic discussion of Raman amplification and its potential use
n integrated optics.

.3. Effective Nonlinear Susceptibility in Si Photonic Wires

n characterizing the nonlinear optical properties of SPW waveguides, it is
ssential to evaluate the nonlinear response averaged over the waveguide
odes. This averaging has important results for Si photonics, since it yields a

ignificant difference than that expected from the usual approximations in
ber optics. To carry out this evaluation we define the parameter �, which
easures the effective nonlinear susceptibility, as the weighted integral of the

orresponding tensor susceptibility ��3� over waveguide modes of the Si
ire (the origin of this definition will become apparent in Subsection 4.1, where

his coefficient is rigorously derived):

� =
A0�A0

e*�r�;����3��r�;− �,�,− �,�� ] e�r�;��e*�r�;��e�r�;��dA

��A�
n2�r���e�r�,���2dA�2

,

�12�

here A0=h�w is the area of the transverse section of the waveguide, A�

enotes integration over the entire transverse plane, and e�r� ;�� is the electric

eld profile of the waveguide mode; for a SPW whose transverse section is
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niform along the wire the waveguide modes depend only on the transverse
oordinate, r�. The specific dependence of � on the transverse profile of the
ndex of refraction, n�r��, is determined by the mode energy density, which
s proportional to the dielectric constant, ��r��=n2�r��. Explicitly, n�r��=n
nside the waveguide, and n�r��=ncladding outside the waveguide, where n
enotes the refractive index of Si, and ncladding is the index of refraction of either
ir or the oxide layer. In addition, the nonlinear susceptibility tensor elements

ijkl
�3� of the tensor ��3� are known in the crystal principal axes, whereas the
odal fields are numerically determined in the waveguide system; thus, the

usceptibility tensors must be transformed first in the waveguide system. For a
PW with dimensions h�w=220 nm�360 nm at wavelength �=1550 nm,

he corresponding value of the effective susceptibility is found to be �
��+ i��= �1.13�10−21+ i3.45�10−22� m2 V−2.

.4. Carrier Dynamics in Si Photonic Wires

or a full description of optical pulse interaction in a Si-wire waveguide, it is
ssential to include the formation of free carriers by the TPA mechanism
escribed earlier. These carriers can interact with the propagating beam either
y adding linear absorption or by causing a wavelength-dependent change
n the index and, hence, phase in the system. These effects are quantified
ccording to the following relations [10]:

�nFC = −
e2

2�0n�2� N

mce
*

+
N0.8

mch
* � ,

�FC =
e3N

�0cn�2� 1

µemce
*

+
1

µhmch
*2� , �13�

here �nFC is the free-carrier-induced change in the refractive index, �FC is the
ree-carrier absorption (FCA) coefficient, N is the carrier density, m

ce
*

0.26m0 and m
ch
* =0.39m0 are the effective masses of the electron and the hole,

espectively, with m0 as the mass of the electron, and µe �µh� is the electron
hole) mobility. Note that in Eqs. (13) it is assumed that the carrier density for
lectrons and holes is the same.

ote that optical free-carrier generation and decay via recombination gives
ise to temporal variation in carrier density in the presence of pulsed light. Thus,
he optical power absorption per unit length due to TPA can be written as
see also Subsection 4.1)

� �P

�z
�

TPA

= −
3��1

2P0
2��

2�0A0

�u�4, �14�

here P�z , t�=P0�u�z , t��2, P0 is the input peak optical power, and u is the
ormalized field amplitude. With this expression for TPA, the rate equation can

e cast in the following form:
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�N

�t
= −

N

tc

+
3�1

2P0
2��

4�0�A0
2

�u�4, �15�

here the characteristic lifetime of the free carriers, tc, is assumed to be the
ame for both electrons and holes. In bulk Si or in large waveguides, i.e., of
icrometer-scale transverse dimensions, this characteristic time is a few

ens of nanoseconds. In submicrometer Si structures, however, owing to the
ast diffusion of free carriers to the edges of the waveguide, this relaxation time
s reduced to �0.5 ns [119].

. Theory of Nonlinear Optical Pulse Propagation
nd Dynamics in Si Photonic Wires

or a complete understanding of both the linear and the nonlinear optical
roperties of SPWs, it is necessary to describe both the dynamics of the optical
eld upon propagation in these guiding structures and the subtle interactions
etween the photogenerated free carriers and the propagating optical field. Some
spects of this intricate interplay between optical and free-carrier-induced
ffects have been alluded to in the preceding section; in this section we present
detailed description of the nonlinear optical pulse propagation and

ynamics in SPWs, pointing out important aspects that differentiate this
ynamics from that of pulses propagating in optical fibers or other optical
aveguides.

eaders familiar with pulse propagation in standard fiber optic waveguides
hould note at the onset that the materials and propagation equations have
mportant differences from those in wires. First, the crystallinity of Si requires
hat its nonlinear optical properties be treated as tensors. This requirement
akes the use of the nonlinear optical susceptibility a more natural parameter

n many cases than the more familiar scalar nonlinear parameters used to
escribe isotropic glass fibers. Second, the tight confinement in Si waveguides
auses the cross-section dependence of the group velocity to often be
ignificantly different than that of the bulk medium; this effect makes certain
verlap integrals used in the calculation of certain parameters that describe
he pulse propagation to be considerably different from those in standard fiber
ptics. Finally, the wavelength dependence of the optical properties of
aveguides is far more pronounced than for the case of fibers; this dependence

an make calculation of nonlinear propagation take on a somewhat different
haracter than in standard fibers. Note, of course, that in the case of structured
bers, these issues are similar to those encountered in Si wires but to a
uch lesser degree.

.1. Theory of Light Propagation in Si Photonic Wires

o derive the system of equations that governs the dynamics of optical pulses
ropagating in a Si-wire waveguide, we start from the conjugated form of

he Lorentz reciprocity theorem (see, e.g., [120]):
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�

�z
�

A�

Fc · êzdA = �
A�

� · FcdA , �16�

here the integral is taken over the entire transverse plane, êz is the unit vector
riented along the longitudinal axis of the waveguide, and the vector field

c is constructed with two arbitrary guided electromagnetic fields �E1 ,H1� and
E2 ,H2�,

Fc = E1
* � H2 + E2 � H1

*. �17�

ow consider that �E1 ,H1���E0 ,H0� is the electromagnetic field
orresponding to a mode of the unperturbed waveguide and �E2 ,H2���E ,H�
s the electromagnetic field of the same mode propagating in a waveguide
hose optical characteristics (namely, its dielectric constant) are perturbed by

he generation of free carriers and the induced nonlinear polarization.
hen, Eq. (16) becomes

�

�z
�

A�

�E0
* � H + E � H0

*� · êzdA = i��
A�

�P · E0dA , �18�

here �P=�PL+PNL. By simply taking the divergence of the vector field Fc

nd using Maxwell’s equations to simplify the result, one obtains the integrand
n the right-hand side of Eq. (18). Note that in deriving this equation it is
ssumed that the variation of the dielectric constant (index of refraction) is small,
nd thus the modes of the perturbed and unperturbed waveguides are the
ame (see [120]). The change in the linear polarization is determined by the
ariation of the dielectric constant induced by the generation of free carriers,
PL=��LE, where ��L is given by the following relation:

��L = i
�0cn�in

�
+ 2�0n�nFC + i

�0cn�FC

�
, �19�

here �in is the intrinsic loss coefficient and �nFC and �FC are given by Eqs.
13). For the unperturbed fields, we choose the following:

E0 =
1

2
�Z0P0

A0

e�r�,�0�ei��0z−�0t�,

H0 =
1

2
� P0

Z0A0

h�r�,�0�ei��0z−�0t� �20�

ith Z0=�µ0 /�0 as the free-space impedance, and the waveguide modes are
ormalized such that

1

4A0
�

A�

�e � h* + e* � h� · êzdA = 1. �21�

ith this normalization, the electromagnetic field �E0 ,H0� carries a total
ptical power P0. Furthermore, the fields in the perturbed waveguide are

xpressed as
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E =
1

2
�Z0P0

A0

u�z,��e�r�,��ei��z−�t�,

H =
1

2
� P0

Z0A0

u�z,��h�r�,��ei��z−�t�, �22�

here u�z ,�� is the complex mode amplitude normalized such that, in the time
omain, its input peak amplitude is equal to 1. With normalization (21), the
ower carried by the electromagnetic field �E ,H� is P0�u�z ,���2. Inserting Eqs.
19), (20), and (22) into Eq. (18), expanding the propagation constant ����
n a Taylor series around the carrier frequency �0, and Fourier transforming the
esulting equation in the time domain, we arrive at the following partial
ifferential equation for the mode amplitude u�z , t�:

i� �u

�z
+

1

vg

�u

�t
� −

�2

2

�2u

�t2
− i

�3

6

�3u

�t3
= −

ic�

2nvg

��in + �FC�u −
��

nvg

�nFCu

−
3�P0�

4�0A0vg
2
�u�2u , �23�

here, for simplicity, the subscript was dropped from the carrier frequency �0.
ere, the effective waveguide susceptibility � is defined by Eq. (12), and

he parameter � is given by the overlap integral

� =
n2�A0

�e�r���2dA

�A�
n2�r���e�r���2dA

. �24�

ote that for the nonlinear part of the variation of the polarization, �P, we
ave used expression (5). It is important that, in deriving Eq. (23), we have used
he relation P0=vgWt [120] between the mode power P0 and the mode
nergy density per unit length, Wt; with definition (20), the latter is given by

Wt =
Z0P0

2A0
�

A�

�0n
2�r���e�r���2dA. �25�

t is important to note that definition (12) applies not only to the electronic
onlinear susceptibility but also to the Raman interaction [92].

elation (24), which defines the parameter �, reveals an important effect,
amely, that only a fraction of the optical power carried by the mode generates
arriers [121,122]. This effect is a direct consequence of the fact that the
ode profile only partially overlaps with the Si wire; for example, numerical

alculations show that for typical SPWs, ��0.75–0.95. The carrier
ynamics can be readily determined from Eq. (23). Thus, since the optical
ower is P0�u�2, Eq. (23) implies that the power loss per unit propagation length
s given by Eq. (14), and thus the corresponding rate of carrier generation
ue to TPA can be determined by simply dividing this power loss per unit length
y the energy required to generate an electron–hole pair, which is equal to
��. As a result, the time evolution of the carrier density is given by Eq. (15).

he two coupled equations (23) and (15) represent the basic theoretical
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odel that is used to investigate a series of linear and nonlinear optical effects
ertaining to the propagation of optical pulses in SPWs.

.2. Coupled-Mode Equations for Multifrequency Pulse
ropagation

s we just discussed, the pulse dynamics for Si wires are governed by the
nterplay of dispersion and nonlinear optical effects whose relative strengths
re determined by several characteristic lengths, namely, the second-order
ispersion and TOD lengths, defined as LD=T0

2 / ��2� and LD� =T0
3 / ��3�,

espectively, and the nonlinear length LNL, whose definition will be given in
ubsection 4.5. In addition, the influence of the photogenerated free carriers
ust also be incorporated into a rigorous theoretical model that describes

his pulse dynamics. Thus a comprehensive theoretical model describing pulse
ropagation in SPWs must include both nonlinear and linear optical effects
nd the strongly dispersive properties of the Si medium. These nonlinear and
inear optical phenomena include SPM, TPA, and FCA [123,124] and
ree-carrier-induced optical dispersion and are primarily related to the evolution
f an optical pulse centered at a fixed frequency. However, in many
pplications of practical interest, such as light amplification or signal
ultiplexing–demultiplexing, two or more optical pulses copropagate in the

ame Si wire, and therefore important nonlinear effects such as XPM, multimode
ixing, birefringence effects, or stimulated Raman scattering must be

ncorporated into the theoretical model.

oupled-mode theory [92,77] has been developed to account fully for these
inear and nonlinear optical effects. Thus, in the case of copropagation of two
ptical pulses corresponding to the same waveguide mode but having
ifferent carrier frequencies, the main changes to the formalism presented in
ubsection 4.1 consist in replacing the nonlinear polarization, Eq. (5), by a more
eneral expression, which also includes a XPM term:

PNL�r,�� =
3

4
�0����3���s;�s,− �s,�s� ] E�r,�s�E*�r,�s�E�r,�s�

+ 2��3���s;�s,− �p,�p� ] E�r,�s�E*�r,�p�E�r,�p����� − �s�

+ ���3���p;�p,− �p,�p� ] E�r,�p�E*�r,�p�E�r,�p�

+ 2��3���p;�p,− �s,�s� ] E�r,�p�E*�r,�s�E�r,�s����� − �p�� ,

�26�

here �p and �s are the frequencies of the copropagating pulses, i.e., the
ump and the signal, respectively. Under these circumstances, the set of
orresponding coupled equations describing the slowly varying normalized
omplex envelopes up�z , t� and us�z , t� of the copropagating pump and signal
probe) pulses, respectively, can then be written as

� �up

�z
+

1

v

�up

�t
� −

�2,p

2

�2up

�t2
− i

�3,p

6

�3up

�t3
= −

ic�p

2nv
��in + �FC

p �up

g,p g,p
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−
�p�p

nvg,p

�nFC
p up −

3�p

4�0A0vg,p
�Pp�p

vg,p

�up�2 + 2
Ps�sp

vg,s

�us�2�up,

i� �us

�z
+

1

vg,s

�us

�t
� −

�2,s

2

�2us

�t2
− i

�3,s

6

�3us

�t3
= −

ic�s

2nvg,s

��in + �FC
s �us −

�s�s

nvg,s

�nFC
s us

−
3�s

4�0A0vg,s
�Ps�s

vg,s

�us�2 + 2
Pp�ps

vg,p

�up�2�us,

�N

�t
= −

N

tc

+
3

4�0�A0
2�Pp

2�p�

vg,p
2

�up�4 +
Ps

2�s�

vg,s
2

�us�4 +
4��p�sp� + �s�ps� �PpPs

��p + �s�vg,pvg,s

�upus�2� ,

�27�

here, similarly to Eq. (12), the effective susceptibility �ps is defined as

ps

=
A0�A0

e*�r�;�s���3��r�;�s;�s,− �p,�p� ] e�r�;�p�e*�r�;�p�e�r�;�s�dA

��A�
n2�r���e�r�,�p��2dA���A�

n2�r���e�r�,�s��2dA�
,

�28�

nd in the case of �sp the indices p and s in Eq. (28) are reversed. Note that this
nalysis can easily be extended to include the Raman interaction [92] or
ultimode pulse copropagation by simply adding the corresponding nonlinear

olarization, e.g., Eq. (11) in the case of Raman interaction, to the perturbed
olarization �P.

n general, the overall nonlinear phase shift of copropagating optical pulses
as two sources: SPM, which is the change in refractive index induced by the
ame pulse, and XPM, which is change of the refractive index induced by
ne pulse and on a second copropagating pulse. If the powers of both pulses are
uch that dispersion and nonlinear terms in the first two equations in Eqs.
27) have comparable magnitudes, the nonlinearly induced phase shifts can be
ound only by numerically solving these equations. If, however, the SPM
nd XPM terms in these equations dominate, one can derive [101] an analytic
ormula for the nonlinearly induced phase shift of the probe, �s. This analytic
esult is useful in giving insight into the basic pulse propagation effects on pulse
hase and frequency shifts.

o derive this analytic equation, the effect of TPA is neglected to yield the
onlinear phase shift �s�z ,T� as

�s�z,T� = z�sPs�us�0,T��2 + 2�psPp�
0

z

�up�0,T + z�
��2dz�. �29�

ere, T= t−z /vg,p is the time in the reference frame of the pump pulse. In
ddition it is convenient to use the standard nonlinear coefficients

�i =
3�i�i

4� A v2
, �30�
0 0 g,i
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�ji =
3�i�ji

4�0A0vg,jvg,i

, �31�

hich describe SPM and XPM interactions, respectively, with i or j= �s ,p�,
nd 
=1/vg,s−1/vg,p describes the temporal walk-off. For a weak probe pulse,
he first term of Eq. (29) can be neglected, and, assuming that both pump
nd probe are Gaussian pulses of temporal width Tp, namely, up�0,T�
exp�−�T−Td�2 /2Tp

2� and us�0,T�=exp�−T2 /2Ts
2�, we obtain the XPM-induced

hase shift in Eq. (29):

�s�z,
� =
�psPpz��

�
�erf�
 − 
d + �� − erf�
 − 
d�� , �32�

here 
=T /Tp, 
d=Td /Tp, and �=z
 /Tp. Td is defined as the temporal
eparation between the maximum intensity points of these two pulses prior to
heir entry into the waveguide. Here this time delay is positive (negative)
hen the probe leads (trails) the pump. Equation (32) also provides the

requency shift of the probe due to the XPM-driven index change,

��s�z,
� = −
1

Tp

��s�z,
�

�

= −

2�psPpz

Tp�
�exp�− �
 − 
d + ��2� − exp�− �
 − 
d�2�� .

�33�

his equation shows clearly that the frequency shift is proportional to the
roduct of the pulse power and the nonlinearity and is reduced by any mismatch
n the velocity of the signal and pump pulses, i.e., the GVD. In Subsection
.4, Eqs. (32) and (33) will be used to explain experimental results regarding
PM.

.3. Effects of Strong Optical Confinement on Optical
onlinearity

ptical-pulse propagation in a Si wire responds to same basic nonlinear
hysics as in optical fibers. However, as mentioned earlier, there are important
ifferences due to the strong dispersion in the waveguides, which is a result
f the strong optical confinement in SPWs, and due to the crystalline nature of
he Si crystal. Let us examine the effects of dispersion here by examining
ts effect on the propagation of a single pulse through a Si wire. The pulse
ynamics are governed by the coupled nonlinear differential equations (23) and
15) [92,77]. By inspection of the last term of the right-hand side of Eq.
23), one can define the optical nonlinearity of a waveguide to be �
3�� /4�0A0vg

2. Notice that the effects of waveguide confinement become
anifest through this expression; for the case of optical fibers, it reduces to the

ase of the considerably different but well-known expression, �=n2� /cAeff,
here Aeff is the effective modal area, defined as a weighted integral over the

ransverse field profile, used in describing the nonlinear property of optical
bers. This difference arises from the large disparity between the group indices
or small- and large-cross-section waveguides. In typical cases, the group
ndex ng, which is proportional to �1, may increase as the size of the cross section
ecreases, as can be seen in Fig. 2 for wavelengths ��1.58 µm. For example,

2 3
n slow-light guiding structures group indices of order 10 –10 are
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ommon. This increase in ng leads to a decrease in the group velocity vg=1/�1,
hich provides a further enhancement in the effective nonlinearity in addition

o the effect of decreased area A0. Note also that for small-cross-section
aveguides with high index contrast � depends on the group index and not the

ffective index (mode index).

n the limit of low-index contrast structures such as optical fibers, the general
xpression (30) for � reduces to the standard definition of �. Thus, there
xists a significant distinction between high- and low-index-contrast waveguide
tructures. The latter or standard optical fiber expression for � neglects the
onlinear anisotropy of Si, the contribution to � of the longitudinal component
f the electric field, and the strong spatial inhomogeneity of the waveguide
ode. Note, however, that an effective area can be introduced in the case of Si
ires, too, but the definition of Aeff is different from that in optical fibers

125]. For the case of a SPW, the large difference between ng and n makes it
mportant to use the expression for � given above in describing the nonlinear
ptical behavior of wave propagation in such waveguides. As Eq. (12)
hows, the parameter � plays the role of the effective third-order susceptibility
f the waveguide, and therefore, by analogy with relation (6), valid for a
ulk nonlinear medium, the quantities �� and �� can be used to define an
ffective Kerr nonlinear refractive index of the waveguide, n2,wg, and an effective
PA coefficient, �TPA,wg, respectively, according to

n2,wg =
3��

4�0cn2
, �34�

�TPA,wg =
3���

2n2c2�0

. �35�

s discussed in Subsection 4.4, the value of � strongly depends on the
imensions and geometry of the waveguide. Recently, Koos et al. showed that
arge values of nonlinearity could be obtained by optimizing the waveguide
eometry [125] of strip and slot waveguides.

.4. Frequency Dispersion of the Effective Optical
onlinearity of Si Photonic Wires

s we discussed in Subsection 2.2, the tight optical-field confinement achieved
n high-index-contrast SPWs leads to a strong dependence of the linear
ptical properties of these guiding structures on both the wire geometry as
ell as the corresponding material parameters; these properties include the
aveguide modes and their propagation constants. It is therefore expected

hat the nonlinear properties of SPWs will also show large frequency dispersion,
property that would play a significant role in the dynamics of ultrashort or
roadband optical pulses.

ince the nonlinear properties of SPWs are determined chiefly by the nonlinear
oefficient �, the frequency dispersion of the waveguide nonlinearity is fully
haracterized by its dependence on frequency, ����. Thus, to quantify
his important nonlinear effect, one has to determine the waveguide modes and
he corresponding propagation constant � at a frequency � and then use Eq.

30) to calculate the nonlinear coefficient �. Now, to incorporate the frequency
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ispersion of the material optical nonlinearity in this procedure explicitly, it is
nly necessary to use the frequency-dependent third-order susceptibility
�3���� in the definition of � in Eq. (12) and thus account for the contribution
f the material dispersion and, implicitly, for that of the waveguide
ispersion, to the frequency dependence ����. As explained in Subsection 3.1,
he only independent component of the susceptibility, �1111

�3� , can be
etermined from the experimentally measured [110] values of the Kerr
oefficient, n2, and the TPA coefficient, �TPA, by using the following relations
see Eq. (6)]:

n2 =
3

4�0cn2
�eff

�3��,

�TPA =
3�

2�0c
2n2

�eff
�3��. �36�

ere, the effective susceptibility �eff
�3� is defined by Eq. (7).

s a generic example, Fig. 7 illustrates the frequency dispersion of the
onlinear coefficient ����, determined both for the case in which only the
aveguide dispersion is considered and for the more general case when both

he material and the waveguide dispersion are accounted for. The calculations

Figure 7

a) Wavelength dependence of the susceptibility �1111
�3� . (b) Real and imaginary

arts of the nonlinear coefficient � versus wavelength. Inset, interpolated
alues of experimentally measured bulk parameters n2 and �TPA. In (b), the thin
nd thick curves correspond to the case in which only the waveguide
ispersion is considered and the case when both the material and the waveguide
ispersion are included, respectively.
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ave been performed for two waveguides, one with dimensions h�w=220 nm
360 nm, which has the ZGVD wavelength at 1550 nm and the cutoff
avelength at 1808 nm, and the other waveguide with dimensions h�w
300 nm�600 nm. This figure shows that the waveguide nonlinearity depends

trongly on wavelength; e.g., in the case of the first waveguide both the real
nd the imaginary parts of the nonlinear coefficient � decrease more than three
imes within a spectral domain of 500 nm, between 1300 and 1800 nm. This
ecrease of � at large wavelengths occurs because the mode becomes less
onfined in the Si core as the wavelength approaches the cutoff wavelength, and
herefore a smaller amount of optical power is guided within the region with
ptical nonlinearity. As is shown in Subsection 4.6, this large variation of � with
requency leads to a large characteristic optical shock time, an effect that
as important implications for the dynamics of ultrashort optical pulses. Also,
ig. 7 shows that not only do the linear properties of SPWs depend strongly
n the waveguide dimensions but also that their nonlinear optical properties
namely, the nonlinear coefficient �) change significantly with the transverse
aveguide dimensions.

.5. Characteristic Lengths in Si Photonic Wires versus
ptical Fibers

he above treatments show that, as optical pulses propagate in Si wires, their
volution in both the time and the frequency domains, is governed by the
nterplay of the linear dispersion and nonlinearity. These effects are
haracterized by several characteristic lengths, namely, the GVD length LD, the
OD length LD� , and the nonlinear length LNL, defined as LNL

4�0A0vg
2 /3�P0��. For picosecond or longer pulses with P0=0.2 W or larger,

NL/LD�1 and LNL/LD� �1. In this case, the second and the third terms
n the left-hand side of Eq. (23) may be ignored, and SPM dominates the pulse
volution inside the waveguide. If, instead, the pulse width is in the
emtosecond regime, LD, LD� , and LNL are comparable for milliwatt-level
owers. A useful parameter is the soliton number, Nsoliton= �LD /LNL�1/2, which
s a measure of the strength of solitonic effects.

o appreciate the importance of these length scales, Table 1 presents specific
alues of these characteristic lengths for T0=200 fs and 10 ps for a SPW. The
hort-pulse case is then compared with that of a typical single-mode optical
ber. The values for the characteristic lengths, LD�10 mm and LD� �11 mm, are
ased on calculations and measurements for the 220 nm�450 nm waveguide
ross section. The nonlinear length LNL depends on power; e.g., if P0

Table 1. Comparison of Characteristic Lengths for Ultrashort �200 fs� and Long
�10 ps� Pulses and � Parameter in a SPW (dimensions h�w=220�450 nm2)

and a Single-Mode Optical Fiber for �=1550 nm

Dispersion and
Nonlinear Parameters

SPW
Tp=200 fs

SPW
Tp=10 ps

Optical Fiber
Tp=200 fs

LD �1 cm �25 m �2 m

LD� �1 cm �2.5 km �80 m

LNL at P0=0.2 W �8 mm �8 mm �2 km

� �m−1 W−1� �6�102 �6�102 �3�10−3
dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 189
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0.2 W, LNL�8 mm. Consequently, near or above P0�0.2 W, the GVD,
OD, and SPM all become relevant to the overall pulse dynamics. Note that �3,
hich yields LD� , is extracted from the data of [73] and is described below.

n examination of Table 1 shows the sharp differences between pulse
ropagation in optical fibers and in SPWs. First, SPWs have dispersion lengths

D and LD� that are 2 orders of magnitude shorter than those for optical
bers. Also, the nonlinear length of a wire waveguide is several orders of
agnitude shorter than in optical fibers, for a typical peak power of a few tenths

f 1 W. The short nonlinear length is due to the very high nonlinear parameter,
, which is approximately 105 higher in SPWs than in typical standard
ptical fibers. In addition, dispersion lengths are also pulse-length dependent.
hus the dispersion length for a typical picosecond pulse is several orders
f magnitude longer than that for a femtosecond pulse. However, the nonlinear
ength is the same for both short and long pulses as long as the pulse power
s the same. Therefore, with ultrashort pulses, linear and nonlinear optical effects
an be simultaneously observed if the dispersion length and nonlinear length
re tuned to be comparable to the waveguide length.

ote also that, as might be expected from the strong dispersion dependence of
he SPWs, � strongly depends on the cross-section geometry at these deeply
caled dimensions. For example, for a fixed height of 220 nm, the various values
f � are 680, 566, and 463 W−1 m−1 for waveguide widths of 360, 450, and
20 nm, respectively, using the measurements from [108] and neglecting the
ongitudinal electric field component; these values are comparable with
he ones obtained by Koos et al. [125]. We note here that in a few of our previous
apers a coding error led to our stating erroneously high values of �; this
as corrected in [37].

.6. Higher-Order Linear and Nonlinear Optical Effects in Si
hotonic Wires: Solitons and Wire Dispersion

s discussed in the previous subsection, when certain conditions are satisfied,
he characteristic lengths associated with the linear or nonlinear optical
ffects in Si wires become comparable with the dispersion length, LD, or the
onlinear length LNL, and thus they can no longer be neglected. Two such
mportant effects, which are discussed in this subsection, are TOD and pulse
elf-steepening. Both of these phenomena are important in fiber optics mode
ropagation, but both have different features in Si wires.

.6a. Third-Order Dispersion Effects

OD effects in SPWs have been recently investigated via theoretical [96] and
xperimental studies [73,80]. Thus, as the data in Table 1 suggest, for optical
ulses with a temporal width of a few hundred femtoseconds, the characteristic
engths of the second-order dispersion and the TOD become comparable, LD

LD� , and therefore one expects that the TOD would have a significant influence
n determining the evolution of ultrashort pulses upon propagation in SPWs.
n particular, and as it is known from the dynamics of ultrashort pulses
ropagating in optical fibers [126–129], there are two interesting cases of the
nteraction of TOD and pulse propagation in a SPW. First, if the wavelength
f the input pulse corresponds to a ZGVD point, i.e., �2=0, part of the spectrum

f the pulse will lie in the anomalous GVD region ��2�0�, whereas the
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emaining pulse spectrum will be in the normal GVD domain ��2	0�. On
ropagation, the pulse will split into one or more solitons that propagate in the
pectral region with anomalous GVD, while the section of the pulse
elonging to the normal GVD region will form a dispersive wave. In the
econd case, the pulse is fully in the anomalous GVD domain. If the power of
he pulse is larger than the threshold power necessary to form a soliton,
ne or more solitons are generated, and as they propagate under the influence
f the TOD, they will resonantly emit radiation. The wavelength of this
mission will be determined by the point at which the wave vectors of the
oliton and the emitted dispersive wave are phase matched. There are important
ifferences, however, between pulse propagation in Si wires and in optical
bers. As one example, photogeneration of free carriers in wires induces optical

osses that depend nonlinearly on the peak power of the pulse, thus leading
o a more complex and richer pulse dynamics. In addition, in wires, as indicated
bove, dispersive effects can be much greater in magnitude.

hese effects can be illustrated by considering the propagation of ultrashort
ptical pulses in the presence of photogenerated free carriers, i.e., the system of
oupled equations (23) and (15). Thus, consider the propagation of a
yperbolic-secant-shaped (sech-shaped) pulse with T0=100 fs and peak power

0=6.5 W, in a SPW with dimensions h�w=220 nm�360 nm, and
ssume that the pulse wavelength is �=1500 nm. Since for this wire waveguide
he ZGVD wavelength is near 1550 nm, the input pulse lies in a spectral
egion with anomalous GVD (see Fig. 2). Furthermore, the calculated linear
nd nonlinear parameters of the waveguide at �=1500 nm are �2=−4 ps2 /m,

3=−0.0915 ps3 /m, and �=446.5 W−1 m−1, so that LD=2.5 mm, LD�
10.9 mm, LNL=0.34 mm, and the soliton number Nsoliton=2.7.

ote that in order to separate the effects that are due to TPA and TPA-induced
ree carriers, three different scenarios are considered here; the pulse
volutions for both the time and the frequency domains of each of these cases
re shown in Fig. 8. In the first case, presented in Fig. 8(a), TPA is ignored,
nd its resulting free-carrier density is set equal to zero; thus only the dynamics
f the optical field interacting with the wire dielectric medium is considered.
n the second scenario, shown in Fig. 8(b), TPA is also ignored; however, free
arriers created via TPA are kept in the simulation, and thus the interactions
etween the optical field and the free carriers are fully accounted for. In the last
cenario, shown in Fig. 8(c), the full-physics simulation is carried out,
ncluding the presence of both TPA and free carriers. These three simulations
llow a ready comparison of these three cases to be made. As expected,
hen TPA and the generation of free carriers are neglected, the pulse dynamics

re very similar to the pulse evolution on propagation in an optical fiber
126–129], albeit over far shorter distances. Specifically, after a propagation
istance of �1 mm, the input pulse splits into two solitons whose velocities are
lightly larger than the group velocity of the input pulse. This behavior is in
greement with the predictions of a soliton perturbation theory based on the
oment method [130], according to which the temporal position of a soliton

hanges linearly with the propagation distance, Ts�z�= ��3 /T0
3�z, when

he soliton propagates under the influence of the TOD. Hence, for �3�0, the
OD speeds up the soliton, as illustrated in Fig. 8(a). Moreover, Fig. 8(a) shows

hat after the splitting of the input pulse the emerging solitons emit radiation
n a spectral range situated in the normal GVD spectral region, between 1670 and
770 nm, which is also in agreement with previous theoretical results. In
dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 191
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articular, it has been previously shown that solitons propagating under the
nfluence of the TOD emit radiation at a frequency that is shifted from the
oliton’s frequency by ��=3��2� /�3, namely, at the frequency at which the
ave vectors of the soliton and the dispersive wave are phase matched. Since the

oliton with larger peak power propagates at ��1470 nm, and factoring in
he corresponding shift in �2, determined by the fact that the emerging solitons
ropagate at a wavelength that is different from the wavelength of the input
ulse, this relation predicts that the wavelength of the emitted radiation is �
1750 nm, which is in good agreement with the numerical simulations.

hen the effects of the free carriers are incorporated into the simulation (the
econd scenario), the pulse evolution changes in several important aspects,
s shown in Fig. 8(b). Thus, in the temporal domain, the soliton with larger peak
ower is accelerated, and its temporal position is shifted toward the front of
he pulse. In addition, in the spectral domain, this same soliton is shifted toward
he blue side of the spectrum. On the other hand, the dynamics of the soliton
arrying lower optical power remains essentially unchanged. These
haracteristics of the pulse evolution can be explained if one considers the
onlinear losses induced by the generation of free carriers via TPA. Thus, Eqs.
23) and (15) show that these optical losses are proportional to �−�

t �u�z , t���4dt�,
hich means that the optical loss at the front of the pulse is smaller than

he loss in its tail. Since the soliton propagates in the anomalous GVD region,
he redshifted frequency components move slower than the blueshifted
nes. Therefore, the redshifted components are absorbed more fully in
omparison with the blueshifted components, and thus the soliton is slowly
hifted toward the blue side of the spectrum. In contrast, the soliton with smaller
eak power induces a much smaller nonlinear loss, and therefore this effect
s much weaker. This soliton probes chiefly the losses induced by the carriers

Figure 8

ropagation of a pulse with T0=100 fs, peak power P0=6.5 W, and pulse
avelength �=1500 nm in a SPW with dimensions h�w=220 nm�360 nm,

or which the ZGVD wavelength �0=1550 nm, �2=−4 ps2 /m, �3

−0.0915 ps3 /m, and �=446.5 W−1 m−1. (a) Influences of the TPA and free
arriers are neglected; (b) influence of TPA is ignored while free carriers effects
re included; (c) both TPA and free carriers are fully accounted for.
enerated by the larger soliton; these losses act merely as a constant loss
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erm in Eq. (23), and thus they do not affect the soliton dynamics. These
esults suggest that by tuning the density of the generated free carriers one can
ontrol the dynamics of optical solitons and, more generally, the temporal
nd the spectral characteristics of ultrashort optical pulses.

inally to obtain a full understanding of pulse evolution in the vicinity of
500 nm, it is necessary to include TPA, i.e., to solve the problem with the full
et of simulation physics. This result is shown in Fig. 8(c). It is interesting
hat in this case the influence of the free carriers on the pulse dynamics, as was
hown in the second scenario, is almost eliminated. This fact can be
nderstood by realizing that the free-carrier effects in Fig. 8(b) require a high
arrier density along the pulse propagation distance. This carrier density is
etermined dominantly by the local pump power along the waveguide axis.
owever, since in this last scenario the TPA reduces pump power, the carrier
ensity drops dramatically as the pulse propagates along the axis. In addition,
s the pulse energy is depleted and its power decreases below the threshold
ower required for forming a soliton, the pulse no longer propagates in the
oliton regime, and therefore soliton effects such as emission of radiation
re no longer observed. Note that the effects of TPA, carrier density, and
onlinearity vary as the input power and wavelength of the pump are changed.
or example, carrier effects decrease dramatically as the pump wavelength
eaches the TPA edge at ��2214 nm.

eeper insight into the characteristics of the pulse evolution is provided by the
ulse spectrogram S�� ,
�, defined as the Fourier transform of the product
etween the output pulse and a delayed reference pulse, usually the input pulse.
athematically, S�� ,
� is defined as

S��,
� = ��
−�

�

u�z,t�uref�t − 
�ei�tdt�. �37�

he spectrograms, corresponding to the output pulses shown in Fig. 8, are also
resented in Fig. 9. They clearly show the two solitons that are formed from
he input pulse, as well as the emitted radiation; the latter appears as a pulse
hat is broad in both the frequency and the temporal domains. Furthermore, it can
e seen that the soliton with larger peak power is shifted by an additional
2 ps when the pulse propagates solely in the presence of the free carriers,
hereas the temporal location of the soliton with a smaller peak power remains
nchanged. In addition, through the mechanism just described, the former
oliton undergoes a wavelength shift of about 50 nm. Moreover, these
pectrograms show that in the presence of the free carriers, a smaller amount
f radiation is emitted, an effect that is explained by the fact that as it
ropagates, the soliton shifts in the frequency domain and thus moves out of
hase with the emitted radiation. Finally, with the TPA included, the effects
nduced by the presence of free carriers are washed out, and thus the soliton
plitting in both the time and the frequency domains is very small. In a
emiconductor wire it is in principle possible to introduce free carriers by
onoptical means such as carrier injection; in that case, intrinsic TPA could be
voided.

.6b. Self-Steepening

elf-steepening represents one of the main factors that induce the reshaping of

short pulse as it propagates in a nonlinear optical medium. Its origin
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tems from the nonlinear dependence on the pulse peak power of the pulse
roup velocity [131,132]. Specifically, if the index of refraction of a nonlinear
edium depends on the optical power, different temporal regions of a

ulse probe a different index of refraction, and therefore the shift in the group
elocity of the frequency components contained in the pulse depends on
he local pulse power. As a result, the pulse is distorted as it propagates in the
onlinear medium, an effect that is stronger for spectrally broader pulses.
his effect has been extensively investigated in the context of ultrashort pulse
ropagation in optical fibers [133,134], as it can be one of the main sources
f signal degradation in optical communication systems.

hese same self-steepening effects occur in SPWs. They can be investigated
y modifying the equation describing the propagation of the optical field, Eq.
23), so as to incorporate the frequency dependence of the nonlinear
oefficient of the waveguide. The modified model, written in a reference
ystem moving with the pulse group velocity vg, can be expressed as [135]

i
�u

�z
+ 	

n�2

in�n

n!

�nu

�tn
= − i

c�

2nvg

��in + �FC�u −
�0�

nvg

�nFCu

−
3�0P0�

4�0A0vg
2�1 + i� 1

�0

+ � � ln�g����

��
�

�=�0

� �

�t��u�2u ,

�38�

here �0 is the carrier frequency and g���=� /vg
2. The strength of the

elf-steepening phenomena is determined by the characteristic shock time 
s,
efined as 
s=��ln �g����� /����=�0

=
0+
wm, where 
0=1/�0 is related to
he frequency-dependent response of the nonlinearity in a bulk crystal and 
wm


r+ i
i quantifies the waveguide contribution including that due to ��3����.
or optical fibers 
wm can be neglected; however, in the case of PCF, 
wm can be

Figure 9

pectrogram of a pulse with T0=100 fs, peak power P0=6.5 W, and pulse
avelength �=1500 nm after it propagated a distance z=10 mm in a SPW with
imensions h�w=220 nm�360 nm. The ZGVD wavelength �0=1550 nm,

2=−4 ps2 /m, �3=−0.0915 ps3 /m, and �=446.5 W−1 m−1. (a) Influences of the
PA and free carriers are neglected; (b) influence of TPA is ignored while

he effects of the free carriers are included; (c) both TPA and free carriers are
ccounted for.
s large as 1 fs [136]. It is important that the linear frequency dispersion is
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ccurately described in Eq. (38) to all-orders in the Taylor expansion of ����.
his rigorous description of the waveguide frequency dispersion is easily

mplemented in the numerical algorithm by simply replacing in the Fourier
omain the sum 	n�2�in�n /n!��t

n with ����−���0�−�1�����−�0�, with the
ropagation constant �=���� being found numerically.

o quantify the magnitude of self-steepening effects in SPWs one should
etermine the characteristic shock time 
s by calculating the frequency
ispersion of ln������. As a generic example, we consider one of the waveguides
n Subsection 4.4, with dimensions h�w=220 nm�360 nm, determine the
ependence ���� through the procedure discussed in this section, and
hen calculate 
s by numerical differentiation; the results of this approach are
ummarized in Fig. 10. The most notable conclusion illustrated by this
gure is that for SPW the shock time can be as large as 25 fs, that is, more

han an order of magnitude larger than that in PCFs. It is especially large in the
icinity of the cutoff wavelength, primarily because close to this wavelength
he waveguide mode becomes less confined in the Si core. In addition, unlike the
ase of optical fibers or PCFs, 
s has a significant imaginary part, which
tems from the frequency dispersion of the TPA of Si.

e use the simulation to illustrate the influence of self-steepening effects on
he propagation of ultrashort optical pulses in SPWs. To make the example more
traightforward we minimize any effects of TPA by considering a pump in
he wavelength vicinity of 2.2 µm, the TPA edge of Si. We examine the evolution
f a sech-shaped pulse, a typical pulse shape in nonlinear propagation
roblems. The use of the 2.0 µm wavelength region requires a waveguide with
ross section h�w=300 nm�450 nm; this cross section is chosen to
ause the wire waveguide to have anomalous dispersion, along with a large
hock time for this long-wavelength range. For the simulation, we chose the
ollowing parameters: �=1950 nm, T0=100 fs, and peak power P0=6 W.
or these pulse parameters, Re���=426.5 W−1 m−1, LD=2.1 mm, and thus LNL

0.39 mm, �2=−4.69 ps2 /m, and the soliton number Nsoliton=2.32. The
esults, which are obtained by numerically integrating the system of equations
15) and (38), are presented in Fig. 11. Several of the features illustrated in

Figure 10

eal part of the parameter 
s, calculated in two cases: dashed curve, the
requency dependence of ��3� is neglected; solid curve, the frequency
ependence of ��3� is fully accounted for. Inset, imaginary part of 
s versus �.
dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 195
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his figure are also observed when only the effects of TOD were considered,
hat is, when the shock time was set to 
s=0. In the case of zero shock time, the
ulse splits into two solitons, along with a subsequent emission of radiation.
oreover, the pulse dynamics changes only slightly if the shock time is chosen

o be that corresponding to the bulk Si, 
s=
0. However, the evolution of the
nput pulse is markedly changed when we include the contribution of the
aveguide dispersion to 
s; namely, in this case, the shift of the pulse, in both

he temporal and the spectral domain, is reduced, which can be attributed
o the imaginary part of 
s. Thus, when 
i is nonzero, Eq. (38) contains a term
roportional to u��u�2 /�t, a term that describes the intrapulse Raman
cattering in optical fibers. As a result, this term has an effect similar to that of
his fiber intrapulse Raman scattering, namely, it leads to a shift of the
oliton spectrum toward longer wavelengths of the spectrum, and thus it cancels
he blueshift induced by the free carriers. Note that this form of dynamics is
nique to SPWs, since for optical fibers 
i=0, and no free carriers are generated.
ote also that the response time for the TPA is much faster than for the
aman response ��3 ps�, and therefore the Raman effect is not included in
ur simulations of propagation of femtosecond optical pulses.

hese predictions are also corroborated by the pulse spectrogram S�� ,
�
hown in Fig. 12. Thus, it can be seen that for 
s=0 and 
s=
0 the pulse
pectrograms are very similar to that corresponding to the case when only
OD was considered, which shows that for values of 
s in this range the
elf-steepening effects are rather small. However, the pulse dynamics is strongly
odified when the contribution of 
wm is added to 
s. In particular, and in

greement with the results presented in Fig. 11, in this case the time shift of
he larger soliton is reduced to a subpicosecond value. In addition, a smaller
mount of radiation is emitted by the generated solitons. Since the Raman
ffects for ultrashort pulses propagating in SPWs are negligible, these theoretical
esults show that, unlike the case of optical fibers or PCFs, self-steepening is
he dominant higher-order nonlinear effect.

Figure 11

emporal and spectral profiles of a pulse that propagates a distance z=10 mm
n a SPW with dimensions h�w=300 nm�450 nm.
dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 196
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. Experimental Observations of Raman
mplification

ne of the earliest nonlinear optical devices that emerged based on advances
n confined Si-waveguide technology is the Raman laser. The interest in
uch a device or more specifically its closely related system, the Raman
mplifier, is that it would allow for on-chip amplification rather than relying on
difficult-to-achieve set of ultralow-loss optical components in an on-chip
hotonics system. In this section, only Raman amplification in Si SPWs will be
eviewed because of its importance for on-chip optical amplification.

.1. Raman Amplification

he large Raman gain coefficient of Si (�104 larger than that of silica) can, in
rinciple, be used to achieve practical levels of gain with a diode-laser
ump. In this connection, Claps et al. demonstrated spontaneous Raman
mission [40], Raman amplification [42], and CARS [58]. In these studies, the
uthors used a rib waveguide structure that yielded a modal area of 5.4 µm2,
rom which a signal amplification of 0.25 dB was observed with 1.6 W
f coupled pump power [42]. These advances have continued in a series of
mpressive devices, which have dealt with a host of issues in Raman
mplification, including undesired carrier photogeneration and on-chip
esonator design.

major issue in pulse Raman amplification is temporal beam walk off. Thus,
ecause SPWs show large GVD, copropagating optical pulses separated by
he Raman frequency �R can experience large temporal walk-off and therefore
small interaction length. As a result, the process of Raman amplification

an be ineffective. There are several approaches that can overcome this problem.
irst, the waveguide is designed such that the pump and the Stokes signal
orrespond to different modes, which are designed such that, at the
orresponding frequencies, the two pulses have the same group velocity [50].
lternatively, taking advantage of the tunability of the frequency dispersion

Figure 12

ulse spectrograms calculated for the three cases shown in Fig. 9. (a) 
0=0 and

wm=0 (
r=0 and 
i=0); (b) 
0=1.03 fs and 
wm=0 (
r=0 and 
i=0); (c) 
0

1.03 fs, 
r=2.99 fs, and 
i=0.51 fs. In all cases the propagation distance is z
10 mm.
n SPWs, one can design such waveguides such that they possess a pair of
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avelengths situated on either side of a ZGVD point and, again separated by
he Raman frequency �R, such they have the same group velocity [137].

ecause the Raman effect is a nonlinear optical process, tighter optical
onfinement can lead to an increase in the efficiency of the process, which
uggests that Si wires would make an effective gain medium. An example of a
E-polarized Raman amplifier using SPW made use of a pumping setup
imilar to Fig. 1. In the experiments using this device, the SPW was pumped
ith a continuous wave (CW) source at 1435 nm and injected with a

ounterpropagating signal beam centered at 1550 nm with a bandwidth of 40
m. The SPW had a propagation loss of �3.6±0.1 dB/cm at 1550 nm
84] with input and output coupling losses of �1.5–2 dB/coupler. In this case
he input pump power was 20.5 mW with an on–off gain of 0.4 dB. The
ower dependence of the gain exhibited a gain maximum at �=1550.7 nm,
hich corresponded to the predicted 
�=15.6 THz �521 cm−1� Raman shift in
i [40]. The measured on–off gain versus input pump power, i.e., that entering

he waveguide, is shown in Fig. 13. The maximum gain was G�0.7 dB (15%)
or a pump power of PR�29 mW and for a waveguide length of L=4.2 mm.
he Raman amplifier figure of merit (FOM), which is defined as FOM
G / �PRL�=57.47 dB/cm/W, was substantial compared with early
ulsed-format devices. Furthermore, this increase in the FOM showed that the
ain scales approximately inversely with modal area. The data in Fig. 13
re approximately linear with a slope of 0.029 dB/mW.

he data gathered in this measurement can be compared with the results of a
imple numerical solution of the stimulated Raman differential rate equations
101], viz.

dPp�z�

dz
= −

�p

�R

gRPp�z�PR�z� − �Pp�z� −
�TPA

Aeff

Pp
2�z� ,

Figure 13

n–off gain versus input pump power. The maximum gain is 0.7 dB (17%)
ith a pump power of �29 mW. A linear fit with a slope of 0.029 dB/mW

orresponds to an SRS coefficient gR�29 cm/GW. From [43].
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dPR�z�

dz
= �PR�z� −

gR − �TPA

Aeff

Pp�z�PR�z� , �39�

here PP and PR are the pump and signal powers, respectively, �P and �R are
he pump and signal frequencies, �=3.6 dB/cm is the propagation loss of the
aveguide, �TPA=0.44 cm/GW is the assumed TPA coefficient [42], Aeff

0.059 µm2 is the effective modal area, and gR=29 cm/GW is the stimulated
aman scattering coefficient. The solution to these equations takes into
ccount the effective pump power that is due to the finite pump bandwidth, i.e.,

eff=Pp / �1+
�p /
�R�, where 
�P=160 GHz and 
�R=105 GHz [42,113].
he effect of pump depletion, i.e., the coupling term in the first equation in Eqs.

39), was also accounted for in the calculation and was negligible in this
ase [43]. The calculated data, shown as a dashed line in Fig. 13, have a slope
hat matched the experimental data to within ±10%. The on–off gain and
RS coefficient found in this experiment agree well with the results of [42]. In

his case the use of a deeply scaled down waveguide cross section of an
PW meant not only that the power is enhanced because of modal confinement
ut also that the transit time of the carriers is reduced compared with that in
arger waveguides. In the experiment of [43], the effective recombination
ifetime was found to have an upper bound of 0.77 ns.

.2. Removal of Photogenerated Carriers

ne of the major issues in Raman amplification as well as in many of the
onlinear optical devices discussed below is the generation of carriers by TPA,
s these carriers can generate active absorption in the waveguide. This
rocess becomes a particular problem as one shifts the pump wavelength to
horter wavelengths from, say, �1700 nm. Free carriers can be eliminated either
y recombination, as mentioned above, or by carrier sweep out through
pplication of a transverse voltage.

he most obvious approach to reducing FCA is to use a pulsed Raman source,
aving a pulse repetition rate much less than that of the recombination
ime. In fact, many of the initial Raman amplification and Raman laser sources
sed this straightforward approach [40,42,44–48,51,52,54,123], which
hile of limited applicability for a practical high-data rate device, is useful to

tudy the physics issues in a Raman amplifier or laser, including nonlinear
oss mechanisms and carrier-lifetime effects. A second approach uses various
pproaches to decrease the recombination in the waveguide region. An
xcellent example is the use of He implantation to shorten lifetime [138]. In
ne experiment using this approach, He implantation with a 1012 cm−2 dose was
ade for a relatively large Si waveguide of cross section of 4.1 µm�2.8 µm.
se of the He implantation formed recombination centers in the Si to

educe the free-carrier density and thus its power loss. As a result, the
onlinearity, as judged by SPM measurements, was increased. Recombination
f carriers can also be enhanced by reducing the cross section of the gain
egion, since that allows more rapid recombination at the walls [124]. This
pproach is applicable to amplification in Si wires, which have the smallest
ossible waveguide cross section. In fact, this approach led to the first CW
aman devices, including that used in the CW amplifier example given above;

t also plays an important role in reducing FCA in high-repetition-rate
ltrafast lasers as long as the repetition rate is less than the recombination

ime. [47].
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arrier sweep out is the second approach for reducing carrier absorption; this
opic has been the subject of numerous studies and has led to several
ngenious device designs. For example, work in [139] showed that optical loss,
ue to FCA that was induced by TPA, may be significantly reduced by
everse biasing a p-i-n diode formed on the side regions on a rib waveguide.
his biasing enabled the researchers to obtain higher CW Raman gain than when
arriers were not removed, i.e., with no applied voltage, from the SOI
aveguide, which was a 4.8 cm long waveguide with an effective core area of
.6 µm2. With carrier sweep out, the amplifier had a net CW Raman gain
f 	3 dB with an internal pump power of 700 mW.

third approach has recently been proposed in mitigating the FCA effect by
aking use of a cladding-pumped geometry [140]. This configuration reduces

he overlap of the pump beam with the Si core, thus weakening the effect of
CA. Consequently, the length of the amplifier may be made much longer,
esulting in a higher total gain not possible in a direct core-pumped CW Raman
mplifier. For example, numerical calculations assuming pump and Stokes
avelengths of 1220 and 1303 nm, respectively, show that total gains as high

s 18 and 34 dB may be achieved with pump powers of 300 mW and 1 W,
espectively, for Si-wire dimensions of h�w=270 nm�350 nm.

. Observations of Optical Nonlinearities in Si Wires

he optical properties of Si wires are such that it is relatively easy to drive
he wires into a strongly nonlinear regime with modest input power. As an
xample, at pump peak powers of �1 W, corresponding to �P0

22.5 cm−1 in a 220 nm�450 nm cross-section waveguide, intensities of
1GW/cm2 can be attained inside the waveguide. These intensities, in

onjunction the extremely large ��3� of Si, are sufficient to readily observe all
f the key nonlinear phenomena in optical fiber. In this section, the
xperimental observation of each of the principal nonlinear optical effects are
iscussed, including optical limiting, SPM and XPM, soliton generation,
nd MI.

.1. Optical Limiting

ptical transmission limiting, or simply “optical limiting,” is a readily
bservable nonlinear response in tightly confined SPWs. For ultrashort
femtosecond) pulses, the origin of the phenomena is dominantly TPA, although
epending on the pulse length other effects such as free-carrier generation
r SPM can influence the effect to a greater or lesser degree. An example of
ypical data is shown in Fig. 14. In this figure, two examples [72,73] are chosen
o illustrate limiting in different but important temporal regimes. Specifically,
he graph shows results corresponding to a train of 1.8 ps and 200 fs pulses,
njected into waveguides of nearly identical cross sections, i.e., 220 nm

450 nm, so as to have the same time-averaged carrier lifetime. The waveguide
esponse is different for these two pulse regimes; Fig. 14(a) shows
icosecond-pulse pumping, a regime where GVD is minimal, so that the SPM
s the main optical effect that affects the pulse propagation, and Fig. 14(b)
hows ultrashort ��200 fs�-pulse pumping, where GVD becomes significant

nough such that, in conjunction with the SPM, it severely distorts the temporal
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nd spectral pulse profile as is shown in the next subsection. The maximum
oupled-input peak powers for both cases are a few watts. However, for the case
n Fig. 14(b), the simulations showed that the TOD effects are also sufficiently
trong to significantly distort the output-pulse spectrum; thus in this case
better measure for the optical power carried by the pulse train is the average
ower. Consequently, Fig. 14(a) displays the output peak power versus the
nput peak power, while Fig. 14(b) displays average power versus input peak
ower.

or both cases, the output power scales linearly with the input power for input
eak powers below �50 mW and saturates above this input power. Although
he powers required for achieving the onset of saturation are similar, the
aturation mechanism for each case is different. For the case of the longer pulses,
aturation occurs due to absorption from free carriers generated by TPA,
hile for the short pulses, saturation is due predominantly to direct optical loss

hrough the TPA process itself. The onset of saturation in both cases is
redicted accurately by the numerical solution of Eqs. (23) and (15), which is
hown by the curves in each panel. In particular, this simulation predicts
ptical peak powers in the range �50–100 mW, near the onset of saturation.
he free-carrier-induced loss for the 1.8 ps case is approximately eight

imes that of the 200 fs case. In other words, owing to the difference in pulse
uration for the two cases, the relative pulse energy is approximately 10:1 for the
ong pulse as compared with the short pulse; thus the longer pulse yields
ore carriers than the shorter pulse by an order of magnitude, as seen from
q. (23), and therefore the corresponding free-carrier-induced losses are also

arger.

he mechanism for the saturation behavior in each of the two cases was
nvestigated in detail by numerically solving Eqs. (23) and (15). The solid curves
n Fig. 14 denote the theoretical predictions for both cases. The calculation
n this case takes into account the total dispersion and other linear effects,
ncluding FCA. For the case of the short-pulse pumping, the TPA process
ominates and causes optical limiting at high peak powers. In contrast, for this
ow power, the photogenerated free-carrier-density is only N�3

1015 cm−3, which is comparable with the unexcited carrier density. Hence,
he effect of losses from these TPA-generated carriers for the short-pulse

Figure 14

ependence of output power on coupled input power for (a) 1.8 ps (from [72])
nd (b) 200 fs pulses (from [73]). Experiment, squares; simulations, curves.
umping case is negligible. In fact, in this case, the numerical simulations were
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one both in the presence and the absence of FCA, and, as expected, no
ifference was observed between these two cases as shown in Fig. 14(b). Our
umerical calculations also showed that choosing sech- or Gaussian-shaped
ulses leads to approximately the same results, as long as the FWHM is kept the
ame. For the case of picosecond pumping, shown in Fig. 14(a), near the
aturation threshold power value of, say, �60 mW, the optical power leads to a
ree-carrier density of N�2�1017 cm−3, which is about 2 orders of
agnitude greater than the carrier density in the unexcited waveguide (p

oped, N�1�1015 cm−3). Finally, note that the interpulse carrier accumulation
rom multiple pulses in either of the examples is negligible in our experiments,
ince the temporal separation between adjacent pulses is significantly
onger than the carrier lifetime.

.2. Self-Phase Modulation and Third-Order Dispersion

n addition to optical limiting behavior, optical pulses propagating in a SPW
how increasing spectral modulation, as the pump power is increased. The origin
f this process, which is well known in fiber optics, is shown clearly by Eq.
29) above (with the XPM term set to zero); the nonlinear response of the SPW
auses the phase to shift in time during the pulse propagation, thus inducing
frequency shift. This effect is seen clearly in more exact numerical simulations,
hich show that as the input power is increased, the pulse spectrum broadens

nd then develops a multiple-peak structure. This behavior, which is a
ignature of the SPM, is the result of the phase interference between the pulse
requency components with a time-dependent SPM-induced frequency
hirp. These simulations also clearly illustrate that the Si-wire SPM can be
trongly influenced by the optical properties of the medium, including TPA,
PA-induced free carriers, and, for �1 ps pulses, TOD.

or typical pulsed-laser telecommunication sources, the short carrier lifetime
n SPW does not allow interpulse carrier accumulation. However, the laser
epetition rate can play an important role if the lifetime of the carriers is longer
r comparable to the interpulse temporal separation, since in this case
arrier accumulation may become a source of phase shift (as well as loss).
ccumulation is particularly important in large-cross-section waveguides, i.e.,

0	1 µm2, and if no applied voltage is present to sweep out photogenerated
arriers.

igure 15 illustrates the clear spectral broadening of picosecond and
emtosecond pulses upon propagation in SPWs with approximately the same
aveguide dimensions. In addition to broadening, the spectra in Fig. 15(b)

xhibit strong spectral modulation and more pronounced asymmetry of the pulse
rofile than do the spectra in Fig 15(a). Both of these properties increase
ith input power. Spectral asymmetry, in general, may result from FCA, TOD,
r the initial input-pulse asymmetry. In optical fibers, SPM-induced spectral
roadening of picosecond pulses is normally symmetric around the center
requency [101]. Similarly, only minimal asymmetry is observed for propagation
f such pulses in SPWs [72]. This situation is different for much larger Si
aveguides, in which carrier lifetimes are longer and the resulting absorption
y photogenerated FCA can cause spectral asymmetry [68]. However, as
iscussed above for the case of optical limiting experiments, while free-carrier
eneration can be a significant for picosecond or longer pulses, it is greatly

educed for femtosecond pulses because of the low pulse energy typically used.
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n fact, in the case of the �200 fs data in Fig. 15(b), simulations using the
oupled-mode equations have shown clearly that TOD is the dominant effect
eading to the spectral asymmetry seen in this figure.

he changes in the spectral features in Fig. 15(b) are to first order a result of
he spectral modulation induced by SPM. The high nonlinearity of Si and its tight
onfinement in Si wires means that this modulation can be seen in SPWs
ith lower input power and many orders of magnitude shorter distance than in

tandard optical fibers. Of course, as mentioned above, effects such TPA
nd its resulting free-carrier generation further modify the otherwise pure SPM
esponse of the Si wire—as does the influence of TOD in shorter pulses.
learly, also, the spectral shape of the output pulse presents additional features,
s compared with the input spectra. These changes can be accurately
imulated with the coupled-wave equations. For example, Fig. 16 shows the
xperimental and simulation results obtained by using a sech pulse shape for

Figure 15

elf-phase modulation observed experimentally using picosecond and
emtosecond pulses. (a) 1.8 ps pulses (figure from [72]) (b) 200 fs pulses (data
rom [73]).

Figure 16

omparison of simulation with experimental measurements of pulses
ropagating in a SPW waveguide with �P0=56.3 cm−1. Left, measured spectra
brown). Right, simulation using sech input pulse (red). Blue curves on both
anels correspond to �P0=1.1 cm−1 (with sech input pulse for simulation).
ashed line, OSA noise floor. The numbers illustrate features of the output

pectrum common to experiment and simulation. From [73].
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he 200 fs pulse; the numbers 1–8 indicate a series of smaller features or
eaks. The agreement between data and simulations is excellent if a sech pulse
hape is used. Simulation of the same data set using Gaussian-shaped input
ulses gives less spectral features, but a more realistic imbalance between the left
nd right peaks.

.3. Soliton Generation

n a nonlinear optical medium the generation of solitons is possible. These
olitary optical waves are stationary states of propagation and are formed by an
ptical increase in the nonlinear index by a high-intensity propagating wave.
oliton formation requires that the guided-wave medium exhibit anomalous
ispersion. They are potentially important as a communication format and are,
n any case, a component essential to the full understanding of the nonlinear
ptics of a medium. Several experiments and optical simulation have shown that
oliton radiation and its effects can be readily seen in SPWs. For example,
he work of Hsieh et al. [73] matched the observation of soliton effects in SPWs
ith the results from numerical simulations. Recently, in a related
easurement, Zhang et al. also observed related effects regarding soliton

ropagation in larger Si rib waveguides having dimensions of 400 nm
860 nm and an etching depth of 300 nm [141]. In addition, in a recent

heoretical study, the role of fission of higher-order solitons in Si waveguides
n driving supercontinuum radiation [142] was discussed. More recently,
ing et al. reported measurements and simulations of soliton propagation from
PWs having three to four dispersion lengths [143].

s in optical fibers, radiation from solitons may be generated during the
ropagation of soliton pulses through the influence of higher-order perturbative
ffects, particularly TOD [126–129]. However, in the case of Si wires the
ffective nonlinear coefficient is �105 larger than that in fibers, and thus soliton
ffects are seen in wires only millimeters in length. This radiation may be
een as a feature in the output spectrum of a propagating pulse in a SPW,
xhibiting anomalous dispersion. For example, in addition to the features
ttributable to SPM in Fig. 16, an additional spectral feature is observed, which
ay be attributable to soliton radiation. The evolution of the spectra with

ower is shown in Fig. 17, which displays both experimental and numerical
imulation results. This figure shows that as the input power increases, a
pectral feature develops near 1590 nm for �P0=45 cm−1 (brown curve); notice
hat the peak is significantly shifted from the main SPM features. The
oliton number for the conditions in Fig. 16 is Nsoliton=6.6, and thus pulse
ropagation is clearly in the soliton regime. Finally and characteristically, the
ocation of this peak remains constant over a large range of powers, a
ehavior not seen in SPM features.

he location of this peak can also be used to determine the waveguide TOD
oefficient—a technique similar to that first used to measure �3 of optical fibers
n the vicinity of the zero group-delay dispersion point [144]. In particular,
y using the position of this spectral peak we can infer the value of �3 by using
he relation �3=3��2�T0 /�r, where �r is the normalized angular frequency
eparation between the center frequency and the soliton feature [126–129] (see
lso Subsection 4.6). Note that this relation does not account for the
ependence of �r on dispersion coefficients beyond the third order, as well as

ny power dependence of the propagation constant; however these effects
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re small and are commonly neglected. In addition, while this relation uses the
ulse width T0 in the expression for �3, a more rigorous approach can be
sed in the case of multiple soliton generation. Thus, in this case, instead of T0

ne uses the temporal width of the corresponding emitted soliton. The
entral point, however, is that this approach can be used to probe waveguide
roperties such as TOD.

.4. Cross-Phase Modulation

PM alters the phase of an optical pulse as it propagates through the wire; it is
herefore crucial to consider this effect when the optical peak power is large
nough that the pulse propagation is in the nonlinear regime. In addition, in the
ases where a second pulse is present, it is important to include the alteration
f the phase of a pulse at one wavelength by a second, copropagating pulse, at a
ifferent wavelength, i.e., XPM. XPM is described by the general
oupled-mode theory presented in the set of equations (27). Unlike in optical
bers, in Si wires the XPM process can be altered by the strong dispersion

n a SPW and by the fact that TPA is present. These points will be discussed
elow.

igure 18 illustrates the effect of XPM of a weak probe pulse by a pump pulse;
hese two pulses have different wavelengths and copropagate in the same
aveguide [77]. The pump power corresponds to �psPp=10.4 cm−1, for several
alues of the pump–probe delay time. The pump and the probe or signal
ave center wavelengths at �p=1527 nm and �s=1590 nm, respectively. The
ulse width and bandwidth of the resulting pulses are approximately 200 fs and
5 nm, respectively. The figure shows the dependence of the strength of
PM on the temporal overlap between the two pulses. These results illustrate

learly spectral variations in the probe spectrum, which can be induced by
PM. It was shown in [77] that as the nonlinearity-pump-power product

ncreases, a larger number of oscillations are induced in the waveform, a result
ue to the increasing index change at higher pump powers. Similarly, as the
ump overlap increases, the modulation of the signal by the pump as increases

Figure 17

hange in output spectra due to SPM for different excitation levels �P0=1.1,
1.3, 33.8, 45.0 cm−1 (bottom to top) spectra for both (a) theory and (b)
xperiment. Note also the evolution of soliton radiation (dashed line) at
590 nm.
s shown in Fig. 18.
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ne approach to examining the physics of XPM is to examine the shift in
avelength of a signal pulse as the delay between pump and probe pulse, prior

o injection into a waveguide, is varied. Since this delay controls the temporal
rofile of the refractive index change induced by the copropagating pump pulse,
t maps out the wavelength change in the carrier frequency or wavelength
145] with power or index change. This shift can be described conveniently by
he centroid wavelength of the spectrum, �c=�P���� d� /�P��� d�. The
uantity �c shifts as the temporal delay between the pump and the probe pulses
s varied. Figure 19 illustrates the shift in �c, that is, the nonlinear frequency
hift of the centroid or mean wavelength, induced by changes in the pump–
robe delay. This frequency shift was given above in Eq. (33) for the case of
aussian pulses, ��s�−�exp�−�
−
d+��2�−exp�−�
−
d�2��, where, again,

, 
d, and �, are normalized time, normalized time delay, and temporal walk-off,
espectively. For the waveguide length and pulse widths used in our
xperiments, the normalized temporal walk-off is �=L
 /Tp=4.78 [77]. At

Figure 18

emonstration of XPM in SPWs. Dependence of probe spectrum on pump
ower and pump–probe delay.

Figure 19

xperimental (red) and numerical simulation (blue) of the shift in center
requency due to XPM with the time delay of the pump and probe pulse. The
enter wavelength of the probe is �1590 nm.
dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 206
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arge absolute values of 
d, no wavelength shift is observed because the two
ulses do not overlap in the waveguide. On the other hand, if either 
d=0 or 
d

�, XPM interaction induces a large nonlinear wavelength shift, which for
he data in Fig. 19 is 	1 nm but is negative for 
d=0 and positive for 
d=�.
owever, in the vicinity of 
d=� /2, no shift is observed, since two shifts

or the front and the rear of the waveguide effectively cancel each other. The
symmetry in the nonlinear shift of the probe centroid wavelength is explained
y the presence of a small linear loss in the waveguide. Thus in the case in
hich 
d=0 the pump–probe interaction takes place mostly near the input facet
f the waveguide, whereas when 
d=� the pump interacts with the probe
ostly near the output of the SPW, i.e., after the pump has lost part of its optical

ower because of intrinsic and TPA losses. In addition, the pulse width is
lso changed asymmetrically. Specifically, the peak near 
d=0 is narrower than
he one near 
d=�, a behavior that is attributable to the slight temporal
roadening of both the pump and the probe pulses because of frequency
ispersion. Figure 19 also shows a fit to experimental results obtained by using
he coupled-mode theory. The model accurately predicts the variation of
hift with delay, as well as other more detailed features of the shift. For example,
lthough the temporal broadening of the signal pulse with delay is small, the
umerical simulation shown in Fig. 19 shows a small difference in the width of
he two lobes.

inally, because of the large effective nonlinear coefficient for Si and the high
onfinement of SPW, the absolute value for the frequency shift can be
arge—even with a relatively modest pump. For example, Dekker et al.
emonstrated XPM-induced wavelength shifts of as much as 	10 nm, which
re comparable with the spectral width of the input probe pulses [76].
hese results suggest that a XPM-induced frequency shift could be employed

or an ultrafast all-optical switch, which can be used to switch off pulses
s short as a few hundred femtoseconds.

ith regard to optical switching, the nonlinear switching properties of devices
ay be described in terms of the FOM, where FOM=n2 /�TPA�, which is

sed to quantify the nonlinear phase shift achieved over an effective
bsorption-limited length [146]. The FOM value is relatively independent of
he dimensions of the waveguide; however, the operational value of the FOM is
evice specific; i.e., it depends on the switching mechanism. Thus the
equired nonlinear phase shift varies from � to 4�, corresponding to FOM
alues of 0.5–2. For bulk Si, FOM=0.37, which suggests that Si wires may not
e ideal for certain forms of nonlinear optical switching components. For
he Si wires, n2 and �TPA are strongly enhanced by the waveguide confinement
roperties. But because the enhancement to n2 and �TPA are comparable,
he FOM does not change significantly from the bulk values. However, the
xtremely low pulse energy required for Si-wire devices is itself interesting and
ay justify utilizing the low FOM value of Si despite its associated

erformance penalty. Further, since in the case of XPM-based switches, the
equired FOM is decreased to half of the value corresponding to the SPM case,
hese switches may be even more attractive [77]. As a final point, because of
he pronounced wavelength dependence of both n2 and �TPA, the FOM for SPW
evices will increase substantially with wavelength until at �2200 nm the
OM is �4.4 [39].

he use of XPM [74] for switching has been demonstrated in waveguides of

2 µm in cross section, thus larger than typical Si wires. This work used a
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ach–Zehnder interferometric device with the two wavelengths separated by
25 nm. In this experiment, switching was governed at picosecond and

horter times by Kerr nonlinearities and at longer times by index change due to
PA-induced free-carrier loss. The Kerr nonlinearity was important for
owers up to the 40 W pulse peak power. However, as the peak power level
ncreased, free-carrier effects became important. Such effects included
istortion in the switching transient. Switching speeds due to free carriers were
imited by the �1–10 µs recombination times, which are greater than a
ypical picosecond switch pulse. These carriers accumulate from pulse to pulse,
hen the recombination time is longer than the interpulse time scale. Despite

he importance of free-carrier generation, it was found that it was possible
o attain a Kerr phase shift of 180° at power levels lower than those, for which
ubstantial free carrier generation occurs.

.5. Parametric Processes: Frequency Mixing

final class of basic nonlinear processes to review is that of parametric
ixing. This process is an important optical functionality, since it includes

asic operations such as frequency upconversion and downconversion
nd wideband amplification. It is also a process that for efficient operation
equires phase matching, which can be achieved via control of the waveguide
ispersive properties, and a strong Kerr nonlinearity. As a model example
or this discussion, consider wavelength conversion by means of techniques such
s FWM. This process is related to several other important third-order
onlinear optical processes such as CARS, parametric amplification,
lectric-field-induced second-harmonic generation, and third-harmonic
eneration.

WM using Si photonics has been demonstrated and explored by many
roups. For example, Fukuda et al. showed the possibility of FWM in Si
aveguides for frequency conversion [61]. In this experiment, conventional
WM was used wherein two input beams at frequencies �1 and �2 interact in the
i waveguide to generate new output frequencies at 2�1−�2 and 2�2−�1.
n this experiment there was little effort to engineer dispersion, and thus mixing
as limited in tunable spectral bandwidth and in efficiency.

ore complex FWM schemes can be used, which are less demanding in the
ontrol over Si-wire dispersion, that is, for a case in which the waveguide cross
ections are fixed by considerations other than for the FWM process. Thus a
ore general FWM process is shown in Fig. 5(e) (first two panels), in which

hree beams of different wavelengths, for example, two pump laser beams
p1 and p2) and a signal laser beam �s�, interact in a ��3� medium to produce
n output �o� idler beam. For the same pump and signal wavelengths, two
avelength-mixing processes are possible as seen in Fig. 5(e); hence two output

dler beams are generated. The advantage of this more general scheme over
he conventional FWM process is that the more general scheme allows
or operation of the pump (control) laser wavelengths over a wider spectral
andwidth while keeping the phase mismatch minimal for efficient conversion.
his scheme can be an important consideration in a strongly dispersive
edium, such as a Si waveguide.

n addition, in certain FWM schemes, resonances may play a role in enhancing

he nonlinear optical susceptibility, as in the case of CARS. Further, in this
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ase the relevant third-order susceptibility, ��3�, is that for Raman interaction.
igure 5(c) illustrates the energy diagram for the CARS process wherein

he photon energy difference between the pump and signal matches the phonon
Raman) energy. In such a process, two photons derived from the same
ump laser �p� interact with the (Stokes) signal photon in the medium to produce
n output photon whose angular frequency is given by �CARS=2�p−�s. By
omparison with the electronic ��3� processes just described, CARS is more
seful for larger waveguide experiments because of the stronger dispersion
n SPWs. In addition, the electronic susceptibility ��3� is much weaker than the
aman susceptibility, �R

�3� by �1/44 [27] owing to the presence of the
esonant terms in the expression for the Raman susceptibility. In fact, FWM
sing CARS was one of the earlier wavelength conversion techniques
emonstrated. In the initial demonstration of CARS, wavelength conversion
as achieved in a 5.4 µm2 cross-section Si waveguide [58]. Wavelength

onversion was achieved from �s=1542 nm to �CARS=1329 nm by using a
ump laser at �p=1427 nm with a −50 dB efficiency corresponding to a phase
ismatch of �
��=27 cm−1.

n the case of a SPW, the applicability of CARS has some limitations despite
he attraction of the tighter optical confinement afforded by such a small,
ightly confined waveguide. However, in fact, waveguide dispersion dominates
he modal dispersion, thus making it difficult to achieve efficient
hase-matched conversion. For example, a typical SPW has a phase mismatch
f �
���600 cm−1 for the CARS process! In addition, for a fixed signal
avelength, �s, the CARS process is not tunable, since the resonance condition

equires that �p−�s=�R. Finally, despite the fact that the nonresonant
lectronic susceptibility ��3� is smaller than the Raman susceptibility at
esonance, the decreased cross-sectional area of the waveguide compensates
or the weaker electronic ��3�.

requency mixing has been demonstrated in SPW waveguides by means of the
bove nonresonant, nondegenerate FWM scheme by using low-power, CW
iode-laser sources, corresponding to the first two panels of Fig. 5(e) [60].
elatively efficient mixing was observed despite the large phase mismatch

mposed by strong waveguide dispersion. The experimental results, including
onversion efficiency, agree well with theoretical calculations based on
oupled-mode theory. Frequency tuning of the idler from �20 GHz to
100 GHz was demonstrated [60].

he physics of this process is shown clearly by this coupled-wave treatment.
he energy conservation and phase-matching conditions of this conversion
cheme are

�o± = �s ± ��p1 − �p2� ,


� = 
�o± − ��s ± ��p1 − �p2�� , �40�

here p1, p2, s, and o correspond to the two pumps, signal, and output fields,
espectively, and �i=neff��i��i /c, where neff is the effective refractive
ndex. For the (+) configuration in Eq. (40), the propagation properties and the
nterchange of energy between these four fields within the waveguide are

escribed by four nonlinear, coupled-mode differential equations [101]:
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dEp1

dz
+

1

2
�p1Ep1 = i�p1��Ep1�2 + 2�Ep2�2 + 2�Es�2 + 2�Eo�2�Ep1

+ 2i�p1Es
*Ep2Eo exp�i
�z� ,

dEp2

dz
+

1

2
�p2Ep2 = i�p2��Ep2�2 + 2�Ep1�2 + 2�Es�2 + 2�Eo�2�Ep2

+ 2i�p2Ep1EsEo
* exp�− i
�z� ,

dEs

dz
+

1

2
�sEs = i�s��Es�2 + 2�Ep2�2 + 2�Ep1�2 + 2�Eo�2�Es

+ 2i�sEp1
* Ep2Eo exp�i
�z� ,

dEo

dz
+

1

2
�oEo = i�o��Eo�2 + 2�Ep1�2 + 2�Es�2 + 2�Ep2�2�Eo + 2i�oEp1EsEp2

*

�exp�− i
�z� , �41�

here �i and �i are the propagation loss and the nonlinear coefficient,
espectively, corresponding to wavelength �i. The parameter n2=4.5

10−18 m2/W [108], and Aeff=0.06 µm2 is the effective modal area [41].
ince the nonlinear coefficient �i� �Aeff�−1, the FWM conversion efficiency
hould be enhanced as the cross-sectional area is decreased. The first, second to
ourth, and fifth terms on the right-hand side of Eqs. (41) are due to SPM,
PM, and FWM interactions, respectively. The effects of TPA and TPA-induced
CA are neglected because of the low powers used in this experiment. For

he case of the (+) configuration of Eqs. (40), the idler wavelength ��o+� and the
orresponding phase mismatch, 
�, are shown in Fig. 20(a). Solving Eqs.

Figure 20

a) Converted wavelength and phase mismatch versus pump–wavelength
eparation. (b) Conversion efficiency versus phase mismatch for 
�
0.148 nm at two possible propagation losses of �=3.5 dB/cm (solid curve)
nd 0.1 dB/cm (dashed-dotted curve). From [60].
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41) gives the conversion efficiency shown in Fig. 20(b). As an example, for
ump wavelengths of �p1=1435 nm and �p2=�p1+
�, where 
�=0.148 nm, a
ignal wavelength of �s=1550.5 nm, and the output wavelength of �o+

1550.3 nm, the phase mismatch is �
��=0.6 cm−1 and the conversion
fficiency is −20 dB. The corresponding analysis for the (−) configuration yields
imilar results.

n addition, ultrabroadband parametric generation and wavelength conversion
66] have been examined for the case in which the pump beam is close to
he zero dispersion wavelength of a SOI waveguide. Under strong
ong-pulse-width pumping, free-carrier effects were shown to affect the
rocess; but with short pulses, i.e., �1 ns, FWM with a pulsed pump, the strong
err effect allowed efficient parametric amplification and wavelength

onversion.

.6. Tunability of Four-Wave Mixing

s is shown in Fig. 20 above, the efficiency of the FWM is set by the degree of
hase matching among the interacting waves. We now consider the case of
he FWM nonlinear optical interaction in Fig. 5(e) (third panel). To first order,
he phase-matching condition involves ensuring that the wave vectors of
he four interacting wave sum to zero, that is 
kL�0, where 
kL=2kp−ks−ki

s the linear phase mismatch and kp, ks, and ki are the propagation wave
ectors of the pump, signal, and idler beams, respectively. However, if any
onlinear changes in these wave vectors induced by SPM and XPM are included,
he phase-matching condition must be modified to account for this variation.
hus for the case of a single degenerate pump, the phase mismatch 
k for a
etuning 
� between pump and signal is then


kNL = 2�Pp − 
kL �42�

here � is the effective nonlinearity, n2 is the nonlinear refractive index, � is
he wavelength of light, Aeff is the mode area, and Pp is the pump power. This
xpression may be further corrected by including higher-order dispersion in
he expression for the linear phase matching. Only even phase-matching terms
ust be included, since odd orders cancel out because of symmetry. Thus

he first term that must be included is that of fourth-order dispersion; in this case,
he linear phase mismatch is approximately


kL = − �2�
��2 −
1

12
�4�
��4, �43�

here the GVD coefficient �2 and the fourth-order dispersion coefficient �4

re calculated at the pump wavelength.

here are various definitions of conversion efficiency in use; one convenient
efinition equates the efficiency to the ratio of the idler output to the signal input,
ssuming conditions are such that there is essentially no TPA. Then the idler
onversion efficiency �i=Pout,i /Pin,s is given by [147]

�i = ��Pp

g
sinh�gL��2

, �44�
here

dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 211

 2009 Optical Society of America



i
p
o

D
t

N
a
c
f
i
e
e

U
b
3
b
a
e
1
s
g

A
w
d
f
w
o
t
i
p
i
d
a

6

A
l
a
c
b
b

A

©

g = ��Pp
kL − �
kL/2�2 �45�

s the parametric gain, Pout,i is the idler output power, Pin,s is the signal input
ower, and L is the interaction length. Since the maximum efficiency �max,i

ccurs when 
k=0,

�max,i = sinh2��PpL�. �46�

efining the conversion bandwidth as that when �
kL��� [101] and assuming
he small-gain limit 2�PpL��, the conversion bandwidth BWFWM is then

BWFWM �� 4�

�2L
. �47�

otice that this bandwidth depends solely on the waveguide dispersion. In
ddition, since for Si wires, � is 5–6 orders of magnitude larger than for
onventional single-mode fibers, much shorter conversion lengths are possible
or comparable levels of efficiency [90,92,125]. These short lengths translate
nto higher conversion bandwidths for comparable values of �2 for Si wires. For
xample, interaction lengths for significant conversion of 1 cm are possible
ven at modest input powers [100].

sing this FWM approach along with Si-wire waveguides, net on–off gain has
een demonstrated over a 28 nm bandwidth [64]. Thus, Si wires with a
00 nm�550 nm cross section, designed to have anomalous dispersion over a
road range of frequencies, were used to demonstrate wavelength conversion
t �1510 to 1590 nm, with a peak conversion efficiency of +5.2 dB. As
xpected, nonlinear TPA was found to be the major loss mechanism. A folded
7 mm waveguide was implemented to offset the nonlinear absorption,
ince this geometry allowed operating at lower pump power for a given level of
ain. This 17 mm device had a 4.9 dB total on–off gain and 1.8 dB net gain.

n excellent example of using the dispersion engineering that is possible in Si
ires is contained in [100], which examines in detail the effect of waveguide
ispersion on the bandwidth of FWM and shows that very broad-bandwidth
requency conversion is possible with FWM. For example, by selecting a
aveguide with low GVD, a demonstration was made of a conversion bandwidth
f �150 nm at a conversion efficiency of −9.6 dB, as well as tuning
hroughout the C band with a somewhat lower conversion bandwidth. Further
t was also shown that for pumping close to the ZGVD point, the
hase-matching bandwidth was set by fourth-order dispersion [148,149], and
n that case, by careful phase matching in the presence of this higher-order
ispersion, the signal could be wavelength shifted from 1477 to 1672 nm with
n efficiency of −12 dB.

.7. Free-Carrier Control

s in other nonlinear optical processes in Si-wires, TPA carrier generation can
imit the efficiency and operating powers for FWM. However, by incorporating
p-i-n junction in a SOI waveguide, efficient FWM and, hence, wavelength
onversion, have been demonstrated [150]. In this case, carriers were swept out
y the junction electric field in the junction-insulating region after reverse

iasing. The experiments used a Si-rib waveguide to achieve a wavelength
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onversion efficiency of −8.5 dB in an 8 cm long waveguide at pump intensity
0 MW/cm2. With this high wavelength conversion efficiency, high-speed
ptical data transfer between C-band channels was demonstrated. In particular,
10 Gb/s pseudo-random-bit-sequence data rate was converted to a second
avelength channel with minimal waveform distortion and with an open eye
iagram; in a subsequent study, it was demonstrated that the data transfer
ate can be increased to 40 Gb/s [63]. The waveguides in this experiment were
ot designed for phase matching; however, they could be folded for longer
nteraction length because of their low bend loss and carrier sweep out, thus
owering the waveguide optical loss. Folding also, of course, allows greatly
educing the on-chip footprint. Experiments have been done for other devices
ypes to demonstrate the efficacy of carrier sweep out; see, for example,
he discussion of this approach in Subsection 5.2..

.8. Modulation Instability

I represents the unstable evolution (exponential growth) of a CW
opropagating in a nonlinear medium, an effect that is caused by the nonlinear
nteraction between the propagating waves. In the context of nonlinear
ptics, MI has been studied extensively, particularly in regard to propagation
f optical beams in optical fibers [151–156]. Since as a result of the MI certain
pectral components grow exponentially, this nonlinear process can be
iewed as providing gain at these particular frequencies, and therefore can
ave important applications. Note that in the case of a single beam, it is
ecessary for the medium to possess anomalous dispersion in order to have MI
ain.

s in FWM, MI enables SPWs to provide tunable optical gain at one or more
requencies. Recently, Panoiu et al. investigated theoretically this all-optical
odulation approach as a means to achieve strong optical gain in a
illimeter-long SPW [137]. Specifically, their work demonstrated that two

ptical CW beams that copropagate in a SPW could generate a strong MI within
propagation distance of just a few millimeters. The gain of this process
epends on the power of the optical waves; thus it can be optically tuned, and it
eaches its maximum value when both waves experience anomalous GVD.
inally, note that, as a result of the MI, the optical waves develop deep
ubpicosecond modulation. This phenomenon can thus be used as the basis for
n on-chip source of ultrashort optical pulses.

wo cases can be used to illustrate the optical physics for MI: case A, in which
ne wave propagates in the normal GVD region, and the other experiences
nomalous GVD; and case B, in which both waves propagate in the anomalous
VD region. The SPW for each case has dimensions h�w=220 nm
360 nm, for which the ZGVD point is �0=1550 nm (this wavelength

orresponds to a second ZGVD point not shown in Fig. 3).

or both case A and case B, the dynamics of the two optical waves propagating
n the SPW are governed by system (27). The stability of these two optical
aves is studied first by finding the steady-state (CW) solutions, i.e.,

-independent solutions of this system of equations, and then by analyzing the
inear dynamics of small perturbations of these solutions [101,151–156].
hus, simple calculations show that, if we neglect the linear and nonlinear losses,

he MI gain spectrum defined by G���=2 Im������ is determined by the

quation
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��� − �/vg,p�2 − �p���� − �/vg,s�2 − �s� = ��4, �48�

here � and � are the frequency and the wave vector of the modulation,
espectively, �=4�ps�sp�2p�2sPpPs, �p,s=�2p,s�

2��p,sPp,s+�2p,s�
2 /4�, and the

ubscripts �p ,s� refer to the pump and the signal waves, respectively.

ow consider the MI gain in each of the two cases introduced above. In case
, the pump beam propagates in the normal GVD region, �p=1625.3 nm,
hereas in case B it experiences anomalous GVD at �p=1400 nm. In both cases

he signal beam propagates in the anomalous GVD region, at �s=1450 nm.
n case A, the two wavelengths are selected so that the waves have the same
roup velocity, and thus there is no temporal walk-off, whereas in case B
he walk-off parameter is 
= �1/vg,p−1/vg,s�=86.3 ps/m. Use of Eq. (48)
nables the dependence of the gain spectra versus the pump power Pp (at a signal
ower Ps=200 mW in case A and Ps=40 mW in case B) to be determined.
he results, presented in Fig. 21, show that in both cases the copropagating
aves experience strong MI, with a bandwidth of the gain spectrum of
0 THz. For comparison, the Raman gain bandwidth of Si is much smaller, at
pproximately 0.1 THz [43]. As discussed in Subsection 6.6, a potentially
omparable gain bandwidth is expected in broadband FWM when the guide has
nomalous dispersion; in fact, gain bandwidths of a few terahertz have been
emonstrated experimentally for FWM [64].

lthough the powers Pp, Ps are smaller in case B, a larger MI gain is observed
n this same case, namely, when both waves experience anomalous GVD.
n addition, in both cases the MI gain is 102–103 times larger than the MI gain
chievable in optical fibers, for similar values of the optical powers. This
roperty arises from the fact that the � parameters, which determine the strength
f the MI gain, are much larger for SPWs as compared with those of optical
bers. In addition, the frequency corresponding to the maximum MI gain can be

uned by changing the power of the interacting waves.

. Applications of Nonlinearities in Si Nanowires

any applications of optical nonlinearities in Si nanowires have recently been
emonstrated. In this review, we illustrate these applications with a few
elected examples, which are representative of the range of possibilities for
his ultracompact guided-wave medium.

Figure 21

alculated MI gain spectra for the two case of (a) normal and (b) anomalous
ispersion described in the text.
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.1. Continuum Generation

upercontinuum generation is a device functionality that has important
pplications in many areas of photonic integrated circuits [104], particularly
DM applications. In this application, for example, it is often beneficial to use
single broadband laser source, selected by filtering specific wavelength

hannels, and then modulate these channels, instead of using a separate laser
o obtain each wavelength. In addition, continuum generation can be important
or applications in sensing such as optical coherence tomography [157].

revious studies have suggested that it is possible to achieve supercontinuum
eneration at low optical power and over short propagation distances
rovided that the guiding medium exhibits a strong nonlinear response and
unable dispersion properties. In the case of PCFs, the combination of control
ver the geometry of the core profile and lattice parameters and the large
ndex difference between the silica core and air cladding provide dispersion
unability and a higher nonlinear response than is available in conventional fiber.
n a typical PCF-based supercontinuum source, the effective mode area of
he PCF is �1 µm2, with a typical PCF length of the order of several meters
158]. Silica nanowires allow further dimensional reduction and the achievement
f even higher effective optical nonlinearity [159].

promising approach for an integrated continuum source is the use of Si
aveguides and to an even greater extent SPWs [80], which offer greater

onfinement and hence high in-guide intensities even with modest input powers;
.g., 1 W of peak power yields 1 GW/cm2 in the guide. This effect makes it
easonable to observe particularly efficient supercontinuum generation in these
eeply scaled optical devices. Moreover, this efficiency can be greatly
nhanced [104] if the wavelength of the input pulse is in the anomalous
ispersion regime, near a ZGVD point; both of these dispersive properties are
asily met in SPWs.

s a result of interest in potential applications, several groups have explored
aking continuum sources in Si wires or near-wire devices. For example, Yin et

l. theoretically investigated the possibility of continuum generation in Si
ires [142]. In a second example, a clear experimental demonstration of a

unable continuum source with a power-dependent broad spectrum was recently
eported [80]. In this experiment spectral broadening of more than 350 nm,
.e., a 3 /10 octave span, was observed upon propagation of ultrashort 1.3 µm
avelength optical pulses in a 4.7 mm long SPW waveguide.The waveguides
ere single-mode SPWs having a cross section of A0=h�w=220 nm
520 nw. The experiment also measured the wavelength dependence of the

pectral features and related it to the waveguide dispersion and input power, and
emonstrated tuning of the central wavelength of the continuum source.

igure 22(a) shows the dependence of the output spectrum, from this
xperiment, as a function of the in-coupled peak pump power at a pump center
avelength of �=1310 nm. At the lowest observable pump power of P0

10 mW, the spectral width was �80 nm. As the pump power increased, the
pectral width increased until at the highest power, 1 W, the spectral width
ad increased to more than 350 nm, as measured by the noise level of the
etection system. This observation was a significant degree of spectral
roadening, i.e., 3 /10 of an octave, particularly since the pump pulse had
ropagated only �1/2 cm in the wire waveguide; this broadening can be

ompared to the fact that in standard continuum sources a pulse with an optical
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ntensity of 1 GW/cm2 needs to propagate several meters in PCFs to achieve a
omparable level of spectral broadening.

n Si with excitation at ��1700 nm, TPA plays an important role in determining
he upper power limit for spectral broadening. In an approximate sense, TPA
lamps the maximum propagating power in an optical waveguide, and thus it
hould inhibit spectral broadening above a certain level. This effect is seen
n Fig. 22(b), which plots spectral width versus input power. Despite this
lamping effect, the figure shows that significant broadening can be achieved
rior to reaching power limiting due toTPA. Using coupled-wave simulation,
hich takes into account all nonlinear and dispersion effects including FCA, and
sing a sech-pulse input, the spectral broadening, defined by the 30 dB
andwidth, can be computed as a function of coupled peak power; this variation
s shown by the blue line in Fig. 22(b). This plot shows a close match with
he experimental values.

measurement of the wavelength dependence of the output-pulse spectrum
rom �1310 to 1570 nm provided insight into how the wavelength response of
he waveguide affected continuum generation. For example, in this
xperiment, the output spectra showed that the broadening increased as the
entral wavelength �0 of the input pulse approached the ZGVD point of the wire.
his behavior was attributed to the fact that near the ZGVD point, the linear
ispersion was small and thus temporal pulse broadening was reduced;
onsequently, strong nonlinear interaction was maintained over a long
ropagation distance. It addition, it was found that the spectral features
uggested the presence of TOD-induced spectral separation of solitons contained
n the input pulse and the soliton-emitted radiation [142]. Finally, optical
osses in the waveguide increased toward the short-wavelength range of the
xperiments and thus played a role in limiting the short-wavelength limit of the
ontinuum radiation.

he origin of continuum or supercontinuum radiation in guided-wave
tructures has been a subject of much fundamental interest. Generally speaking,

Figure 22

a) Continuum generation in a 220 nm�520 nm Si wire showing the
ump-power dependence of the output spectra. At P0�1 W the spectral
roadening is 350 nm. (b) Spectral width as a function of coupled peak power.
rom [80].
he strong spectral broadening seen in the process of generation of white

dvances in Optics and Photonics 1, 162–235 (2009) doi:10.1364/AOP.1.000162 216

 2009 Optical Society of America



l
n
t
p
f
c
[
r
o
[
d
e
l
m
n
�
t
f
r
a
s
p
p
t
a
p
n
p
b
e

7

O
p
c
p
s
f
e

P
t
f
S
f
T
a
i
t

X
p

A

©

ight (supercontinuum radiation) is attributable to the onset of (cascaded)
onlinear effects. The particular details of the evolution from the input-pulse to
he output-pulse spectrum are strongly dependent on the specific pulse
arameters, such as pulse width, pulse peak power, pulse chirp, and carrier
requency, as well as the linear and nonlinear optical properties of the
orresponding optical medium [104]. In addition, higher-order-soliton fission
126,128,129,160,161] can be dominant in the initial stages of supercontinuum
adiation generation. In fact, it is apparent that soliton effects, as recently
bserved in Si wires [73] and previously known to be important in fiber optics
101], can also serve as the source of significant spectral broadening. Clearly,
ispersive effects are important in continuum generation. To increase the
fficiency of the supercontinuum-generation process, input pulses may be
aunched near the ZGVD point so that the optical dispersion is small and thus
inimizes temporal pulse broadening, which reduces the strength of the

onlinear effects. In the presence of dispersion, the sign of the GVD coefficient

2 determines which phenomena are important for continuum generation. In
he first case, when the pulse propagates in the normal dispersion regime, i.e.,
or �2	0, the main nonlinear processes that contribute to the supercontinuum
adiation are FWM, intrapulse Raman scattering, and, to a smaller extent, SPM
nd MI. However, in this normal dispersion regime, FWM processes have
mall efficiency at wavelengths far from the pump input [162] owing to the poor
hase-matching characteristics and become even less efficient as the peak
ower increases. In addition, if femtosecond pulses are used, as was the case in
he experiment just described, the Raman interaction in Si would be weak,
s the characteristic Raman response time in Si is in the range of a few
icoseconds. As a result, spectral broadening of pulses propagating in the
ormal dispersion regime is expected to be small. By contrast, for pulses
ropagating in the anomalous dispersion regime, �2�0, both FWM and MI can
e strongly phase matched, and thus both nonlinear optical processes become
fficient in generating new optical frequencies.

.2. Spectral Manipulation of Pulses Using Si Photonic Wires

ne of the simplest applications of optical fibers is the use of their dispersive
roperties to vary the spectral and temporal content of guided-wave pulses. The
lassic application is the wide use of dispersion-shifted fiber to correct for
ulse broadening in a fiber link [101]. This same approach has been used in
elf-mode-locked ring lasers [163]. More elaborate schemes can be used and in
act have recently attracted much interest because of the dispersion
ngineering possible in microstructured fiber [89].

ulse temporal manipulation can also be accomplished with SPW, except in
his case integration of the fiber is nearly impossible. Pulse compression
unctionality can be achieved in millimeter-long devices implemented in this
OI platform. Thus, recently, Chen et al. demonstrated theoretically for
emtosecond pulses that dispersion engineering in conjunction with SPM and
OD can be used to achieve pulse compression [96]. In addition, Tien et
l. experimentally demonstrated pulse compression in Si waveguides; although
n this case the dispersion from photogenerated carriers was used to provide
he necessary waveguide dispersive profile [164].

PM can also provide an active optically controlled pulse-compression

rocess. In this approach, a strong pump modifies the phase experienced by the
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robe or signal beam and thus generates additional bandwidth that can support
horter pulses. Compression requires that the SPW exhibit anomalous
ispersion at the probe wavelength. In addition, the pump–probe interaction
ength must be equal to or larger than the waveguide length. The first requirement
mplies that the group velocity of the two pulses is sufficiently close that the
robe pulse interacts with the pump over the full length of the waveguide. In the
rocess, the probe bandwidth is increased via XPM interaction with the
ump and then is compressed temporally as the probe propagates in the
nomalous GVD waveguide. These effects can be numerically simulated by
sing the coupled-mode model discussed above. In the example shown in Fig.
3, the waveguide is dispersion engineered such that the probe and the
ump pulses have the same group velocity but have negative and positive
VDs, respectively. The figure shows that SPW enables compression in a

elative short waveguide; that is, for a propagation length of just 0.8 mm the
robe pulse yields compression by a factor of �5.

.3. Signal Regeneration Using Four-Wave Mixing

WM has several immediate applications in data communications. These
pplications include amplification as mentioned above, as well as other more
pecific functions. The first of these is signal regeneration and reshaping [165].
his functionality requires that a nonlinear relation exist between input and
onverted data. Thus regeneration and reshaping has been successfully
emonstrated by using semiconductor amplifiers and FWM in conventional
nd microstructured optical fiber [166–168]. However, as discussed above in this
eview, a nonlinear relation should of course also apply for the case of
onlinear optical processes in a SPW. In fact, nonlinear signal-timing
mprovement was demonstrated previously by using a simple Si photodetector
ased on TPA [169]. The attractive feature about using SPWs is the extremely
arge n2 within this medium, and thus it is a very basic demonstration of
ber-on-a-chip functionality. Use of FWM as the means for accomplishing
egeneration also means that ultrabroadband signals can be amplified by using
dispersion-engineered SPW.

Figure 23

imulation of pulse compression as a result of XPM in a h�w=220 nm
360 nm Si wire. Signal (left) and pump (right) field envelopes versus time

nd propagation distance. The temporal width is 200 fs for both the pump and the
ignal pulses. Here �psPp�100 cm−1 for the pump, with a center frequency
f 1625 nm. For the signal Ps�Pp, and its center frequency is 1451 nm. Insets,
nitial and final pulse envelopes. From [37].
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here are several basic approaches to regeneration based on FWM, which
nvolve interchanging the signal, pump, and idler between a CW source or clock
nd the input and converted data; these configurations are shown in Table 2.
ote that certain of these configurations do not result in the required nonlinear

ransformation between signal and converted data and thus are not of interest.
s an example, the most useful configuration for improving timing jitter is the

ast shown in the table, in which the “pump” is the clock, and the input data
s the “signal.” This approach was analyzed and experiments performed on a
.8 cm length of a 300 nm�500 nm cross-section SPW [165]. With this
ire, the authors found a 	2.2 reduction in the timing jitter of a gigabit per

econd, return-to-zero data stream using the last configuration. In addition,
mprovements in the extinction ratio and pulse reshaping were demonstrated
y using the second and third configurations mentioned in Table 2. In the case of
rror recovery, a 4.3 dB improvement was measured in the same SPW and at
he same data rate as just described. In this case, the input peak power levels were

100 mW to prevent saturation. Finally, in the case of reshaping,
ompensation for the pulse broadening incurred by propagation in a
onventional fiber link by the SPW was demonstrated.

.4. On-Chip Data Communication

he quality and compact dimensions of Si-wire photonic integrated circuits
rovide the technology for making on-chip and chip-to-chip SPW
nterconnection networks possible [170,171]. Optical transmission and WDM
an allow high modulation rates and wavelength parallelism. This capability
or reaching large bandwidth suggests that high-performance computing
ystems can now use integrated optics. However, designing such a network
equires that the performance of such interconnects must be well known.
xperiments have shown that low-loss Si-wire-waveguide technology has the

inear and nonlinear optical performance for on-chip networks to carry
ltrahigh-bandwidth WDM data streams. For example, one set of experiments
as demonstrated low-error transmission of a 1.28 Tb/s stream through a
cm long wire waveguide, with the aggregate data rate, composed of 32
avelengths, each modulated at 40 Gbits/ s [172].

Table 2. Use of Four Wavelength Configurations Based on FWM Wavelength-
Conversion Signal-Regeneration Schemes in a SPW for Three Wavelengths

�1 ,�2 ,�3 Where �1��2��3
a

Configuration
Pulse

Reshaping
ER

Improvement
Timing Jitter

Reduction

. Input data, CW source,
onverted data

✗ ✗ ✗

. CW source, input data,
onverted data)

3 3 ✗

. Clock, input data,
onverted data

3 3 3

. Input data, clock,
onverted data

3 ✗ 3

aSchemes C and D are demonstrated by Salem et al. in [165]. Overall, scheme C is
ost effective; however, scheme D yields greater jitter reduction than scheme C. Table after
hat in [165].
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he instrumentation for the bit error ratio (BER) measurements used 24 CW
ommunications lasers with 100 GHz channel spacing and outputs combined by
32-channel multiplexer. The detected signal was then evaluated at

0 Gbits/ s with a communications signal analyzer and a BER tester. The
ignals were transmitted through a SPW, with dimensions h�w=220 nm

520 nm. The 5 cm wire required on-chip path length folding using 24 90°
ends, each with a bending radius of 6.5 µm, to achieve the needed small
ootprint. Measurements of the output signals showed that in the 5 cm long dense

DM 10 Gbits/ s per wavelength link, the wire exhibited only a 3.3 dB
ower penalty at a BER of 10−9, or more generally, that a Si-wire can serve as
suitable on-chip data conduit.

.5. Broadband Wavelength Conversion of High-Data-Rate
ignals

onlinear optical conversion has many applications in telecommunications,
nd, as a result, a Si wavelength converter is a particularly useful device. To
emonstrate the utility of Si-wire wavelength converters, systems
easurements have been made of the data streams undergoing conversion. In

ne experiment [100], a 10 Gbit/ s non-return-to-zero data train was
onverted across the C band from 1535 to 1566 nm with minimal degradation
f the signal quality. This demonstration was accomplished by using the
owest-order TM mode of a 300 nm�500 nm waveguide. The C-band tuning
ange was dictated by the Er-doped fiber amplifier bandwidth and not the
WM conversion bandwidth. Eye diagrams of the input signal �1535 nm� and

he converted output �1566 nm� were measured by using a 231−1
seudo-random bit sequence and an input signal of −20 dBm. The time
ependence of the optical losses such as FCA or thermal effects was sufficiently
mall that it caused only minimal degradation of the signal quality of the
onverted output, as was also observed in other experiments [63,65,150].

.6. Raman Pulse Delay

eneration of tunable all-optical pulse delays is an important functionality for
everal types of photonic integrated circuit, including creating tunable
n-chip optical dispersion. This approach has generally relied on the use of
ptical resonances that are available in optical cavities or photonic crystal
tructures, which have a very narrow wavelength response. Further, tuning of
hese structures is generally accomplished by relatively slow-response
henomena such as thermal changes in indices of refraction, and thus they
ave only a small temporal bandwidth.

nother approach uses the gain and line shape from stimulated Raman
cattering in a Si wire to form an intensity-dependent delay structure, which
an be tuned instantaneously [173]. This approach relies on the fact that the
aman-gain curve is related to the refractive index via the Kramers–Krönig

elation. Further, the group index, which determines the speed of a signal pulse
ithin a guided-wave structure, is related to the refractive index through the

elation

ng��� = n��� + �
dn

. �49�

d�
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he total Raman amplification experienced by a signal beam, that is, the ratio
f the output signal power Pout to the input signal power Pin, is related to
he gain parameter, G, via Pout /Pin=eG. This Raman contribution to the gain
auses a refractive index change as a function of wavelength. For example, at the
aman peak, the total delay 
TD of the signal pulse in passing through the
aterial due to the presence of the pump field can be shown to be [173]


TD =
G

�R

, �50�

here G=gRIpL is the Raman gain parameter, Ip is the pump intensity, and L is
he length of the interaction region. Because G depends linearly on the
ump intensity, the delay can then also be tuned by varying the pump power.

ith this approach, tunable optical pulse delays have been achieved by the gain
vailable via stimulated Raman scattering [173] in an 8 mm long Si wire as
hown in Fig. 24. In the case of the Raman line shape, the delay can be generated
t any wavelength below the bandgap of Si and is widely tunable simply by
hanging the wavelength of the pump. In addition, the Si Raman linewidth has
bandwidth that can support a typical (~picosecond) telecommunication
ulse. Group index changes of �0.15 may be used to generate �3 ps pulse
elays. This method allows the delay of each pulse within a pulse train to be
eparately controlled for bandwidths of �100 GHz; a single waveguide
an also be used to produce delays at different wavelength channels across the
elecommunications spectrum. Last, the short interaction length and
ump-power-dependent delay allows this scheme to have a fast reconfiguration
ime of �70 GHz.

. Conclusion

his review has discussed previous and current work on linear and nonlinear
ptical effects in Si photonic wires (SPWs), a field that is now growing rapidly
ecause of the many compelling, new guided-wave optical phenomena and
he many important emerging applications in nonlinear integrated Si photonics.
n particular, many recent experimental and theoretical studies have
emonstrated the intertwining of dispersion and optical nonlinearities with

Figure 24

ata taken for SRS-induced delays. Measured delay versus the measured
aman gain parameter. From Okawachi et al. [173].
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articular emphasis on self- and cross-phase modulation from picosecond to
emtosecond pulses in Si wires. The theoretical component of this work
s particularly important, since several physical properties of Si wires, such as
he large index contrast, crystallinity, and tight optical confinement—
hich give rise to the potential for dispersion engineering and enhanced
onlinear optical effects—make the physics of propagation in Si wires distinct
rom those in optical fibers. As a consequence of engineering of this
ispersion, photonic wires can be designed to operate as nonlinear devices and
arametric mixers with gain over a wide range of group-velocity dispersion
alues at telecommunications wavelengths. More generally, by operating
i wires in a regime where the waveguide, characteristic dispersion, and
onlinear lengths are comparable with one another, it is possible to probe the
omplex interplay among dispersion and nonlinearity at low peak powers
f the order of a few hundreds of milliwatts and with waveguide lengths of a
ew millimeters. In addition, the extremely small Si-wire cross-sectional
imension provides further scaling down of the length�power product required
or nonlinear optical functionalities from that in standard integrated optics
aveguides. This scale down arises from both the reduced area and the reduced
roup velocity of the optical waves. The low threshold powers for
hase-changing effects and parametric functionality in SPWs make them
otential candidates for various functional nonlinear optical devices in an
ntegrated platform.

ppendix A: Acronym Glossary
BER = Bit-error ratio

BERT = Bit-error ratio tester
BOX = Buried oxide

CARS = Coherent anti-Stokes Raman
scattering

CMOS = Complementary metal-oxide
semiconductor

CSA = Communications signal analyzer
CW = Continuous wave

EDFA = Erbium-doped fiber amplifier
FC = Free carrier

FCA = Free-carrier absorption
FOM = Figure of merit

FWHM = Full width at half-maximum
FWM = Four-wave mixing
GVD = Group-velocity dispersion

HPCS = High-performance computing
systems

MI = Modulation instability
NRZ = Non-return to zero
PCF = Photonic crystal fibers
PIC = Photonic integrated circuits
RZ = Return to zero

SMF = Single-mode fiber
SOI = Silicon on insulator

SPW = Silicon photonic wire
SRS = Stimulated Raman scattering

TE = Transverse electric
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TM = Transverse magnetic
TOD = Third-order dispersion
TPA = Two-photon absorption

WDM = Wavelength division multiplexing
XPM = Cross-phase modulation

ZGVD = Zero group-velocity dispersion

ppendix B: Symbol Glossary
â, b̂, ĉ, d̂ = Unit vectors

A, B = Sellmeier parameters
A0 = Waveguide cross section

Aeff = Effective modal area
�̂ = Polarizability tensor

�ij,� = Matrix elements of polarizability
tensor

�, �in = Absorption coefficient
�FC = Free-carrier absorption coefficient

BWFWM = Conversion bandwidth speed of
light

� = Mode propagation constant
�1 = First-order dispersion coefficient
�2 = Second-order dispersion coefficient
�3 = Third-order dispersion coefficient

�TPA = Two-photon absorption coefficient
�TPA,wg = Effective two-photon absorption

coefficient
��3�, �ijkl

�3� = Third-order optical susceptibility
��n� = nth-order optical susceptibility
�R = Raman susceptibility
D = Group-velocity dispersion

coefficient
D = Electric displacement
� = Normalized temporal walk-off

�nFC = Free-carrier-induced change in the
refractive index,

�PL = Variation in the linear polarization
��L = Variation in the dielectric constant
��s = Frequency shift
�� = Relative soliton radiation shift

� = Phase mismatch


ktotal = Phase mismatch

TD = Total delay of signal pulse

� = Raman linewidth

� = Raman frequency shift

E = Electric field
e�r� ,�� = Electric field of waveguide modes

Eig = Indirect bandgap energy
� = Dielectric constant

��r�� = Transverse profile of the dielectric
constant,

�0 = Vacuum permittivity
�i = Idler conversion efficiency
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�max,i = FWM maximum efficiency
g = Parametric gain

gR = Stimulated Raman scattering
coefficient

G = Gain parameter
G��� = Modulation instability gain

spectrum
�ij = Cross-phase modulation

nonlinearity coefficient
�p = Pump nonlinearity coefficient
�s = Signal nonlinearity coefficient

� ,�i = Effective nonlinear optical
waveguide susceptibility

�ij = Effective cross-phase modulation
waveguide susceptibility

�R = Raman gain linewidth
h = Waveguide height width

h�r� ,�� = Magnetic field of waveguide modes
H = Magnetic field
� = Reduced Planck’s constant

kp, ks, ki = Propagation constants of the pump,
signal, and idler

� = Modal overlap integral coefficient
L = Interaction length

LD = Second-order dispersion length
LD� = Third-order dispersion length
LNL = Nonlinear length

� = Wavelength
�p = Pump wavelength
�s = Signal wavelength
�c = Average or mean wavelength

�o+ = Four-wave mixing idler wavelength
� = Wave vector of the modulation

instability process
m

ce
* = Electron effective mass

m
ch
* = Hole effective mass

m0 = Electron mass
µe = Electron mobility
µh = Hole mobility
n = Index of refraction of Si

n�r�� = Transverse profile of the refractive
index

n2 = Nonlinear refractive index, Kerr
coefficient

n2,wg = Waveguide effective nonlinear Kerr
coefficient

ncladding = Refractive index of cladding
neff = Effective index
ng = Group index
N = Carrier density

Nsoliton = Soliton number
�P = Pump frequency
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�R = Raman signal frequency
� = Photon angular frequency

�0± = Four-wave mixing idler output
frequencies

�CARS = Coherent anti-Stokes Raman
scattering signal frequency

�p = Pump angular frequency
�R = Raman frequency
�r = Normalized angular frequency

separation
�s, = Stokes angular frequency or signal

angular frequency
�� = Raman mode frequency

�s�z ,T� = Nonlinear phase shift
P = Electric polarization

P�z , t� = Position- and time-dependent
waveguide power

P0 = Input peak optical power
Pp = Input peak pump power
Ps = Input peak signal power

Peff = Effective pump power
Pin,s = Signal input power

Pout,i = Idler output power
PR = Raman signal power
PL = Linear polarization

PNL = Nonlinear polarization
S�� ,
� = Pulse spectrogram

t = Cladding thickness
T = Time in the reference frame of the

pump pulse
tc = Carrier lifetime

Td = Temporal delay between two pulses
Tp, T0 = Pulse width


0 = Shock time due to bulk nonlinearity
response


d = Normalized time delay

i = Imaginary part of 
wm


r = Real part of 
wm


s = Shock time

wm = Shock time due to waveguide

contribution

 = Response time of Raman interaction

 = Normalized time

u�z , t� = Normalized field amplitude
up�z , t� = Pump normalized field amplitude
us�z , t� = Signal normalized field amplitude

vg = Group velocity
vg,s = Signal group velocity
vg,p = Pump group velocity

w = Waveguide width
Z0 = Impedance of the free space
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