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Zero-n̄ bandgap in photonic crystal superlattices
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We demonstrate that photonic superlattices consisting of a periodic distribution of layers of materials with
positive index of refraction and photonic crystal slabs that, at the operating frequency, have negative effective
index of refraction present a photonic gap that corresponds to the frequency at which the spatial average of the
refractive index distribution, taken over the unit supercell of the superlattice, vanishes. We also show that,
unlike the Bragg gaps, the frequency of this zero-n̄ gap is invariant to the geometrical scaling of the superlat-
tice or the direction of wave propagation in the superlattice. © 2006 Optical Society of America
OCIS codes: 230.4170, 130.3120, 160.3130, 260.2110.
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. INTRODUCTION
eft-handed metamaterials (LHMs) are newly discovered
rtificial composites,1–3 which have attracted much inter-
st over the past few years. Their main physical property
s that both the electric permittivity � and the magnetic
ermeability � are negative; as a result, they also have a
egative index of refraction. Although the main electro-
agnetic properties of a medium with such characteris-

ics have been theoretically investigated more than three
ecades ago,4 the lack of naturally occurring media with
imultaneously negative � and � has made it impossible
o experimentally verify the striking predictions of this
heoretical study. However, it has been recently demon-
trated that it is possible to achieve both negative � and
, within a certain frequency domain, if metallic periodi-
ally structured composites are used. Thus, it has been
hown that a network of thin metallic wires behaves as a
uasi medium with negative �,5,6 whereas a lattice of me-
allic split-ring resonators has a negative �.7 Combining
hese two structures leads to a LHM.1–3 Alternative de-
igns of the metal-based LHM have been proposed and re-
ently demonstrated.8,9

The rapidly growing interest in LHMs stems from their
nusual physical properties, such as superlensing,10–12 an

nverse Snell’s law,4 or an inverse Doppler effect,4 as well
s from their potential use in new technological applica-
ions. In addition, metal-based LHMs can operate not
nly at microwave frequencies, as several studies have
nitially demonstrated,1–3 but, as recent theoretical13–15

nd experimental9 investigations have shown, also at in-
rared and optical frequencies. A main drawback of using
etal-based LHMs for optical devices is their large losses,
hich are mainly due to the optical losses in their metal-

ic components. One way to overcome this limitation is to
se periodically structured dielectrics, namely, photonic
rystals (PCs). Thus, it has been recently
emonstrated16–19 that, within a certain frequency range,
0740-3224/06/030506-8/$15.00 © 2
Cs behave like materials with negative index of refrac-
ion: the incident and transmitted waves lie on the same
ide of the normal to the interface,16,17,20 so that the effec-
ive index of refraction is negative; a slab of PC behaves
ike a lens and produces a real image of a point source
laced in front of the slab21; or the PC can be used to
chieve subwavelength resolution.22,23

In the case of a PC-based LHM, the background matrix
s usually made from a homogeneous nonmagnetic ��
1� dielectric material. In this case, the property of nega-

ive effective index of refraction is a direct consequence of
he spatial periodicity of the dielectric function; i.e., it is
he effect of modified dispersive properties induced by
olding the photonic bands back into the first Brillouin
one. Furthermore, alternating layers of homogeneous
HMs and right-handed materials (RHMs), i.e., regular
ielectric materials with positive � and �, can be com-
ined in a periodic photonic superlattice that shows re-
arkable optical properties.24,25 The presence of the LHM

omponent in these periodic structures leads to surprising
ffects, such as the existence of an omnidirectional band-
ap that is insensitive to the wave polarization, angle of
ncidence, or period of the structure,26 and unusual trans-

ission properties and beam reshaping.27,28 As has been
hown, the main reason for such remarkable properties is
he existence of a frequency at which the volume-
veraged refractive index vanishes24; therefore, the corre-
ponding bandgap is also called the zero-n̄ gap. At this
requency the periodic structure cannot support propagat-
ng modes, and, since the only condition for the existence
f such a gap is that the volume average of the refractive
ndex vanishes, n̄=0, its properties do not depend on the
caling of the structure or the polarization of the incident
aves.
In previous studies it has been assumed that the LHM

labs in the LHM–RHM-layered structures were made
rom a homogeneous material, so that their electromag-
006 Optical Society of America
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etic properties were described by an effective electric
ermittivity and an effective magnetic permeability. This
s a good approximation for metal-based LHMs, as the
avelength at which these metamaterials have a nega-

ive index of refraction is much larger than the lattice
onstant of their periodic structure. However, inasmuch
s metal-based LHMs can have large optical losses, it
ould be difficult to use such metamaterials to demon-

trate experimentally the existence of the zero-n̄ gap. We
emonstrate in this paper that, as an alternative to this
pproach, zero-n̄ gaps can be observed in binary PC su-
erlattices, in which one component of the unit supercell
s a PC with negative effective index of refraction. This is
nontrivial result, as at the frequency at which the zero-
gap is formed the corresponding wavelength is only a

ew times larger than the periodicity of the PC, so that
he effective parameters of the crystal are not well de-
ned.
The paper is organized as follows. In Section 2 we de-

cribe the structure of our photonic superlattices. Then in
ection 3 we demonstrate that, by assembling in a peri-
dic superlattice layers of RHM and PC slabs with nega-
ive effective index of refraction, one obtains photonic
tructures with new optical properties, namely, structures
ith a zero-n̄ gap. In Section 4 we summarize our results.

. DESCRIPTION OF THE PHOTONIC
UPERLATTICE
he photonic structure we consider here consists of alter-
ating layers of materials with distinct optical properties,
eriodically distributed along the longitudinal axis, z. In
hat follows, we will consider three distinct cases,
amely, both layers are made from homogeneous materi-
ls; one layer is made from a two-dimensional (2D) PC,
hereas the other is a homogeneous RHM; and, finally,
oth layers are made from 2D PCs with different geo-
etrical parameters. For the 2D PC we consider a hex-

gonal lattice of air holes in a dielectric background (see
ig. 1). The optical properties of the PC slab are fully de-
ermined by the lattice constant a; the ratio r /a, where r

ig. 1. Schematic design of a binary PC superlattice. The pa-
ameters a1,2 and r1,2 are the lattice constants and the air-hole
adii, respectively, and the superlattice period is �=d1+d2. Also
hown are the first Brillouin zones of the hexagonal PC and the
C superlattice.
s the radius of the air holes; and the refractive index n of
he dielectric background. Furthermore, the photonic su-
erlattice is periodic along the longitudinal direction,
ith �=d1+d2 as the corresponding spatial periodicity.
ere, d1 and d2 are the thicknesses of the two slabs con-

ained in the primary unit supercell. Note that the hex-
gonal PC and the photonic superlattice have different
ymmetry properties, and therefore they also have differ-
nt first Brillouin zones29 (see Fig. 1).

We assume that the wave vector of the plane wave in-
ident on the superlattice lies in the xz plane and that the
ncident plane wave is either s polarized, with the electric
eld along the y axis, or p polarized, with the magnetic
eld oriented along the y axis. On the other hand, when
escribing the modes that propagate inside the superlat-
ice we will follow the convention used in the PC-related
iterature, namely, that the TM (TE) modes have the only
onzero component of the electric (magnetic) field ori-
nted along the y axis.

For the 2D PC we consider a hexagonal lattice of air
oles in a dielectric background with index of refraction
=3.6 and structural parameter r /a=0.4. In this geom-
try, only the TM polarization provides a range of fre-
uencies in which only one photonic band exists, so that
henomena such as multiple-beam excitation are greatly
educed, and, more importantly, this band has a negative
ffective index of refraction. In addition, this negative in-
ex of refraction is isotropic within a large frequency do-
ain. Therefore, in our analysis we will consider only the
M polarization. These dispersive properties of the pri-
ary PC structure are illustrated in Fig. 2, where the

hotonic band structure (PBS) of the TM modes is shown.
hus, at low frequencies (first photonic band) the mode

requency increases almost linearly with the mode wave
ector, which is a consequence of the fact that at large
avelengths the PC structure behaves like an effective
omogeneous medium. This description changes if we
onsider the second band, which extends between �̄
0.23 and �̄=0.347, where �̄=�a /2�c=a /� is the normal-

zed frequency. For this band the mode frequency de-
reases with the mode wave vector (anomalous disper-
ion), a property that leads to a negative effective index of
he photonic modes in this band.16,17

To illustrate this property, let us consider the wave re-
raction at a RHM–PC interface, for wave frequencies
hat belong to the second band, and compare it with the

ig. 2. PBS of the TM modes for an air-hole hexagonal PC with
arameter r /a=0.4 and the index of refraction of the dielectric
ackground n=3.6. The shadowed regions correspond to photonic
andgaps.
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ave refraction at a RHM–RHM interface. These pro-
esses are shown schematically in Fig. 3. Thus, in two di-
ensions, for an isotropic RHM the equifrequency surface

EFS) �=��k� is a circle, with the corresponding group
elocity vg=�k��k� pointing outward and normal to the
FS. In contrast, in the case of a PC, at a frequency in
hich the dispersion is anomalous (e.g., second photonic
and in Fig. 2), the group velocity points inward but again
ormal to the EFS. Now let us consider a plane wave that
ropagates in a RHM and impinges at a certain angle on
PC, as illustrated in Fig. 3, and let us assume that at

he frequency of the incoming plane wave the dispersion
f the PC is anomalous. Then the conservation of the com-
onent of the wave vector that is parallel to the interface
etermines two possible choices for the wave vector of the
ransmitted wave [corresponding to the intersections be-
ween the vertical dashed line in Fig. 3(a) and the EFS].
etween these two choices, only one is physically accept-
ble, namely, the one that ensures an energy flow from
he RHM into the LHM. Hence, to select the correct direc-
ion of propagation of the transmitted wave, we use the
roperty that in a PC the Poynting vector S is oriented
long the group velocity,30 which, for a frequency in which
he dispersion is anomalous, is perpendicular to the EFS
nd inwardly oriented. As a result, we observe that the re-
raction at the interface is negative, the Poynting vector S
f the transmitted wave is opposite to its wave vector,
·kr�0, and thus the effective index n (also called phase

ndex) defined by �k�= �n�� /c is negative. All these proper-
ies are defining characteristics of a LHM. In the case of
efraction at the interface between two RHMs, the group
elocity of the transmitted wave is along the wave vector
o that the incident and the transmitted waves are on the
pposite sides of the normal to the interface.

Inasmuch as we want to use a PC slab as the LHM
omponent in a photonic superlattice, we performed a
ore detailed analysis of the dispersive properties of the

rimary 2D PC structure, in the frequency range in which
ts effective index of refraction is negative (the second
and in Fig. 2). In particular, we have numerically com-
uted the effective index of the second photonic band, for
ll propagation wave vectors in the first Brilloin zone of
he 2D PC. The results of our calculations, summarized in
ig. 4, show that at frequencies corresponding to this pho-

ig. 3. Schematic representation of wave refraction (a) at the
nterface between a RHM and a LHM and (b) at the interface be-
ween two RHMs. The vertical dashed lines illustrate the conser-
ation of the wave vector parallel at the interface.
onic band the wave propagation in the PC is nearly iso-
ropic, especially if the wave vectors of the Bloch modes
re close to the � symmetry point. At these frequencies
he corresponding EFSs are slightly deformed circles,
hereas the EFSs that correspond to frequencies close to

he bottom of the band approach an hexagonal shape. For
xample, for the direction of propagation along the �–M
ymmetry axis the effective index is n=−1 for �̄=0.3,
hereas at the same frequency, but for the direction of
ropagation along the �–K symmetry axis, the effective
ndex is n=−1.022. In what follows, we will demonstrate
hat, because of this near optical isotropy, a PC slab can
e used as one of the two components in a photonic binary
uperlattice so as to create a zero-n̄ gap.

. ZERO-n̄ GAP IN RHM–LHM PHOTONIC
UPERLATTICES

n this section we will demonstrate that in a photonic su-
erlattice that contains as one of its components a PC
ith negative effective index of refraction one can create a
hotonic gap whose properties do not depend on the spa-
ial periodicity of the superlattice or the index of refrac-
ion of its components. In contrast with the Bragg gap,
his photonic gap is formed at a frequency at which the
patial average of the effective index of refraction of the
uperlattice vanishes. In addition, this gap is omnidirec-
ional, provided that at the corresponding frequency the
C layers in the unit supercell are optically isotropic.

. Superlattices of Homogeneous RHM and LHM
ayers
o begin with, let us briefly discuss the case in which both
ayers in the unit supercell are made from homogeneous

aterials. Here we restrict our discussion to the case of
ispersionless media and consider only periodic struc-
ures whose spatial average of the refractive index van-
shes, that is �n�= �n1d1+n2d2� /�=0 (the general case has
een discussed in a recent study25). Thus, by assuming
hat the electromagnetic field in the supercell is a Bloch
ode, i.e., F�z+��=exp�ikz��F�z�, one can easily derive

he dispersion relation of the photonic modes31:

ig. 4. Effective index of refraction of the propagating modes
elonging to the second photonic band shown in Fig. 2. In the
ight panel, the frequency dispersion of the effective index of re-
raction of the modes whose wave vectors span the �–M and
–K symmetry axes.
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cos�kz�� = cos 	1 cos 	2 −
1

2�p1

p2
+

p2

p1
�sin 	1 sin 	2, �1�

here the Bloch wave vector kz belongs to the first Bril-
ouin zone of the superlattice, −� /�
kz
� /�. In Eq. (1)
he parameters p1,2 depend on the polarization of the
loch mode and are given by

p1 = � �1

�1
�1/2

cos �1, p2 = � �2

�2
�1/2

cos �2 �2�

or s-polarized waves and

p1 = ��1

�1
�1/2

cos �1, p2 = ��2

�2
�1/2

cos �2 �3�

or p-polarized waves, whereas the parameters 	1,2 are
efined as

	1 =
�

c
��1�1d1 cos �1, 	2 =

�

c
��2�2d2 cos �2. �4�

ere, �1,2 are the angles between the propagating waves
n the two media and the normal to the interface between
hem. Since the tangent component kx of the wave vector
s the same in the two media, the angles �1,2 are deter-

ined by the following expressions:

cos �i = 	1 −
1

�1�i
�kxc

�
�2
1/2

�i = 1,2�. �5�

he dispersion properties of the superlattice are derived
rom Eq. (1) as follows. If for a given frequency � and tan-
ent component kx of the wave vector the absolute value
f the right-hand side of Eq. (1) is less than 1, then there
s a real solution kz that satisfies this equation. Therefore,
t the frequency � there exists a propagating Bloch mode
ith the wave vector k= �kx ,kz�. On the other hand, if the
bsolute value of the right-hand side of Eq. (1) is larger
han 1, the corresponding solution kz has a nonzero imagi-
ary part, which means that the superlattice does not
upport propagating Bloch modes.

We have used this procedure to calculate the PBS of a
HM–LHM superlattice with material parameters �1
4.8, �1=1, �2=−2.5, �2=−5, and the thicknesses of the

wo layers d1= f� and d2= �1− f��, with f=0.6174. We
hoose the values of these parameters such that the aver-
ge index of refraction of the superlattice �n�= �n1d1
n2d2� /�=0. The results of these calculations are pre-
ented in Fig. 5, where both the projected as well as the
educed band structures are shown. In both cases we con-
idered s and p polarizations. For the sake of clarity, the
esults are displayed in normalized units, namely, �→�
�� /2�c, kx→x=kx� /2�, and kz→z=kz� /2�. These
gures illustrate several phenomena, which are specific to
HM–LHM periodic structures. Thus, Fig. 5(a) shows

hat for small values of the tangent component x the
ransmission through the superlattice is zero, except in
ertain narrow transmission bands. At the frequencies of
hese bands, determined by the Fabry–Perot resonance
ondition24
	1 = m� �m = ± 1, ± 2, ± 3, . . . �, �6�

he waves, reflected at consecutive interfaces, arrive out
f phase at the input facet of the superlattice. These
ands narrow as x decreases, collapsing to discrete
tates at x=0. This behavior is quite different from that
f a RHM–RHM superlattice, in which case at x=0 there
re a series of alternating transmission bands and Bragg
aps, equally spaced in the normalized frequency �
pace. Moreover, Fig. 5 shows that, although there is a
uantitative difference between the dispersion properties
f the s- and p-polarized waves, qualitatively they are
imilar.

. Superlattices of Homogeneous RHM and PC-Based
HM Layers
e now turn our attention to a superlattice whose super-

ell is made from a PC slab, with the structural param-
ters described in Section 2, and a homogeneous RHM
lab. We consider the RHM to be dispersionless and
hoose the frequency of the plane wave incident on the su-
erlattice such that the effective index of the PC is nega-
ive. Also, the orientation of the PC slab is chosen such
hat the z axis coincides with the �–M symmetry axis of
he crystal and the facets of the PC slab are planes that
ontain the centers of the air holes. We will demonstrate
hat under these conditions a zero-n̄ gap opens at the fre-
uency at which the spatial average of the refraction in-
ex, �n�, vanishes. Note that in this case the effective re-
ractive index of the PC depends on the frequency (see
ig. 4), and, consequently, we expect that, unlike the case

ig. 5. (a) Projected PBS (left, s polarization; right, p polariza-
ion) of a photonic superlattice with material parameters �1
4.8, �1=1, �2=−2.5, �2=−5, and the thicknesses of the two lay-
rs d1= f� and d2= �1− f��, with f=0.6174. The black (bold) re-
ions correspond to transmission bands. Near x=0, these bands
ollapse to discrete states. (b), (c) The reduced PBS for s and p
olarizations, calculated for x=1.2, respectively.
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f a RHM–LHM superlattice made from homogeneous
ispersionless media, the frequency width of the gap will
e finite.
To demonstrate the existence of the zero-n̄ gap, we have

rst examined the transmission and reflection properties
f a stack of PC and RHM layers. We varied both the re-
ractive index of the RHM slab as well as the thicknesses
f both layers. Thus, we considered three superlattices
hose unit supercells were defined as follows: (i) a PC

lab containing six unit cells along the z axis, so that the
hickness of the layer is d1=3�3a, and a RHM with d2
d1 and index of refraction n2=1, i.e., vacuum; (ii) a PC
lab containing eight unit cells along the z axis, so that
he thickness of the layer is d1=4�3a, and again a RHM
ith d2=d1 and index of refraction n2=1; and (iii) a PC

lab containing eight unit cells along the z axis, so that
he thickness of the layer is d1=4�3a, and a RHM with
he refraction index n2=2.2 and d2=d1 /n2. With this
hoice, in all three cases the spatial average of the refrac-
ive index vanishes at the frequency at which the effective
ndex of the PC slab is nPC=n1=−1, that is, for the nor-

alized frequency �̄=0.3. Finally, in all these three cases
e numerically calculated the transmission and reflection
t normal incidence, for TM wave polarization
s-polarized incident wave), for a superlattice containing
ight supercells. For this, we used a numerical algorithm
hat relates the transmission and reflection coefficients of
periodic structure to the transfer matrix associated with

ts unit cell, that is, the so-called transfer-matrix method
TMM).32–34 In all TMM calculations we used a 50�350
omputational grid. As the corresponding numerical
imulations are computationally demanding, we used a
arallel implementation of the TMM algorithm, which
as run on a computer cluster containing 18 Pentium 4
rocessors at 2.8 GHz.
Figure 6, which shows the frequency dependence of the

ransmission and reflectance of all three superlattices, il-
ustrates the results of these numerical computations.
irst, the transmission spectrum of the photonic struc-

ig. 6. Frequency dependence of transmission (upper panel)
nd reflectance (lower panel), computed for three different super-
attices. The dashed, dotted, and solid curves correspond, respec-
ively, to superlattices (i), (ii), and (iii) (see the text for the de-
cription of their structure).
ures, computed for frequencies at which the PC has a
egative effective index of refraction (see Fig. 4), shows
everal photonic gaps. In addition, one observes that the
orresponding mid-gap frequencies of all but one photonic
ap vary with the structural parameters of the superlat-
ice, which is the familiar behavior of the Bragg gaps.
owever, the mid-gap frequency of the gap located near

he normalized frequency �̄=0.3, at which the condition
n�=0 is satisfied, is nearly insensitive to changes in the
tructure of the superlattice. This analysis proves that
ne can use PCs as primary LHM building blocks to cre-
te photonic structures with new properties.
As in the case of RHM–LHM superlattices made of ho-
ogeneous materials, it is possible to design a superlat-

ice with a PC-based LHM slab such that the zero-n̄ gap
ontains a narrow transmission band. This phenomenon
s illustrated in Fig. 7, where we show the frequency de-
endence of transmission and reflectance of a superlattice
ontaining a PC slab with six unit cells along the z axis,
o that the thickness of the layer is d1=3�3a, and a RHM
ith the refraction index n2=3.6 and thickness d2
d1 /n2. As in the previous cases we observe a gap around

he frequency �̄=0.3, that is, the normalized frequency at
hich �n�=0. However, inside this transmission gap we

ee a sharp transmission resonance at the frequency �̄
0.302. At this frequency the effective index of refraction
f the PC, for propagation along the �–M symmetry axis,
s n1=−0.96, so that the parameter 	1=4.02�. This proves
hat the transmission peak at �̄=0.302 is the result of
esonant Fabry–Perot wave interaction.

We have also studied the dependence of the optical
roperties of RHM–LHM photonic superlattices on the di-
ection of the mode propagation inside the superlattice. In
articular, we examine whether the spectral properties of
he zero-n̄ gap are preserved when the direction of the
ode propagation inside the superlattice changes. For

his, we have computed the PBS of three infinite super-
attices with parameters d1=3�3a (six unit cells), n2=1,
nd d2=d1 /n2; d1=4�3a (eight unit cells), n2=1, and

ig. 7. Frequency dependence of transmission (upper panel)
nd reflectance (lower panel) computed for a superlattice con-
aining a PC slab with six unit cells along the z axis, so that the
hickness of the layer is d1=3�3a, and a RHM with the refraction
ndex n2=3.6 and thickness d2=d1 /n2. Note the narrow reso-
ance at �̄=0.302.
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2=d1 /n2; and d1=3�3a (six unit cells), n2=1.25, and d2
d1. For these values of the parameters of the superlat-

ice �n�=0 at the frequency �̄=0.3 in the first two cases,
hereas in the last case �n�=0 at the frequency �̄
0.2864. The results of these calculations are presented

n Fig. 8. Note that in this figure the size of the Brillouin
one along the �–X1 symmetry axis is compressed, as
ompared with the �–M distance shown in Fig. 2, which
s due to the increased size of the unit supercell along the
axis. Also, note that there is a good agreement between

he position of the frequency gaps in Figs. 6 and 8 (top two
anels), which were computed by using two different nu-
erical methods, namely, the TMM and the plane-wave

xpansion, respectively.
One remarkable finding illustrated in Fig. 8 is that the

ero-n̄ gap extends to all directions of propagation; i.e., it
s an omnidirectional gap. This property further illus-
rates that the origin of this gap is not in the band folding
f the photonic bands back into the first Brillouin zone, as
s the case with the familiar Bragg gaps. Also, notice that
or propagation directions that are off normal with re-
pect to the PC slabs the gap narrows, an effect that is
ttributed to the anisotropy of the effective refractive in-
ex of the PC (see Fig. 4). Thus, for off-normal propaga-
ion the refractive index is slightly different from the re-
ractive index for which the condition �n�=0 is satisfied,
.e., the effective index along the �–X1 symmetry axis, so
hat the gap tends to close. Moreover, the PBS shown in
he bottom panel of Fig. 8 demonstrates that the fre-
uency of the zero-n̄ gap can be tuned by one’s simply
arying the frequency at which the condition �n�=0 is sat-
sfied. Thus, by one’s choosing n2=1.25 and keeping d2
d , the average index �n�=0 for n =n =−1.25, that is,

ig. 8. From the top to the bottom panels: the PBS of three in-
nite superlattices with parameters d1=3�3a (six unit cells), n2

1, and d2=d1 /n2; d1=4�3a (eight unit cells), n2=1, and d2

d1 /n2; and d1=3�3a (six unit cells), n2=1.25, and d2=d1. The
hadowed regions correspond to photonic bandgaps.
1 1 PC
t the frequency �̄=0.2864 (see Fig. 4). This value is con-
istent with the frequency gap shown in the bottom panel
n Fig. 8, whose spectral domain extends between �̄
0.2859 and �̄=0.2894.

. Superlattices of PC-Based RHM and LHM Layers
o conclude this section, we will show that a zero-n̄ pho-
onic gap can be produced by a superlattice in which both
omponents of the unit supercell are made from PC slabs.
or this, the geometrical parameters of the two PC do-
ains must be chosen such that at a certain frequency

ne PC has a positive effective index of refraction,
hereas the effective index of the other one is negative. In
ddition, at this frequency, the spatial average of these ef-
ective indices must be zero. In what follows, we will il-
ustrate these ideas by a specific example. Thus, let us
onsider that the first PC in the supercell is described by
he parameters a1=a, r1 /a1=0.4 and the background in-
ex n=3.6, i.e., the previously considered PC. As the sec-
nd component we consider a PC with parameters a2
a1 /2, r2 /a2=0.5 and with the same background index
=3.6. Finally, we choose the thicknesses of the two PC
labs to be d1=3�3a1 and d2=6�3a2, i.e., d1=d2. We
hoose the PC slabs to be a few lattice constants thick,
hat is, large enough for the photonic bands to form.

The PBS of the superlattice, computed for a frequency
omain in which the first PC component has negative ef-
ective index of refraction is presented in Fig. 9. Note that
he frequency in this figure is normalized by using the pa-
ameters of the first PC so that, by using the scaling prop-
rties of the frequencies of the Bloch modes in a PC, we
an see that these frequencies belong to the first band of
he second PC, that is, a band with positive effective in-
ex of refraction. Furthermore, we have numerically cal-
ulated the effective index of refraction of this first band;
hese calculations show that, for direction of propagation
long the �–X1 symmetry axis, at the frequency �̄
0.2855 (marked in Fig. 9 by a dashed line), the effective

ndices of refraction of the two PC slabs are n1=−n2=
1.27. As the two PC slabs in the unit supercell have the
ame thickness, the average index of refraction at the fre-
uency �̄ is �n�= �n1d1+n2d2� /�=0. Therefore, the nearly
omplete bandgap seen in Fig. 9, at the frequency �̄, rep-
esents a zero-n̄ photonic gap. Note that this zero-n̄ pho-
onic gap is not a complete bandgap because of the small
ptical anisotropy of the two PC slabs.

ig. 9. PBS of a superlattice with parameters a1=a, r1 /a1=0.4,

1=3�3a1, and the background index n=3.6 for the first PC com-
onent and a2=a1 /2, r2 /a2=0.5, d2=6�3a2, and background in-
ex n=3.6 for the second PC component. The horizontal line cor-
esponds to the frequency at which �n�=0.
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. CONCLUSIONS
n conclusion, we have demonstrated that a periodic su-
erlattice whose unit supercell contains a PC slab with
egative effective index of refraction and either a homo-
eneous slab of RHM or a PC slab with positive effective
ndex of refraction has transmission properties that can-
ot be achieved by using only RHM-based Bragg photonic
tructures. In particular, we have shown that, under cer-
ain conditions that can readily be satisfied in common
xperimental setups, the superlattices introduced here
ossess a type of photonic gap with unusual and poten-
ially useful properties. This photonic gap opens at fre-
uencies at which the spatial average of the refractive in-
ex of the superlattice vanishes, and therefore, as long as
his condition is satisfied, the gap is insensitive to period-
city of the structure, angle of incidence onto the struc-
ure, material parameters, and, possibly, structural disor-
er.
We stress that, although our analysis considered only

D PCs, it can be readily extended to structures that are
asy to fabricate, such as 2D PC slab waveguides. In this
ase, one only has to employ the effective index of the
uided modes of the slab waveguide; the rest of the analy-
is remaining valid. In particular, for slab waveguides
ith small refraction index contrast, the reduction of the
D problem to a 2D one, by using an effective index of re-
raction, leads to accurate results. Therefore, InP–
aInAsP–InP or silicon-on-insulator material platforms

an be employed to fabricate the photonic structures dis-
ussed here. Alternatively, it may also be possible to use
etal-based LHMs in a vertical thin-film stack, which is

lternated with a RHM dielectric. The metal-based LHMs
n this case can be conveniently fabricated using inter-
erometric lithography9; in this case, particular care has
o be taken regarding the total optical loss of such a struc-
ure. The availability of such structures would open up
he possibility of investigating their potential use in new
evices such as highly directive sources, wavefront con-
erters, or delay lines with zero phase difference between
he input and the output ports.35,36
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