
DRAFT 2.0

OSI Systems Management, Internet SNMP and
ODP/OMG CORBA as Technologies for

Telecommunications Network Management
George Pavlou

Dept. of Computer Science, University College London
Gower Street, London WC1E 6BT, UK

<gpavlou@cs.ucl.ac.uk>

2.1. Introduction and Overview
In this chapter, we compare the ISO/ITU-T OSI Systems Management (OSI-SM) [X701], Internet Simple
Network Management Protocol (SNMP) [RFC1157][RFC1905/6] and ODP/OMG Common Object Request
Broker Architecture  (CORBA) [CORBA] approaches to network, service and distributed applications
management. The chapter also provides a tutorial overview of those technologies, but it assumes a basic
understanding of data network and distributed system principles.

OSI and Internet management have adopted the manager-agent paradigm. Manageable resources are modeled
by managed objects at different levels of abstraction. Managed objects encapsulate the underlying resource and
offer an abstract access interface at the object boundary. The management aspects of entities such as Network
Elements (NEs) and distributed applications are modeled through “clusters” of managed objects, seen
collectively across a management interface. The latter is defined through the formal specification of the
relevant managed object types or classes and the associated access mechanism, that is the management access
service and supporting protocol stack. Management interfaces can be thought of as “exported” by applications
in agent roles and “imported” by applications in manager roles. Manager applications access managed objects
across interfaces in order to implement management policies. Distribution and discovery aspects are
orthogonal to management interactions and are supported by other means. Both OSI and Internet management
are primarily communications frameworks. Standardization affects the way in which management information
is modeled and carried across systems, leaving deliberately unspecified aspects of their internal structure. The
manager-agent model is shown in Figure 2.1. Note that manager and agent applications contain other internal
objects that support the implementation of relevant functionality. Since these are not visible externally, they are
depicted with dotted lines.

      

M

application in Manager role application in Agent role

A

performing operations

emitting notifications

   management
 communication
       protocol

managed object

other internal object

Figure 2.1  The Manager-Agent Model

The manager and agent roles are not fixed and management applications may act in both roles. This is the case
in hierarchical management architectures such as the Telecommunications Management Network (TMN)
[M3010]. In hierarchical management models, managed objects also exist in management applications,
offering views of the managed network, services and applications at higher levels of abstraction. Management
functionality may be organized in different layers of management responsibility: element, network, service and



Chapter 2

2

business management according to the TMN model. Management applications may act in dual manager-agent
roles, in either peer-to-peer or hierarchical relationships. Figure 2.2 shows three types of management
organization according to the manager-agent model: centralized, flat and hierarchical. The centralized model
is best exemplified by SNMPv1 Management Operation Centers (MOCs). The flat model reflects the evolution
of SNMPv1 to SNMPv2, with “manager-to-manager” capabilities. Finally, the hierarchical model is best
exemplified by the TMN, which uses OSI management as its base technology. Note that in both flat and
hierarchical models, management applications are hybrid, assuming both manager and agent roles.

        

manager to agent relationship
managed element (agent)
management center (manager)
management application (manager-agent)

centralized flat hierarchical

Figure 2.2  Models of Management Organization

Alhough OSI and Internet management conform to the same broad model, within their constraints there is
room for wide divergence and, to an extent, they are at two ends of the spectrum. Internet management was
designed to address the management needs of private data networks (LANs/MANs) and Internet backbones. As
such, it has adopted a connectionless (CL), polling based, simple “remote-debugging” approach, opting for
agent simplicity and projecting a centralized or flat organizational structure. On the other hand, OSI
management was designed to address the management needs of OSI data networks and telecommunications
environments. As such, it has adopted a connection-oriented (CO), event-driven, fully object-oriented (O-O)
approach, opting for generality and trying to move management intelligence close to managed elements. It has
been adopted as the base technology for TMN and it supports hierarchical organizational structures.

ISO/ITU-T Open Distributed Processing (ODP) [X901] is a general framework for specifying and building
distributed systems. The Object Management Group (OMG) Common Object Request Broker Architecture
[CORBA] can be seen as its pragmatic counterpart. While SNMP and OSI management are communications
frameworks, ODP/OMG CORBA target a programmatic interface between objects in client or server roles and
the underlying support environment, that is the Object Request Broker (ORB). Server objects are accessed
through interfaces on which operations are invoked by client objects in a location transparent fashion. Choices
made by the Internet Engineering Task Force (IETF) and ISO/ITU-T on the one side and OMG on the other
side reflect their different pre-occupations: management communications for the former and distributed
software systems for the latter. The difference in approach is sometimes referred to as “vertical” versus
“horizontal” interfaces. Vertical interfaces standardize communications interactions between systems. The
horizontal approach standardizes Application Programming Interfaces (APIs) which are used to “plug”
application objects on the global supporting infrastructure. The latter is also referred to as the Distributed
Processing Environment (DPE) and encapsulates the underlying network, hiding heterogeneity and providing
various transparencies. The ODP / OMG CORBA model is shown in Figure 2.3.

The OMG CORBA paradigm is that of a client-server, with distribution provided through the ORB. The unit
of distribution is the single object as opposed to the OSI and Internet object cluster that is visible across an
interface. Client and server CORBA objects communicate through the ORB, whose services are accessed
through standard APIs. Interoperability is achieved through the formal specification of server interfaces, the
ORB APIs and the underlying inter-ORB protocols. One key difference to OSI and Internet management is
that the object model and APIs have been addressed first, while the underlying protocols may be replaced. Of



Chapter 2

3

course, interoperability dictates an agreed protocol but the rest of the framework is not heavily dependent on it.
The key benefit is portability of objects across different CORBA implementations due to the standard ORB
APIs and the various transparencies that are (or will be) supported by the latter. Note that communication
aspects are “hidden” inside the ORB and, as such, are not shown in Figure 2.3. While OMG CORBA is a
general distributed systems framework, its object-oriented nature and the fact that management systems are
composed of interacting objects suggest that it could also be used for management. OMG CORBA has been
chosen by the Telecommunication Information Network Architecture (TINA) [TINA] initiative as the basis for
their DPE. TINA aims at a framework for future advanced services, including service and network
management aspects.

      

ORB

Client Server Special
 ServerAPI

IDL interface and logical client-server interaction
physical interaction between objects and the ORB

Figure 2.3  The OMG CORBA Model

In this chapter, we examine aspects of those technologies, assessing their suitability in the context of
telecommunications management. In section 2.2 we examine information modeling aspects in the three
frameworks and assess their flexibility and expressiveness. In section 2.3 we examine the access and
distribution aspects, including the underlying communications and the paradigm of operation. In section 2.4
we examine other aspects, including applicability in various contexts, generic functionality and security. In
section 2.5 we examine issues addressing their interworking and coexistence. Finally we present a summary
and discuss potential future directions in telecommunication management.

2.1.1 Background Information: ASN.1

Some necessary background information concerns the OSI Abstract Syntax Notation 1 (ASN.1) [X208]
language. This is an abstract “network” data structuring language that supports simple and constructed types.
A particularly important ASN.1 type is the Object Identifier (OID), which expresses a sequence of non-
negative integers on a global registration tree. OIDs are registered by standards bodies, for example ISO, ITU-
T and IETF, and are used instead of friendly string names to avoid ambiguities. For example, the OSI
objectClass attribute name is registered as {joint-iso-ccitt(2) ms(9) smi(3) part2(2) attribute(7)
objectClass(65)}. ASN.1 is used in both the OSI management and SNMP frameworks to specify the
management protocol packets and the structure of managed object information, for example attributes,
operation parameters / results and notification information.

2.2. Management Information Models
A management framework and associated technology should be applicable to network, service, system and
distributed application management. In addition, the applications and support infrastructure that constitute the
management system should also be manageable. The ideal information model must cope easily with
management information related to such a variety of management targets. At the same time, it must impose a
measure of uniformity on the structure of management information so that it is possible to devise a set of
generic management operations that are applicable in all management contexts. The original motivation for
developing the three frameworks was different: network management for SNMP; network and service



Chapter 2

4

management for OSI; and distributed application operation and management for OMG CORBA. As a result,
the relevant information models, despite exhibiting similarities, have important differences.

A key difference between the SNMP and the OSI Management / OMG CORBA information models is that the
latter have enthusiastically endorsed the O-O approach and have made full use of relevant concepts such as
classes and inheritance. In the case of SNMP, the information model is often referred to as Object-based, with
classes and inheritance regarded as unnecessary complications and thus deemed undesirable. All three models
are quite general and, despite their differences, anything that can be modeled in one can also be modelled in
another. In fact, methodologies have been developed for converting between them as described in section 5.
The key issue is whether the greater expressive power one offers results to the better abstraction of
management information and is worth the price of the additional complexity. Figure 2.4 shows a pictorial view
of the notion of objects in the three frameworks and their collective view as a Management Information Base
(MIB) across a management interface. Information modeling aspects are explained next, in a separate
subsection for each framework.

            

   SNMP object

object ordering

OSI attribute

contains Note: attributes are not
          explicitly shown 

   SNMP tabular object

group

table entries

MO of class A

MOs of class B

MO of type A MOs of type B

IDL interface

SNMP  MIB OSI  MIB CORBA “MIB”

Figure 2.4  SNMP, OSI and CORBA Management Information Base

2.2.1 The SNMP Information Model
SNMP information modeling principles are collectively referred to as the Structure of Management
Information (SMI) and are specified in [RFC1155] for SNMPv1 and in [RFC1902] for SNMPv2, the latter
being an extension of the SNMPv1 model.

The basic building block of an SNMP MIB is the object. Objects belong to a particular object type and have
values. According to the SNMP SMI, object values are restricted to a very small set of allowed syntaxes,
resulting ultimately in the basic ASN.1 types INTEGER, OCTET STRING and OBJECT IDENTIFIER. Other
application-wide types such as Counter, Gauge, NetworkAddress and Timeticks must resolve to either integer
or string scalar types. The only constructed type allowed is a simple two-dimensional table, consisting of
elements of the previous primitive types. Great emphasis is given to the fact that the allowable syntaxes are
few, simple and scalar. The key advantage claimed for this approach is that object values carried across a
network must be encoded in a “network-standard” way. Encodings and decodings can be computationally
expensive, especially if the syntaxes involved are complex. Because SNMP uses only a small fixed set of
syntaxes, it is possible to hand-code the encoding and decoding software in an optimal fashion. Thus, the
SNMP SMI is analogous to a computer language that has a small set of basic types together with two-
dimensional arrays.



Chapter 2

5

The SNMP SMI defines a notation for specifying the properties of new object types, an ASN.1 macro called
OBJECT-TYPE, while ASN.1 is used to specify the object syntaxes and the tabular structure. SNMP object-
types can be either single or multiple instanced, with multiple instanced objects allowed only in tables. SNMP
objects are similar to OSI Management / OMG CORBA attributes while there is no notion of a “composite”
object-boundary that encapsulates a number of scalar objects modeling a manageable entity. The only
composite relationship relates objects to tables.

A table has rows (also referred to as table entries or records), with each row represented by a SEQUENCE
ASN.1 type that contains a statically defined number of objects. The table itself is modeled as SEQUENCE OF
ASN.1 type with respect to the rows or entries, allowing an arbitrary number of those to be dynamically
instantiated. A table thus resembles a “dynamic array of records”. Tables may grow to arbitrary length but
must always be of fixed width. A further rule restricts the syntaxes used within a row to be “scalar”; thus one
cannot define tables within tables. Note also that tables and table entries are only conceptual composite objects
in SNMP: only the individual scalar objects that constitute a table entry are accessible through the management
protocol.

Let us examine the use of this modeling framework through an example. A typical single-instanced set of
objects are, for example, those modeling aspects of a connection-oriented transport protocol entity such as the
ISO Transport Protocol (TP) and Internet Transmission Control Protocol (TCP). Such objects will cover the
number of current and previous connections, the number of incoming and outgoing unsuccessful connection
requests, the number of transport packets sent, received and retransmitted and the number of various protocol-
related errors. All these will have to be separate objects, loosely related through a “transport protocol” group.
Note that this model does not support multiple instances of a transport protocol per node. If the latter was
necessary, a table of transport protocol entries would be needed, but we will overlook this restriction for
simplicity. The group will also comprise transport connections, which are multiple-instanced objects and have
to be modeled through a table. A tpConnTable may be defined as a SEQUENCE OF tpConnEntry, with
tpConnEntry being a SEQUENCE of objects modeling various aspects of the connection, such as source and
destination access points, the connection state, and so on. Figure 2.4 shows objects of a single-instanced group,
for example tp group, and two table entries, for example tpConnEntry. Note that both the group and table
entries are depicted with dotted lines since there is no notion of a composite object boundary in the SNMP
information model.

When objects are instantiated, they must be named so that they can be addressed unambiguously. The SNMP
framework uses object identifiers for naming. Every object type has a registration OID, while an object
instance is identified by the object type OID, suffixed by a part that identifies uniquely that instance. For non-
tabular objects any suffix would do, so the minimal .0 is used. For example, tpCurrentConnections.0 is the
instance of the object type tpCurrentConnections. In the case of multiple-instanced tabular objects such as the
tpConnState of the tpConnEntry, the suffix needs to signify the table entry. The latter can be constructed from
the values of one or more objects of that entry that constitute the “key”, as specified in the relevant OBJECT-
TYPE template for that table entry. In our example, the values of the tpConnSrcAddr and tpConnDestAddr
objects may be used as they uniquely identify each connection. For example, tpConnState.123.456 is the
instance of the object type tpConnState, corresponding to the connection with source address 123 and
destination address 456. Note that when object values are strings as opposed to integers, they need to be
converted to object identifier suffixes: the SNMP SMI specifies rules for this conversion.

The SNMP naming architecture exhibits a very tight coupling between object type and instance identifiers. The
problem with it is that instances of a particular object type can only appear in one particular place in the
registration tree. This means that one cannot define generic object types to be used in several contexts. For
example, a common object for representing the state as perceived by a managed resource is the
operationalState. In the SNMP framework, it is not possible to define such a generic object but specific objects
have to be defined for every particular context, for example tpOperationalState. An additional problem is that
because this is not the intended use of OIDs, it has been found that most SNMP implementations spend a lot of
processing time scanning through object names, trying to separate type and instance information. Finally,
object names formed through OID suffixes are not natural.



Chapter 2

6

SNMP objects accept only Get and Set operations. The Set operation can be performed only to objects that have
a read-write or read-create access level according to the object specification. Access to objects with Get and
Set operations is subject to the access control policy across a management interface. SNMP objects support
neither Create nor Delete operations explicitly. Create and delete semantics are implicitly supported however
for multiple-instanced objects, that is table entries or rows. In SNMPv1, row creation may be requested through
a Set operation for an entry that is currently not in the table by setting the values of all the row objects. This
type of Set operation is interpreted as table entry creation; however, this behavior is not mandated and
implementations may behave differently. In addition, the SNMP protocol limits the maximum Protocol Data
Unit (PDU) or packet size, so it might not be possible to pass values for all the row objects! SNMPv2 remedies
this defect and uses an elaborate interaction scheme to ensure atomicity of row creation. This is supported
through  the use of a RowStatus object which must be present in any table that allows row creation. Creation
can follow either a createAndGo or createAndWait protocol, according to the value of rowStatus. The former is
similar to the SNMPv1 creation style and restricted by the maximum PDU size. In the latter, the values of the
rowStatus object progress successively through notReady -> notInService -> active while the row is being
created through more than one Set requests. Row deletion is achieved through a Set operation that sets the
value of row status to destroy. Although all this works, it is certainly not simple. In fact, a high price has been
paid in order to avoid introducing Create and Delete object operations through separate protocol primitives.

In both the OSI Management and OMG CORBA models, objects may accept arbitrary actions that operate on
the object boundary, as described next. Given the fact that SNMP objects are essentially attributes compared to
OSI and CORBA objects, imperative actions with arguments and results are meaningless. Nevertheless, actions
are necessary and may be modeled in SNMP by objects that support the arguments and results of an action. An
“action” may be emulated by a Set request, followed possibly by a Get request to retrieve the results. For
example, a “reboot” action may be modeled by a boolean rebootState object whose value is set to true (in this
case, there is no action result). This type of emulation is not very elegant and may result in complex
interactions and an awkward object model for imperative commands with complex “argument and result”
parameters.

In SNMPv1, agent applications may emit notifications called traps associated with the SNMP protocol rather
than a MIB specification. These are supposed to be used only for a small and pre-defined set of events
(warmStart, coldStart, linkUp, linkDown, authenticationFailure). However, some MIB designers (notably those
of the Remote Monitoring MIB [RFC1271]) have extended the concept and have provided notations that allow
MIB designers to specify resource-specific notifications and the information which should be included in them.
A notation of this type has now been included in the SNMPv2 SMI [RFC1902].

2.2.2 The OSI System Management Information Model
Chapter 1 discussed OSI-SM and TMN information modeling in detail. The OSI-SM Information Model
(MIM) is defined in [X720]. An OSI Management Information Base (MIB) defines a set of Managed Object
Classes (MOCs) and a schema that defines the possible containment relationships between instances of those
classes. There may be many types of relationships between classes and their instances, but containment is
treated as a primary relationship and is used to yield unique names. The smallest re-usable entity of
management specification is not the object class, as is the case in other O-O frameworks, but the package.
Object classes are characterized by one or more mandatory packages while they may also comprise conditional
ones. An instance of a class must always contain the mandatory packages while it may or may not contain
conditional ones. The latter depends on conditions defined in the class specification. Managing functions may
request that particular conditional packages are present when they create a managed object instance.

A package is a collection of attributes, actions, notifications and associated behavior. Attributes are analogous
to object types in SNMP. Like an object type, an attribute has an associated syntax. Unlike SNMP, however,
there are no restrictions on the syntax used. If desired, an attribute need not be of scalar type. A number of
useful generic attribute types have been defined in [X721], namely counter, gauge, threshold and tide-mark. A
MIB designer may derive resource-specific types from these. Support for arbitrary syntaxes provides a much



Chapter 2

7

more flexible scheme than that of SNMP. For example, it allows the definition of complex attributes such as a
threshold, whose syntax can include fields to indicate whether or not the threshold is currently active and its
current value. It is also more expensive to implement since support for encoding and decoding of completely
arbitrary syntaxes must be provided.

OSI managed object classes and packages may have associated specific actions that accept arguments and
return results. Arbitrary ASN.1 syntaxes may be used, providing a fully flexible “remote method” execution
paradigm. Exceptions with MOC-defined error information may be emitted as a result of an action. The same
is also possible as a result of operations to attributes under conditions that signify an error, for which special
information should be generated. Object classes and packages may also have associated notifications,
specifying the condition under which they are emitted and their syntax. The latter may again be an arbitrary
ASN.1 type. By behavior, one means the semantics of classes, packages, attributes, actions and notifications
and the way they relate as well as their relationship to the entity modeled through the class. Behavior is
specified in natural language only; the same is true in SNMP.

OSI Management follows a fully O-O paradigm and makes use of concepts such as inheritance. Managed
object classes may be specialized through subclasses that inherit and extend the characteristics of superclasses.
This allows re-usability and extensibility of both specification and associated implementation if an object-
oriented design and development methodology is used. Pursuing the previous example, a tpProtocolEntity
object class may inherit from an abstract protocolEntity class that models generic properties of protocol
entities, such as the operational state and the service access point through which services can be accessed. By
abstract class is meant a class that is never instantiated as such but serves only inheritance purposes. In the
same fashion, an abstract connection class may model generic properties of connection-type entities such as the
local and remote service access points, the connection state and creation and deletion notifications. The
inheritance hierarchy of those classes is shown in Figure 2.5. It should be noted that conditional packages
allow for dynamic (i.e. run-time) specialization of an object instance while inheritance allows only for static
(i.e. compile-time) specialization through new classes.

top

x25VC

element protEntity

x25ProtEntity

subsystem connection

    objClass=element
elementId=x25switch-A

 objClass=subsystem
subsystemId=network

objClass=x25ProtEntity
    protEntityId=x25

 objClass=x25VC
connectionId=123

 objClass=x25VC
connectionId=456

inherits from

contains

example name: {subsystemId=network, protEntityId=x25, connectionId=123}

Figure 2.5  Example OSI Inheritance and Containment Hierarchies

The specification of manageable entities through generic classes that are used only for inheritance and re-
usability purposes may also result in generic managing functions by using polymorphism across management
interfaces. For example, it is possible to provide a generic connection-monitor application that is developed
with the knowledge of the generic connection class. This may monitor connections in different contexts, for
example X.25 and ATM, disregarding the specialization of a particular context. That way, reusability is
extended to managing functions as well as managed object classes and their implementations.

In OSI management, a derived class may extend a parent class through the addition of new attributes, actions
and notifications; through the extension or restriction of the value ranges; and through the addition of



Chapter 2

8

arguments to actions and notifications. Multiple inheritance is also allowed and it has been used extensively by
information model designers in standards bodies. Despite the elegant modeling that is possible through
multiple inheritance, such models cannot be easily mapped onto O-O programming environments that do not
offer such support, for example Smalltalk and Java. Multiple inheritance is a powerful O-O specification
technique but increases system complexity.

A particularly important aspect behind the use of object-oriented specification principles in OSI management is
that they may result in the allomorphic behavior of object instances. Allomorphism is similar to polymorphism
but has the inverse effect: in polymorphism, a managing function knows the semantics of a parent class in an
inheritance branch and performs an operation to an instance that responds as the leaf class. In allomorphism,
that instance should respond as the parent class, hiding completely the fact that it belongs to the leaf class. For
example, a polymorphic connection monitor application can be programmed to know the semantics of the
connection class and only the syntax of specific derived classes through meta-data. When it sends a “read all
the attributes” message to a specific connection object instance, for example x25Vc, atmVcc, it wants to
retrieve all the attributes of that instance, despite the fact that it does not understand the semantics of the
specific “leaf” attributes. In allomorphism, a managing function programmed to know a x25ProtocolEntity
class should be able to manage instances of a derived x25ProtocolEntity2 class without knowing of this
extension at all. In this case, operations should be performed to the x25ProtocolEntity2 instance as if it were
an instance of the parent x25ProtocolEntity class, since the derived class may have changed the ranges of
values, added new attributes, arguments to actions, etc.

Polymorphism is a property automatically supported by O-O programming environments while allomorphism
is not and has to be explicitly supported by management infrastructures. Allomorphic behavior may be
enforced by sending a message to an object instance and passing to it the object class as an additional
parameter, essentially requesting the object to behave as if it were an instance of that class. When no class is
made available at the object boundary, the instance behaves as the actual class that is the leaf class in the
inheritance branch. Allomorphic behavior is considered very important since it allows the controlled migration
of management systems to newer versions by extensions of the relevant object models through inheritance,
while still maintaining compatibility with the past. This is particularly important in management environments
as requirements and understanding of the problem space are expected to be continuously evolving. Finally, it
should be mentioned that allomorphism hides extensions at the agent end of the manager-agent model.
Extensions in managing systems should be hidden by programming them to revert to the “base” information
model if this is what it is supported across a management interface. Though possible, this requires additional
effort and increases complexity.

The root of the OSI inheritance hierarchy is the top class which contains attributes self-describing an object
instance. These attributes are the objectClass whose value is the actual or leaf-most class; packages that
contains the list of the conditional packages present in that instance; allomorphs that contains a list of classes
the instance may behave as; and nameBinding which shows where this instance is in the naming tree as
explained next. For example, in the instance of the x25ProtocolEntity2 class mentioned earlier, objectClass
would have the value x25ProtocolEntity2 and allomorphs would have the value { x25ProtocolEntity }. When
an instance is created by a managing function, the conditional packages may be requested to be present by
initializing accordingly the value of the packages attribute, which has “set by create” properties.

Managed object classes and all their aspects such as packages, attributes, actions, notifications, exception
parameters and behavior are formally specified in a notation known as Guidelines for the Definition of
Managed Objects (GDMO) [X722]. GDMO is a formal object-oriented information specification language that
consists of a set of templates. A “piecemeal” approach is followed, with separate templates used for the
different aspects of an object class, that is class, package, attribute, action, notification, parameter and behavior
templates. GDMO specifies formally only syntactic aspects of managed object classes. Semantic aspects, that is
the contents of behavior templates, are expressed in natural language. The use of formal specification
techniques such as System Definition Language and Z are considered by the ITU-T in order to reduce the
possibility of ambiguities and misinterpretations and to increase the degree of code automation.



Chapter 2

9

The types of attributes, action and notification arguments, replies and exception parameters are specified as
ASN.1 types. Object Identifiers are associated with classes, packages, attributes, notifications and actions but
they have nothing to do with instance naming. Instead, managed object instances are named through a
mechanism borrowed from the OSI Directory [X500]. Managed object classes have many relationships but
containment is treated as a primary relationship to yield unique names. Instances of managed object classes
can be thought as logically containing other instances. As such, the full set of managed object instances
available across a management interface are organized in a Management Information Tree (MIT), also referred
to as the “containment hierarchy”. This requires that an attribute of each instance serves as the “naming
attribute”. The tuple of the attribute and its value form a Relative Distinguished Name (RDN), for example
connectionId=123. This should be unique for all the object instances at the first level below a containing
instance. If these instances belong to the same class, then it is the value of the naming attribute that
distinguishes them (the “key”).

The containment schema is defined by name-binding GDMO templates which specify the allowable classes in
a superior/subordinate relationship and identify the naming attribute. Name bindings and naming attributes are
typically defined for classes in the first level of the inheritance hierarchy, immediately under top so that they
are “inherited” by specific derived classes. An example of a containment tree is shown in Figure 2.5, modeling
connections contained by protocol entities, by layer subsystems, and by a network element. A managed object
name, also known as a Local Distinguished Name (LDN), consists of the sequence of all the relative names
from the top of the tree down to the object, for example {subsystemId=network, protocolEntityId=x25,
connectionId=123}. OSI management names are assigned to objects at creation time and last for the lifetime of
the object. An OSI managed object has exactly one name; that is the naming architecture does not allow for
multiple names. The same is true for SNMP objects as described, though the naming architecture is different.

While SNMP was likened to a computer language with a few simple types plus arrays, OSI Management can
be likened to a full object oriented language since it allows new types (of arbitrary complexity) to be defined
and arbitrary methods (actions) to be invoked upon them.

2.2.3 The ODP / OMG CORBA Information Model
While both SNMP and OSI management are communications frameworks, standardizing management
interfaces for applications in agent roles, OMG CORBA targets a programmatic interface between objects in
client or server roles and the underlying support environment, that is the ORB. Server objects are accessed
through interfaces on which operations are invoked by client objects.

The ODP / OMG CORBA information model is fully object-oriented, in a similar fashion to that of OSI
Management. Objects are characterized by the interfaces they support. An ODP object may support multiple
interfaces bound to a common state, unlike OSI management where objects may have only one interface. The
current OMG specification, however, allows only a single interface per object. In fact, the OMG model defines
objects through the specification of the relevant interfaces. As such, there is no direct concept of an object class
in OMG. Object interfaces may be specialized through inheritance while multiple inheritance is also allowed.
The root interface in the inheritance hierarchy is of type Object. OMG interfaces are specified using the
Interface Definition Language (IDL) [IDL]. The IDL specification technique is more monolithic than the
GDMO piecemeal approach: the minimum re-usable specification entity is the interface definition as opposed
to the individual package, attribute, action and notification in GDMO. IDL may be regarded as broadly
equivalent to the GDMO/ASN.1 combination in OSI management, though less powerful and with some
differences highlighted below.

An OMG object may have attributes, accept operations at the object boundary and exhibit behavior. Such an
object is used to implement a computational construct. In a management context, an object may behave as a
manageable entity, modeling an underlying resource. Object attributes have associated syntax, which in IDL is
called a type. Arbitrary syntaxes are allowed, although the expressive power of IDL types is less than ASN.1.
There is no mechanism for grouping attributes together as in OSI management. Attributes accept Get and Set
operations while only standard exceptions may signify an error during such operations. This is in contrast to



Chapter 2

10

GDMO, where arbitrary class-specific errors and associated information may be defined to model exceptions
triggered by attribute-oriented operations. OMG objects also accept object-oriented operations, similar to the
GDMO actions. The normal execution of an operation results in a reply while object-specific exceptions may
be defined. Operation invocations, replies and exceptions may take arbitrary parameters in terms of IDL types.
It should be mentioned that a GDMO action may result in multiple replies, despite the fact information model
designers seldom use this feature. Multiple results are not explicitly supported in IDL but may be modeled

through “callback” invocations.

A key difference between GDMO and OMG objects is that the latter do not allow for the late binding of
functionality to interfaces through optional constructs similar to the GDMO conditional packages. An OMG
object type is an absolute indication of the characteristics of an instance of that type. However, attribute and
operation parameter values may be “null” while CORBA supports a standard not_implemented exception. An
additional major difference is that in IDL it is not possible to specify event types generated by an object: events
are modeled as “operations in the opposite direction”. As such, events are specified through operations on the
interface of the receiving object. An OMG managed object needs to specify a separate interface containing all
the events it can generate; the latter needs to be supported by managing objects that want to receive these
events. There are more differences with respect to the way events are disseminated, but these are discussed in
section 2.3.

ODP / OMG do not provide a built-in operation for instantiation of interfaces by client or managing objects.
The reason for that is that OMG takes a “programmatic” view of object interfaces and, as such, a create
operation is meaningless before that interface exists! While GDMO objects appear to accept create operations
according to the specification, the latter are essentially targeted to the agent infrastructure in engineering
terms. As such, interface creation in OMG may only be supported by existing interfaces: factory objects may be
defined that allow client objects  to create application specific interfaces. This approach is not flexible as a
factory interface is necessary for every other interface that can be dynamically created. A more generic factory
service would be welcome, allowing flexibility in the placement of new objects as currently factory objects may
place new objects in the same node.

Deletion of objects is possible through the OMG Object Life-Cycle Services [COSS]. The latter has specified
an interface that provides a delete as well as copy/move operations. Any other interface that needs to be deleted
should inherit from the life-cycle interface. The copy/move operations apply to object implementations and
appear to be very powerful as they support relocation and replication. The downside is that it is not at all clear
how these will be provided. In the absence of implementations supporting life-cycle services at present,
interface deletion is currently tackled through the definition of interface-specific delete operations. The
problem is that if an object receives a delete request through its interface and deletes itself, there can be no
reply to the performing client. An exception instead is raised and the client will never know if deletion was
completed successfully or something else went wrong while the object was cleaning-up its state. Hopefully
mature implementations of the life-cycle service interface will solve such problems in the future.

In summary, creation and deletion of interfaces is not handled in a fully satisfactory fashion. The main
problem is that such facilities should not be seen as separate “services” but should be an integral part of the
underlying platform, that is the ORB. Unfortunately, the OMG did not take this approach. Finally, it should be
mentioned that object creation and deletion in distributed system contexts are used mostly for system
instantiation and termination, that is not very frequently while this is not the case in management
environments.

While the OMG IDL object model has many similarities to GDMO, a marked difference concerns naming.
OMG objects can be identified and accessed through Object References. The latter are assigned to objects at
creation time and are opaque types, that is have no internal structure and, as such, do not reveal any
information about the object. Their typical implementation is through long bit-strings in order to facilitate
processing; they are in fact similar to pointers in programming languages. An object may have more than one
reference while objects may also be assigned names. The latter are distinct from objects, unlike Internet and



Chapter 2

11

OSI management where an object always has a name. Actually OMG objects need not have names at all as
they may be “bound to” by type through the ORB and accessed through their interface reference(s). In addition,
names may be assigned to objects but this mapping may change at any time. Names are assigned to objects
through the Name Service [COSS], which provides a directed graph of naming contexts with potentially many
roots. A point in the graph may be reached via many routes, which means that an object may have many
names. This is in contrast to OSI management where there is a naming tree instead of a naming graph and
objects have exactly one name. The name server may be essentially used to assign names to objects and to
resolve names to object references.

The example presented previously may be expressed in terms of CORBA objects in a one-to-one mapping with
the equivalent OSI managed objects. A key difference is that there is no need for a containment tree as such but
containment may be treated as any other relationship. Despite that, It will probably be necessary to model
containment in order to assign unique names to managed objects, in a similar fashion to OSI management.
Those objects may not be “discovered” and selected based on containment relationships, as is the case in OSI
management, but through the trader. Discovery and access aspects are addressed in the next section.

Finally, while polymorphism is a general property of object-oriented systems and, as such, is supported in
CORBA, there is no notion of allomorphism. The latter may be supported by passing the interface type
explicitly as an argument to operations. In this case though allomorphism will not be transparent as it is in
OSI-SM. In addition, there is no built-in support for the discovery of the allomorphic interface types that an
object supports through a facility similar to the OSI-SM allomorphs attribute.

2.3. Access and Distribution Paradigm
In the three management frameworks, managing functions or objects implement management policies by
accessing managed objects. By access paradigm, we mean the access and communication aspects between
managing and managed objects. Access aspects include both the remote execution of operations on managed
objects and the dissemination of notifications emitted by them. Given the different origins of OSI / Internet
management and ODP / OMG CORBA, that is communications and distributed software systems respectively,
there are marked differences in the relevant access paradigms. OSI and Internet management follow a
protocol-based approach, with message-passing protocols modeling operations on managed objects across a
management interface. The operations and parameters supported by those protocols are a superset of those
available at the managed object boundary, with the additional features supporting managed object discovery
and multiple object access. The protocol operations are addressed essentially to the agent administering the
managed objects which acts as a naming, discovery, access and notification server. On the other hand, OMG
CORBA specifies the API to the ORB through which client objects may perform operations on server objects.
Remote operations are supported by a Remote Procedure Call (RPC) protocol. The latter carries the remote
operation parameters and results, while functions such as object discovery and multiple object access are left to
application services such as naming and trading.

While both OSI and Internet management have tried to optimize access aspects with respect to the target
management environments, they have paid less attention to distribution aspects. By distribution, we mean the
way in which managing and managed systems and objects discover each other and how various related
transparencies, such as location, are supported. In OSI management, distribution has been recently addressed
through discovery and shared management knowledge services [X750], supported by the OSI Directory
[X500]. In the SNMP world, distribution is partly addressed through predefined addresses. On the other hand,
OMG CORBA is influenced by ODP [X901] and, as such, from the beginning it has been designed with
distribution and various transparencies in mind. Its ORB-based architecture has targeted the optimal provision
of distribution, in the same fashion that the manager-agent architecture adopted by OSI and Internet
management has targeted the optimal support for managed object access services. In this section, we look at
and compare the access and distribution aspects of the three frameworks.



Chapter 2

12

2.3.1 The Internet SNMP
In the Internet management framework, the fundamental axiom has been simplicity at the agent part of the
manager-agent spectrum. This important design decision aimed at the provision of standard management
interfaces to the majority of network devices at a minimal cost and has influenced the associated access
paradigm. SNMP has been designed to support a connectionless style of management communication and, as
such, it has been mapped over the User Datagram Protocol (UDP) and the Internet Protocol (IP) as shown in
Figure 2.6 [RFC1157][RFC1905/6]. The relevant thinking is that reliable transport protocols such as the
Transport Control Protocol (TCP) impose too much memory and processing overhead to be supported by
simple network devices such as routers and bridges. In addition, maintaining transport connections requires
state information, which again is considered to be expensive and, as such, undesirable. Also, bearing in mind
that SNMP projects a largely centralized model, it is impossible to maintain simultaneously thousands of
connections from a Management Operations Center (MOC) to the managed devices.

     

SNMP

UDP

IP

TCP

IP

CORBA
RPC

T

N

A

I/F

N

DL

T

S

P

A

Note 1 Note 1

OSI  SP

OSI  PP

OSI  TP

CMISE
ACSE

ROSE

Note 2

Note 2

Note 1: The Internet interface layer is deliberately left undefined
Note 2: There exist many OSI Network/DataLink protocol combinations

Figure 2.6  SNMP, CORBA and OSI Protocol Stacks

Applications using the SNMP protocol will need to ensure the reliability of underlying communication by
undertaking retransmission. In other words, applications should try to emulate the functionality of a reliable
transport protocol by setting timers every time they perform a transaction and possibly retransmit. An
important related aspect is that only applications in manager roles do retransmit, agents simply respond to
requests. As such, there is the possibility that either the request or the response packet is lost. If the response
packet is lost, the management operation will eventually be performed more than once; this is fine for
information retrievals but might cause problems for intrusive operations. As such, either the latter should be
idempotent or measures should be taken in the agent to prevent an operation from being performed twice (test-
and-set, etc.). Finally, agents in managed devices do not retransmit notifications (traps). It is only applications
in dual manager-agent roles that are allowed to retransmit notifications (inform-requests) in SNMPv2.

The management protocol operations are a superset of the operations available at the managed object
boundary. We have already mentioned that SNMP objects accept only Get and Set operations and that
imperative commands (actions) and table entry creation and deletion are emulated through Set. As such, the
SNMP protocol also has Get and Set request packets. Agents emit notifications, which are sent to manager
applications through the Trap SNMP packet. In addition to those operations, it is necessary for manager
applications to be able to “discover” transient objects, for example table entries for which it is impossible to
know their names in advance, e.g. connections, routes, etc. We have already mentioned before that the SNMP
naming architecture relies on ASN.1 object identifiers. Since the latter have ordering qualities, a collection of
SNMP objects visible across an interface is ordered in a linear fashion which means there is a first and a last
object. This linear structure was depicted in Figure 2.4. Note that table entries are ordered on a column-by-
column basis which is why they are depicted horizontally in that figure. It is exactly this linear structure that is
exploited through the Get-next operation which allows to retrieve the next object of any other object in the



Chapter 2

13

MIB. This is typically used for traversing tables and allows the retrieval of one table entry at a time if the entry
names are not known in advance.

In SNMPv2, two more primitives have been added. The inform-request packet is to be used between hybrid
manager-agent applications in order to report asynchronous notifications to each other; its receipt should be
acknowledged by the receiving application. This means that it should be retransmitted, so that it can be
thought as a “reliable trap”. Note however that managed elements are not supposed to use this facility. The
second addition has been the Get-bulk primitive; which is an extension of Get-next as it allows retrieval of
more than one next objects. Although it is better than Get-next, it is still a poor bulk data retrieval facility
because SNMP does not allow multiple replies but the result should fit in one response packet. Given the fact
that the underlying transport is unreliable, the maximum allowed application-level packet size is about 500
bytes in order to avoid network-level segmentation. In short, the SNMP mode of operation is request-reply or
request only for traps. The possible interactions using SNMP operations are shown in Figure 2.7.

    

         Get, Set
Get-next, Get-bulk

Trap

Inform

Response

Response

MANAGER NETWORK AGENT

Note1: Inform is only allowed for dual agent-manager entities
Note2: Get-bulk and Inform have been added in SNMPv2

time

Figure 2.7  SNMP Protocol Interactions

Event-based operation in SNMP is pretty simple-minded. Traps are sent asynchronously from managed devices
to predefined managers and are not retransmitted. This means they are inherently unreliable; as such,
managers should not rely on them but should also monitor managed devices through periodic polling. This
approach does not scale as it imposes management traffic on the managed network even when nothing
happens. It also requires careful trade-off between the polling frequency and the potential elapsed time after a
significant change before a manager knows about it. In SNMPv2, the event model between hybrid manager-
agent applications is more flexible as it allows the request of particular events by creating entries in a relevant
table. These events are retransmitted until an acknowledgment is received. On the other hand, it is not possible
to specify any other event-associated conditions through filtering, in order to minimize further management
traffic.

Finally, distribution in terms of location transparency is not an issue in SNMP. Manager applications address
agents in managed devices through their IP address while the agent is always attached to the UDP port number
161. This simplistic model allows for the discovery of device agents in LANs and MANs because of their
broadcast nature: a multicast SNMP message is sent to all the nodes of the LAN at the known port number,
requesting the first MIB object, for example Get-next(name=0.0), and the nodes that respond have been
“discovered”. On the other hand, such discovery is not possible for higher-level  hybrid manager-agent
applications as it is not specified on which port they should be attached. The only aspect that is specified
regarding manager applications is that they should be listening on UDP port 162 for traps and confirmed
inform-requests. In summary, the SNMP distribution model is very simple, in a similar fashion to the whole
framework. It serves well enough the centralized management model of LANs and MANs but it has obvious
limitations in more complex environments.



Chapter 2

14

We will now consider a concrete example of SNMP usage in order to demonstrate the access framework.
Assume we would like to find all the routes in the routing table of a network element that “point” to a
particular next hop address. The manager application must know the logical name of that network element
which it will map to the network address, typically by using the domain name system. It will then send a
SNMP Get-next request to port 161 at that address, starting with an “unnamed” route table entry, which will
result in the first route entry being returned. This request may be formed as Get-next(routeDest, nextHopAddr,
routeMetric). It will then have to repeat this step, passing each time as argument the result of the previous
request. Having retrieved the whole table, the manager will have to filter out unnecessary entries and keep
those for which the nextHopAddress object has the desired value. In SNMPv2, more than one next entries may
be requested through the Get-bulk primitive but it might not be possible for the responding agent to fit all of
them in the maximum SNMP packet size. In either case, the whole table needs to be retrieved in order to find
particular entries, which is expensive in terms of management traffic. In addition, Get-next or Get-bulk
requests need as argument the result of the previous request when traversing “unknown” tables. This means
the overall latency for performing this operation will be a multiple of the latency incurred for a single retrieval.

Assume also that we would like to be informed if such a new route is added to the routing table, either by
management or through a routing protocol. Since traps are used sparsely in SNMP and are also unreliable, the
only way to discover new entries is to retrieve periodically the whole routing table. It should be added though
that after the table has been retrieved once, names of existing entries are known and next traversals can start
simultaneously at various “entry” points, reducing the overall latency. Despite that, the management traffic
incurred will be roughly the same.

2.3.2 OSI System Management
OSI-SM was designed with generality in mind and as such it uses a connection-oriented reliable transport. The
relevant management service/protocol (CMIS/P) [X710/11] operates over a full seven layer OSI stack using the
reliable OSI transport service. The latter can be provided over a variety of transport and network protocol
combinations, including the Internet TCP/IP using the RFC1006 method. The CMIP protocol stack is depicted
in Figure 2.6. End-to-end interoperability over networks with different combinations of data link and network
layer protocols is supported either through network-level relaying or transport-level bridging as specified in
[Q811/12]. The upper layer part is always the same and comprises the OSI session and presentation protocols
with the and Association Control Service Element (ACSE) and the CMIS Element over the Remote Operation
Service Element (ROSE) in the application layer [Q811/12]. The benefit of transport reliability is out-weighted
by the fact that a full seven layer infrastructure is required even at devices such as routers, switches and
multiplexors, which typically run only lower layer protocols. In addition, application level associations need to
be established and maintained prior to management operations and the reporting of notifications.

Given the richness and object-oriented aspects of the GDMO object model, CMIS/P can be seen as a “remote
method execution” protocol, based on asynchronous message passing rather than synchronous remote
procedure calls. The service primitives are a superset of the operations available at the object boundary within
agents, with additional features to allow for object discovery and bulk data retrieval, operations on multiple
objects and a remote “retrieval interrupt” facility. The primitives available at the CMIS level are Get, Set,
Action, Create, Delete, Event-report and Cancel-get. The Get, Set, Action and Delete operations may be
performed on multiple objects by sending one CMIS request which expands within the agent based on scoping
and filtering parameters. Since OSI managed objects are named according to containment relationships and
organized in a management information tree, it is possible to send a CMIS request to a base object and select
objects contained in that object through scoping. Either objects of a particular level, until a particular level or
the whole subtree may be selected. The selection may be further eliminated through a filter parameter that
specifies a predicate based on assertions on attribute values, combined by boolean operators. Scoping and
filtering are very powerful and provide an object-oriented database type of functionality in OSI agents. This
results in simplifying the logic of manager applications and reducing substantially management traffic.



Chapter 2

15

     Get, SetC
ActionC, Delete

LinkedReplies

EventReportC

Create

MANAGER NETWORK AGENT

Note1:  Get, Set, Action, Delete may also operate on one only object (single reply)
Note2:  Set, Action, EventReport have also a non-confirmed mode of operation

time

Reply

Reply

Figure 2.8  CMIS Interactions

When applying an operation to multiple objects through scoping and filtering, atomicity may be requested
through a synchronization parameter. The result/error for each managed object is passed back in a separate
packet, which results in a series of linked replies and an empty terminator packet. A manager application may
interrupt a series of linked replies through the Cancel-get facility. Finally, the Set, Action, Delete and Event-
report operations may also be performed in an unconfirmed fashion. While this is typical for event reports (the
underlying transport will guarantee their delivery in most cases), it is not so common for intrusive operations
as the manager will not know if they succeeded or failed. Nevertheless, such a facility is provided and might be
used when the network is congested or when the manager is not interested in the results/errors of the operation.
Figure 2.8 depicts the interactions between applications in manager and agent roles using CMIS (apart from
Cancel-get).

The event reporting model in OSI management is very sophisticated, allowing fine control of emitted
notifications. Special support objects known as Event Forwarding Discriminators (EFDs) [X734/5] can be
created and manipulated in agent applications in order to control the level of event reporting. EFDs contain the
identity of the manager(s) who wants to receive notifications prescribed through a filter attribute. The filter
may contain assertions on the type of the event, the class and name of the managed object that emitted it, the
time it was emitted and other notification-specific attributes, for example, for an attributeValueChange
notification, the attribute that changed and its new and old values. In addition, an emitted notification may be
logged locally by being converted to a specific log record. The latter is contained in a log object created by a
manager, which contains a filter attribute to control the level of logging. In summary, OSI management
provides powerful mechanisms for dealing with asynchronous notifications and substantially reduces the need
for polling. In that respect, it scales much better than SNMP.

Distribution aspects in OSI management are supported by the OSI Directory, which provides a federated
hierarchical object-oriented database. The Directory resides in many Directory Service Agents (DSAs) that
administer parts of the global Directory Information Tree (DIT). Parts of the global MIT belong to different
Autonomous Administrative Areas (AAAs) and start at Autonomous Administrative Points (AAPs). DSAs are
accessed by applications in Directory User Agent (DUA) roles via the Directory Access Protocol (DAP) while
DSAs communicate with each other via the Directory System Protocol (DSP). Accessing the local DSA is
enough to search for information anywhere in the global DIT. Figure 2.9 depicts the operational model of the
directory and the global DIT. Directory Objects (DOs) are named using distinguished names that express
containment relationships, in the same fashion as OSI managed objects. In fact, the directory naming
architecture preceded that of OSI management and was essentially reused in the latter.



Chapter 2

16

DUA

DSA

DSA

DSA DSA

DSA

Directory System
Protocol

The
Directory

Directory 
Access Protocol

AAP

   AAP AAP   AAP

= AAP entry

= AAA

= non-AAP entry

DSA: Directory Service Agent
DUA: Directory User Agent

AAA: Autonomous Administrative Area
AAP: Autonomous Administrative Point

Figure 2.9  X.500 Directory Organizational and Administrative Model

OSI management applications or, System Management Application Processes (SMAPs) in OSI parlance, are
represented by directory objects. The latter contain System Management Application Entity (SMAE) objects
associated with each interface of that SMAP. SMAE DOs contain addressing information as well as
information regarding other aspects of that interface, termed Shared Management Knowledge (SMK) [X750].
Since the same hierarchical naming architecture is used for both the OSI directory and management, the two
name spaces can be unified. This can be achieved by considering a “logical” link between the topmost MIT
object of an agent and the corresponding SMAP directory object.

        

c=GB

o=UCL

ou=CS

cn=ATM-NM-OS

networkId=ATM

Managed Objects (MOs)

Directory Objects
          (DOs)

Directory Interfaces

Management
   Interface

“logical” name space link

M A

Directory

application in Manager role application in Agent role

discrId=1

example global name: {c=GB, o=UCL, ou=CS, cn=ATM-NM-OS, networkId=ATM, discrId=1}

Figure 2.10  The OSI Global Name Space

The universal name space is shown in Figure 2.10 through the extended manager-agent model. The manager
application may address objects through their global names, starting from the root of the directory tree, for
example {c=GB, o=UCL, ou=CS, cn=ATM-NM-OS, networkId=ATM, logId=1, logRecordId=5}. The
underlying infrastructure will identify the directory portion of the name, that is {c=GB, o=UCL, ou=CS,
cn=ATM-NM-OS}, will locate the relevant DO and will retrieve attributes of the contained SMAE DO,
including the OSI presentation address of the relevant interface. It will then connect to that interface and
access the required managed object through its local name, that is {logId=1, logRecordId=5}. Note that the
networkId=ATM relative name of the topmost MIT object is not a part of the local name. Global names



Chapter 2

17

guarantee location transparency as they remain the same even if the application moves: only the presentation
address attribute of the relevant SMAE DO needs to change. Note finally that applications in manager roles are
also addressed through directory distinguished names regarding the forwarding of event reports since the
destination address in EFDs contains the directory name of the relevant manager.

We will now consider the same example we considered in SNMP in order to see in practice the use of the OSI
management access facilities. In this case the manager application will know the logical name of the device,
for example {c=GB, o=UCL, ou=CS, cn=router-A}, from which the presentation address can be found through
the directory. The directory access protocol offers facilities similar to CMIS scoping and filtering. A request
will be sent to the SMAP DO with that name and the psapAddress attribute of the contained SMAE DO will be
requested. The manager will then connect to that address and request the relevant table entries through scoping
and filtering in the following fashion: Get(objName={subsystemId=nw,protEntityId=clnp,tableId=route},
scope=1stLevel, filter=(nextHopAddr=X), attrIdList={routeDest, routeMetric}). The results will be returned
in a series of linked replies, sent back-to-back as shown in Figure 2.8. The overall CMIS traffic will be kept
fairly low: N linked replies for the matching entries together with the request and the final linked reply
terminator packets, that is N+2 in total. The overall latency will be slightly bigger than that of a single
retrieval. It should be added that connection establishment and release are necessary both to the local DSA and
the element agent. This does not happen on a per management request basis, but connections may be “cached”,
as already explained. It should be noted that the discovery of the element agent address through the directory is
necessary only once.

The manager application would also like to be informed about new route entries “pointing” to the next hop
address X. This could be done by using the rich event reporting facilities provided by OSI management. The
manager will have to create an EFD with filter (eventType=objectCreation AND objectClass=routeEntry AND
nextHopAddr=X) and set as destination its own logical name, for example {c=GB, o=UCL, ou=CS, cn=mgr-
Z}. After that, notifications will be discriminated locally within the agent and the ones matching the filter will
be forwarded to the manager. Note that if there is no connection to the manager, the element agent will have to
establish it by going through the same procedure and mapping the logical manager name to an address through
the directory. The previous observations about connection caching and address mappings are also valid in this
case.

2.3.3 OMG CORBA
OMG CORBA was designed as a distributed software infrastructure in which the access protocol is secondary
compared to the underlying APIs or “programming language bindings”. Of course, an agreed protocol is
necessary in order to achieve interoperability between products of different vendors. The OMG 1.x versions of
CORBA specification left completely open the choice of access protocol and concentrated only on concrete
programming language bindings. Version 2.0 also specified a Remote Procedure Call (RPC) protocol as the
General Inter-Operability Protocol (GIOP) [GIOP]. Two different transport mappings have been defined for the
latter, the Internet Inter-Operability Protocol (IIOP) [IIOP] over the Internet TCP/IP (shown in Figure 2.6) and
the DCE Common Inter-Operability Protocol (D-CIOP). The ODP access transparency prescribes
independence of the underlying access protocol and CORBA provides both independence and portability due to
the agreed APIs. The access protocol could change without any effect on application-level software!

The agreed CORBA protocol is a connection-oriented reliable RPC that uses TCP and IP as transport and
network protocols respectively. Applications that use CORBA-based communications are guaranteed transport
reliability, in a similar fashion to OSI management and unlike SNMP. The CORBA RPC protocol is a
request/response type of protocol in which the exact structure of the request and response packets is defined by
the IDL specification of the accessed CORBA interface. No special facilities are built in the protocol for object
discovery and multiple object access in a similar fashion to the SNMP get-next, get-bulk or the OSI
management scoping and filtering. Instead, such facilities are provided in a limited fashion by the ORB and by
special servers. In summary, the CORBA RPC protocol provides a single object access mechanism with
higher-level facilities provided by standard OMG servers [COSS].



Chapter 2

18

The CORBA operational paradigm is different from that of OSI and Internet management, as it originates
from the distributed system world. CORBA objects are specified and accessed separately, in contrast to the
managed object cluster administered by an agent. Another key difference is that CORBA objects are most
commonly addressed by type and not by name. This is due to the nature of distributed systems where, typically,
instances of the same type offer exactly the same service, for example printer servers, statistical calculation
servers, and so on. Of course, this does not mean that there are no support mechanisms to distinguish between
instances of the same type (name servers, traders). It means however that the whole framework is optimized
towards a “single object access, address by type” style of operation, in contrast to the manager-agent model
which is optimized for “multiple object access, address by name” style of operation.

A CORBA object instance can be addressed by type through the ORB, in a fully location-transparent manner.
The ORB will find an instance of that type and return an object reference to the client object. If there are many
instances of that type in the ORB domain, many references will be returned. Instances of the same type can be
distinguished through naming servers or traders. A naming server [COSS] can be used to map a name to an
interface reference. When an object instance is created, the naming server needs to be “told” of the mapping
between the object’s name and its interface reference. Subsequently, client objects can resolve object names to
object references through the naming server. We shall recall here that the OMG naming architecture is very
similar to that of OSI management / directory, but objects can have more than one names.

A trader [X9tr] supports more sophisticated queries, matching sought properties of the target object(s). Objects
can export their interfaces to the trader together with a list of attributes and a list of properties. Clients may
request the object references of a particular type that match assertions on attributes and properties. The
difference between the latter is that attributes may change dynamically while properties are fixed during the
lifetime of an object instance. As such, the trader needs to evaluate assertions on attributes by retrieving them
from all the instances of the type associated with the query. The function of the trader is very similar to
filtering in OSI management. A key difference is that only interfaces of a particular type can be searched
through the trader. An additional difference is that filtering is tightly coupled with OSI managed objects
through the supporting agent while the ODP/OMG trader is a separate server. Finally, traders can be in
principle federated in order to cope with big object spaces and different administrative domains.

Notifications in ODP/OMG are supported by event servers. Emitting and recipient objects need to register with
the event server and special objects called channels are created and managed for every type of notification.
Emitting objects invoke an operation on the relevant event channel while the notification is passed to
registered recipient objects either by invoking operations on them (push model) or through an operation
invoked by the recipient object (pull model). There is no filtering as in OSI EFDs while event servers can be in
principle federated for scalability and inter-domain operation. The key difference with OSI management is the
lack of fine grain filtering which results in less power and expressiveness and more management traffic. OMG
is currently working towards the specification of notification servers which will provide filtering and will also
take over the management of channels, providing a higher-level way to deal with notifications.

We will now examine how CORBA could be used for network and service management, contrasting its
approach to the protocol-based OSI and Internet management approaches. But let’s first recapitulate the
operational paradigm of the latter. Managed elements or management applications that assume an agent role
provide management interfaces. A management interface consists of the formal specification of management
information and of an access service/protocol that is mapped onto a well defined protocol stack. While the
management information specification provides the MIB schema, object discovery and multiple object access
facilities allow applications in manager roles to discover dynamically existing object instances. Operations to
objects are always addressed through the supporting agent, which provides query facilities in a database-like
fashion. In addition, the agent discriminates emitted notifications according to criteria preset by managers.
Applications may discover each other through the directory in OSI management, while predefined addresses
are used in SNMP.



Chapter 2

19

If CORBA is used as the underlying access and distribution mechanism, managed objects can be mapped onto
CORBA objects, accessed by client objects in managing roles. The key difference is that clusters of managed
objects logically bound together, e.g. objects representing various aspects of a managed network element, are
not seen collectively through an agent. As such, an important issue is to provide object discovery and selection
facilities similar to OSI scoping and filtering. Such facilities are very important in management environments
where many instances of the same object type typically exist, with names not known in advance, e.g. call
objects. Facilities similar to scoping are not currently supported in CORBA but it should be possible to extend
name servers to provide similar functionality since they maintain the logical name space. Facilities similar to
OSI filtering are currently provided by traders, as explained above, but are not as powerful. An alternative
solution would be to provide special query servers, offering object selection facilities based on scoping and
filtering, in a similar fashion to OSI management.

The problem with the use of CORBA as described above is that federation is a key aspect in order to achieve
scaleable systems. In essence, it will be necessary to have dedicated name servers, traders and
event/notification servers for every logical cluster of managed objects, for example in every managed element,
in order to reduce traffic and increase real-time response. Those “low-level” servers will be unified by “higher-
level” servers in a hierarchical fashion but federation issues have not yet been worked out and are not simple.
In addition, even with such facilities in place, the management traffic in terms of the required application-level
packets will be at least double compared to that of OSI management. In CORBA, matching object references
will be returned to the client object and the operations will be performed on an object-by-object basis. In OSI
management, the multiple object access request will be sent in one packet while the results will be returned in
linked replies, one for each object accessed. The use of CORBA for network management by using federated
trading is depicted in Figure 2.11.

 MO

Object “Cluster”

M”O

T

T

FederationDiscovery

Access per MO “Search”

“Registration”

M”O: Managing Object
MO:  Managed Object
T:      Trader

Figure 2.11  The Use of CORBA for Network Management

We will now consider the same example we considered in SNMP and OSI management in order to see in
practice the CORBA access facilities. The manager in this case will be a CORBA client which will have to
discover the right routing table entries through the trader. If there is no federation, a central trader will be used
and objects such as route table entries will need to export their properties to it across the network. One of their
properties will have to be the logical name of the router so that assertions about routes in different router nodes
are possible. If there is federated trading, a trader could be located at the router node so that exporting
properties by local objects would not generate any traffic. The manager will contact a trader and perform an
operation to import interfaces with particular properties. The properties, in a filter-like notation, would be
(ifType=routeEntry AND router=router-A AND nextHopAddr=X). This will result in a number of routeEntry
interface references returned to the manager. The latter will then have to perform a get operation for each entry
and retrieve the routeDest and routeMetric attributes. These operations may be performed concurrently, so the
overall latency will be similar to that of one operation. Note, however, that the synchronous nature of RPC
necessitates the use of a multi-threaded execution environment, with a separate thread for every invocation.
The management traffic incurred will be 4 RPC packets for trading (2 to/from the domain trader and another 2



Chapter 2

20

between the latter and the trader in the router); and 2*N RPC packets for retrieving the entry attributes i.e.
2*(N+2) packets in total.

Event operation in CORBA is less powerful than in OSI management but nevertheless useful for avoiding
polling-based management. Assuming a routeEntryCreation event is defined, the manager will have to register
with the event server in order to receive this event. Typically, every event will involve 4 RPC packets: 2
between the emitting object and the event server and 2 between the latter and the manager. Since OMG event
services do not support filtering, the manager will receive events for all the new route entries in all the routers
and will select locally those of interest. Federated notification servers will be necessary in the future to provide
more sophisticated event management facilities.

2.3.4 Summary and comparison
In summary, SNMP adopts a connectionless unreliable transport while both OSI management and CORBA
adopt a connection-oriented reliable transport paradigm. The only difference between the latter two is that
connection establishment is “hidden” in the case of CORBA through the ORB while it may be presented to
applications in the case of OSI management. The main reason for the connectionless (CL) approach in SNMP
is simplicity in managed elements with complexity shifted to manager applications that have to achieve
reliability through retransmission. Experience has shown that it is very difficult to optimize retransmission in
the same fashion this is done by reliable transport protocols such as the Internet TCP and the ISO/ITU-T TP.
In addition, compact implementations of reliable transport stacks have become a commodity while the recent
advances in inexpensive memory and processing capabilities suggest that the argument of simplicity is no
longer valid. Finally, the emerging broadband technologies (SDH/SONET transmission, ATM switching) are
connection-oriented, which means they are better aligned with the OSI-SM and CORBA approaches.

Coming to the access paradigm, SNMP and OSI management adopt the manager-agent approach with
managed object clusters visible across a management interface and query / event / multiple object access
facilities while CORBA relies on a single object access paradigm, with special servers providing additional
facilities. The query, event and multiple object access / bulk data transfer facilities of OSI management are
very powerful as they have been designed specifically for telecommunication network management and have
not been compromised in order to reduce agent complexity. The same facilities in SNMP are less powerful and
they result in less expressive power and much more management traffic. On the other hand, they keep element
agents simple and have resulted in making SNMPv1 a success, at least for private (LAN/MAN) networks. In
OSI management and SNMP there are no implementation constraints in the sense that they are both
communications frameworks. As such, compact optimized implementations are possible.

OMG CORBA, on the other hand, projects an object-oriented distributed software framework that is not
specific to management and, as such, more general. Facilities similar to those provided by OSI/SNMP agents
may be supported by OMG servers: name resolution and object selection will be supported by name servers,
sophisticated filtering by traders while events are currently supported by event and, in the future, by more
sophisticated notification servers. Given the fact that in management networks there will exist hundreds of
thousands managed objects, federation is absolutely important for scalability and timely responses. The use of
facilities such as name, event/notification servers and traders for network management is currently a research
area while federation issues have not yet been resolved. An additional issue is the complexity of the overall
resulting framework as CORBA dictates conformance to internal software interfaces, which leaves less space
for optimized implementations. For example, the feasibility of network elements with tens of thousands of
CORBA managed objects needs to be investigated.



Chapter 2

21

2.4. Various other issues

2.4.1 Scalability, Flexibility
Scalability is an issue when managing large networks. Management services are used by the network operator
and are transparent to end-users. Management traffic should be kept low so that most of the network
bandwidth is available to end-user services. Obviously, the choice of management paradigm (event-driven,
polling-based) has an impact on the amount of management traffic. We will examine a simple case study in
order to quantify management traffic and assess scalability issues.

SNMP is particularly well-suited for LAN and MAN environments that are inherently connectionless, the
available bandwidth is relatively high (10 to 100 Mbits/s) and the error rate is very low. In such networks, the
overhead of polling is only a small fraction of the available bandwidth. No sophisticated retransmission is
necessary because the small error rate allows communications to take place essentially over one “link”. We will
assume a modest LAN/MAN cluster consisting of 100 routers with an average of three interfaces per router
and a maximum latency of five minutes for detecting “interface down” alarm conditions. This requires
(100*3)/(5*60) = 1 polls/sec to monitor the up/down status of interfaces, or 1/3 polls/sec if all the requests for a
router are combined in a single SNMP packet. Adding to this 5000 workstations/PCs/servers whose status
needs to be known at a average latency of 10 minutes, we need another 5000/(5*60) = 8.33 polls/sec, the grand
total being about 10 polls/sec. Since an SNMP packet is about 500 bytes, this results in a management
bandwidth of 0.1 Mbits/s or 1 per cent of the total Ethernet bandwidth (10 Mbits/s), which is affordable.

The above calculations concern polling to determine only the rudimentary status of the network, in terms of its
most important components. Adding to this system and application management, for example operating system
load/users, terminal servers, database management systems, the domain name system or directories, mail
systems, and so on, including performance and accounting issues in addition to fault detection and the above
figure will be much bigger. It is obvious that doing the same thing over a wide area network with a lot of
“thin” point-to-point links and higher probability of congestion will result in a lot of additional load,
deteriorating the network’s overall health. In such an environment, sophisticated retransmission mechanisms
will be also necessary because the probability of packets being lost will be much higher. The solution for
scalability is event-driven management, with facilities such as event management with filtering, event logging,
metric monitoring with thresholding and summarization (see section 2.4.2). SNMP does not provide such
facilities, at least for element management, while OSI management does. OMG CORBA on the other hand was
not designed specifically for management, its event model is not as powerful and lacks generic management
facilities.

We will now examine suitability for hierarchical management. By hierarchical management we mean a
management system organization in which management applications are organized in a logical layered
fashion, with applications in higher layers being shielded from unnecessary detail and having a global view of
the network, services or policies. A hierarchical management structure was depicted in Figure 2.2 and is
exemplified by the TMN model. The SNMP framework was designed to allow management capabilities to be
fielded in the largest possible number of network elements. As such, simplicity dictated the use of
connectionless transport, no sophisticated event facilities and a rather crude information model. Such design
decisions address mainly the lowest level of a management hierarchy (element management). However, when
it comes to hierarchical management, issues such as management application size, complexity and processing
requirements become largely irrelevant. Management applications in this layered hierarchy usually operate in
powerful workstations. In this case, the simplicity of the SNMP framework becomes a liability as it restricts the
available expressive power and introduces limitations.

Finally, we will consider flexibility and suitability for distributed application and service management. Both
SNMP and OSI management may be used for distributed application management. On the other hand,
distributed applications should be managed through dedicated agents and both SNMP and OSI agents are too
complex to be “bundled” together with them. In general, it is natural to manage distributed applications
employing the same technology used to build them in order to achieve reusability and economies of scale.



Chapter 2

22

Internet applications can be managed with SNMP, OSI applications can be managed with OSI and CORBA
applications are best managed through CORBA. Given the fact that CORBA was conceived as a mechanism to
build distributed systems, it is best to build and manage new distributed applications through CORBA.

The same is true for service management regarding new advanced services, for example video-conferencing
and joint document editing. In this case, it is difficult to differentiate between service operation and service
management. For example, subscription management to a new advanced service is a management activity that
is closely related to the operation of that service. This is exactly the thinking behind the adoption of CORBA as
the basis for the TINA DPE, as the TINA architecture tries to unify service operation and service management
mechanisms and procedures. In this unified model, a video-conferencing bridge can be seen as a CORBA
object with both service and management interfaces as opposed, say, to an object with a service interface and
an associated OSI agent for TMN-based service management. The two approaches are depicted in Figure 2.12.
In summary, OMG CORBA is a more flexible mechanism than SNMP and OSI management for managing
distributed applications because it is also a mechanism for building them in the first place.

    

A

OSI mgmt I/F

ad-hoc mechanism

Operation  CORBA I/F

Management  CORBA I/F

Service
Object

Service
Object

Figure 2.12  Service Operation and Management Models

2.4.2 Generic Management Functionality
One fundamental difference between the Internet and OSI management frameworks is that the Internet follows
a “lowest common denominator” approach, resulting in very few common object specifications that should be
globally supported. This approach is in line with its fundamental axiom which dictates simplicity in managed
elements. On the other hand, a number of generic management functions are standardized in OSI management
in order to provide a well-defined framework for dealing with common tasks and achieving reusability. These
specifications emanate from the five functional areas (Fault, Configuration, Accounting, Performance, Security
- FCAPS) and are collectively known as the System Management Functions (SMFs) [SMF]. The notion of
generic functionality in CORBA is supported by the Common Object Services [COSS]. As CORBA was not
designed specifically for management, it only partly supports functionality similar to the OSI SMFs. In this
section, we examine generic management functionality through the OSI SMFs and compare it to similar
facilities in the SNMP and CORBA frameworks.

There are three types of OSI SMFs:

i. those that provide generic definitions of object classes or simply attributes, actions and notifications
for common tasks;

ii. those that provide system definitions which complement the management access service by providing
a controlled mechanism to deal with notifications (Event Reporting / Dissemination, Log Control);
and



Chapter 2

23

iii. those that provide miscellaneous definitions; we could currently group here the security-related
functions (Access Control Objects, Security Alarm Reporting, and Security Audit Trail).

Starting first from the third category, such functions exist in the SNMPv2 security framework (apart from
security audit trail). The SNMPv2 Party MIB has similar functionality to the OSI Access Control Objects.
These facilities are of paramount importance for the security of management and are absent in SNMPv1. The
OMG CORBA security framework supports access control and security audit functions (see section 4.3).

The second category is extremely important as it provides the means for event-driven instead of polling-based
management. The philosophy of both SNMPv1 and v2 is based on polling, at least between element managers
and NEs. As such, similar facilities exist only partially, as already discussed. The event group of the
“manager-to-manager” MIB provides facilities similar to OSI event reporting but without filtering while the
same is true of the OMG event service. Logging services are not provided in either the SNMP or OMG
CORBA frameworks.

The first category provides a host of functions that support generic functionality. The first and most important
of those are Object Management, State Management and Alarm Reporting. Object Management provides three
generic notifications related to configuration management that all OSI managed objects should support: object
creation, object deletion and attribute value change. State Management provides a number of generic state
attributes (administrative, operational, usage state, etc.) and a state change notification. It also prescribes state
transition tables according to the state model. Finally, alarm reporting provides a set of generic alarm
notifications: quality of service, communications, equipment, environmental and processing error alarm.

Other MIB specifications should use the above definitions in order to model object, state and alarm aspects.
Generic configuration, state or alarm managers can be written in a fashion that makes them independent from
the semantics of a particular MIB. For example, a configuration monitor could be an application that connects
to managed elements and requests all the object creation, deletion, attribute value and state change
notifications in order to display changes to the human manager. Such an application can be written once and
reused as it only needs to be “fed” the formal specification of the element MIBs in order to be able to display
meaningful names for the objects emitting those notifications. OSI management platforms typically provide a
set of generic applications that are based on those common specifications. SNMP and CORBA do not provide
similar generic facilities but CORBA may reuse the OSI ones if the relevant GDMO specifications are
translated to CORBA IDL as described in the next section. This observation also holds for the rest of the OSI
SMFs which are described next.

Monitor Metric objects allow the observation of counter and gauge attributes of other MOs and their potential
conversion to derived gauges, which may be statistically smoothed. The latter have associated threshold and
tidemark attributes that fully support event-driven performance management capabilities, relegating “polling”
within a managed element. The SNMPv2 manager-to-manager MIB offers a similar facility but without
statistical smoothing or the possibility of combining different attributes in order to produce a comparison rate,
for example for error versus correct packets. Summarization objects allow a manager to request a number of
attributes from different objects of a remote system to be reported periodically, possibly after some statistical
smoothing. These attributes can be specified using scoping and filtering while intermediate observations may
be “buffered”. This facility is important for gathering performance data for capacity planning and is typically
used together with logging. SNMP does not provide such a facility.

Accounting Metering provides generic objects to support data collection for resource utilization. Test
Management defines generic test objects to provide both synchronous and asynchronous test facilities,
modeling generic aspects of testing and separating them from specific test aspects. Scheduling Management
provides generic scheduler objects that could schedule activities of other MOs which support such scheduling
on a daily, weekly, monthly or other periodic basis, for example event forwarding discriminators and logs.
Response Time Monitoring supports performance management by allowing the measurement of protocol
processing time and network latency between systems. Time Management permits the delivery of correct time
and synchronization of the clocks of distributed systems. Software Management allows the delivery,



Chapter 2

24

installation, (de-)activation, removal and archiving of software in a distributed fashion. SNMP does not
provide similar generic facilities.

In summary, SMFs provide useful generic facilities that most systems should support, enforcing a common
style of operation that can result in generic managing applications or simply generic managing functions.
SNMPv2 matches partly the event reporting and metric objects, and these only in the manager-to-manager
domain. OMG CORBA provides less powerful event reporting facilities while the rest of the OSI SMFs could
be translated to CORBA IDL and used in CORBA environments. Despite this theoretical possibility, this
approach has not yet been put into practice.

2.4.3 Security
Security of management is of paramount importance, especially for intrusive operations that result in the
modification of management information. Security is particularly important across different administrative
domains but is also necessary within a domain, especially in cases where that domain is open to external
management traffic. Despite its importance, it has taken a long time to produce agreed-upon workable
solutions. A common aspect in all these frameworks is that security mechanisms have been almost an after-
thought, after the main aspects have been standardized and non-secure implementations have existed in the
market place for some time.

First, we will describe security threats and then security services used to protect against those threats. A third-
party application may attempt to subvert the management interaction between a pair of communicating
management applications by:

• Masquerading as a legitimate application and then performing unauthorized management
operations;

• Modifying  information while in transit;
• Re-ordering or re-playing messages in transit; and
• Capturing (and examining) confidential management information in transit.

The security services used to protect against these threats are the following:
• Peer entity authentication which establishes unambiguously the identity of the initiator of an

operation and is an essential input to an access control decision function;
• Data origin authentication which provides an assurance guarantee that data really do come from

where they seem to;
• Connectionless integrity which ensures that management PDUs cannot be modified without

detection;
• Stream integrity which guards against mis-ordering PDUs in a stream (including re-plays);
• Confidentiality  which prevents capture and examination of management information; and
• Access control which enables one to discriminate between different managers or client objects

regarding the operations they are allowed on managed objects.

We will now consider the approaches taken for providing these services in the three management technologies.
In the Internet management world, SNMPv1 has little security in the form of “password-based” authentication
and access control [RFC1157]. There is a special field in SNMPv1 packets that identifies a community name.
Every agent needs to know in advance the names of various communities with different access rights. As such,
MIB access is restricted based on that name. The default community is called public and provides a minimal
level of access, for example read-only for objects that can be accessed by anybody. The first problem with this
scheme is that it does not allow for the dynamic configuration of agents with respect to communities and
access rights. The second and most important problem is that the community name is passed across
unencrypted, which makes the scheme vulnerable to capturing attacks. Because of its simple-minded nature,
the SNMPv1 security mechanism is not trusted and, effectively, not used. In the absence of strong security
mechanisms, many SNMPv1 manageable devices do not implement Set operations in order to avoid the
potentially disastrous effects of malicious attacks. Even worse, the various IETF groups involved in the



Chapter 2

25

definition of new MIB specifications have refrained from allowing extensive intrusive management capabilities
through Set operations. The absence of security has resulted in the use of SNMPv1 as a remote monitoring
rather than a management framework.

The initial Internet SNMPv2 RFCs, published in 1993, included a security framework but the relevant IETF
working group never reached agreement regarding the security aspects. As such, the new version of the
SNMPv2 RFCs, published in 1996, has made the security framework optional and allows for the possibility of
multiple security frameworks. The simple community-based scheme can also be used with SNMPv2. A more
comprehensive security framework caters for the attacks mentioned above by providing comprehensive security
services [RFC1909/10].

In SNMPv2, the relevant communicating entities are referred to as parties. Peer-entity, data-origin
authentication and connectionless integrity are supported by a scheme based on the Message Digest 5 (MD5)
algorithm. With MD5 authentication, each party is associated with a secret key, held securely at source and
destination. The source party applies the MD5 algorithm to a combination of PDU and secret key in order to
generate a security checksum that is appended to the PDU. The destination repeats the calculation to verify the
source party's identity. The use of shared secret keys introduces a problem of key distribution. This can be
addressed by secure key exchanges through SNMPv2 itself. However, this can only be done if it is certain the
security of the key exchange channel itself has not been compromised. In addition, there is a bootstrap problem
to solve; that is keys will need to be distributed out-of-band for the first time. Stream integrity may be
supported by timestamps included in every message, assuming clocks are synchronized. An alternative novel
approach has been proposed for SNMPv2 which uses time as perceived by the agent only and, as such, it
avoids clock synchronization. Confidentiality is supported by encrypting portions of an SNMPv2 message
using the Data Encryption Standard (DES). Finally, access control is provided through the party MIB which
describes the access rights of different parties to objects in the agent’s MIB.

In OSI, security services other than access control are applicable to all the application service elements and not
just to CMISE. For example, the same authentication, integrity and confidentiality services can be used for
management, directory access and file transfer. Authentication services were initially developed for the OSI
directory but the need for a general security framework led to the Generic Upper Layer Security (GULS) ITU-T
recommendations [GULS]. These have been completed in 1996 while specific lightweight profiles have also
been produced by workshops to ease their acceptance and introduction into the market place. A key difference
between the OSI and SNMP security frameworks is that OSI also defines mechanisms for asymmetric public-
key cryptography in addition to symmetric secret-key based schemes. In asymmetric schemes, the source
application needs to demonstrate knowledge of its own secret key. This requires a certain amount of
infrastructure support in the form of certification authorities which vouch for the bindings between the
directory name of that application and its public key. There is no key-distribution problem as each entity holds
(securely) its own secret key while it “advertises” its public key to the directory. Asymmetric public key
cryptography requires the RSA algorithm which can be computationally expensive when performed in software
while implementations in hardware (smartcards) overcome this limitation. Directory access by a management
application is necessary for both advertising its own public key and obtaining a peer entity’s public key.

OSI GULS services include authentication, connectionless / stream integrity and confidentiality. The default
digest and encryption algorithms used are MD5 and DES respectively but any other algorithm can be used
after negotiation. Two lightweight profiles have been defined by the ANSI T1M1 and the IEEE Open
Implementers Workshop (OIW), the mini- and micro-GULS respectively. These may operate using secret key
authentication, while key distribution aspects are deliberately left unspecified. The key difference between the
two profiles is that micro-GULS supports the encryption of a whole PDU only while mini-GULS supports the
encryption of selected PDU fields, providing additional flexibility and increased efficiency. While GULS
requires a presentation layer PDU transformation and, as such, protects all application layer services, an
alternative approach is to provide security services based on ROSE PDU transformation [Bha96]. Such an
approach is simpler since it does not require the modification of the OSI presentation layer. On the other hand,
it can only protect ROSE-based application services. The ANSI T1M1 and IEEE OIW have also produced
ROSE-based security service specifications as a simpler alternative to GULS. While using GULS or ROSE-



Chapter 2

26

based security services, access control is provided through special managed objects that protect other target
objects or even individual attributes, actions and notifications in a very flexible manner. Management of
security facilities is provided through security alarm reporting and security audit trail functions [SMF].

OMG CORBA security services are a fairly recent addition to the overall framework. The OMG security
framework is very broad and supports a plethora of possible security services and mechanisms. The current
security specification defines APIs that provide access to security services supported by a number of different,
potentially replaceable, security architectures and policies. The security services accessible through those APIs
include authentication, protected message exchange, that is integrity and confidentiality, access control,
security auditing and delegation of security rights to intermediate authorities [OMGSEC]. In fact, the CORBA
security approach offers a “shopping-list-oriented” solution space to which implementations of underlying
security architectures and policies can adhere. Accordingly, interoperability is not the focus of this high-level
specification. In order to foster interoperability, however, a set of profiles specifying particular security services
and relevant supporting mechanisms have been defined. A simple negotiation protocol has been defined in
order to choose a particular profile between ORBs.

In summary, OSI management and OMG CORBA security solutions have been fully specified and secure
implementations of relevant products are expected to appear in the market place soon. On the other hand,
SNMPv2 has opted for an optional security framework whose adoption is questioned.

2.5. Interworking and Coexistence
In this section, we examine interworking and co-existence aspects for the three different technologies. We look
first at interworking and co-existence between OSI and Internet management in the TMN context, where
SNMP-capable network elements may need to by managed by TMN applications. We then look at interworking
between OMG CORBA and SNMP in the TINA context, where network elements need to be managed by
CORBA objects. Both of these cases are unidirectional in the sense that SNMP is only considered in the
managed end of the spectrum. Finally, we examine interworking and co-existence between the OSI
management and OMG CORBA in both directions: first in the OSI management to CORBA direction, which
is necessary to manage CORBA-based distributed applications from a TMN environment; and then, in the
CORBA to OSI management direction, which is needed to manage network elements with Q interfaces or to
re-use existing TMN management services in a TINA environment.

2.5.1 OSI and Internet Management
Interworking between OSI management and SNMP is mostly necessary to manage SNMP-capable network
elements in a TMN fashion. This is particularly common for ATM equipment, as relevant SNMP information
models have been available for some time before the relevant TMN recommendation, resulting in a number of
SNMP-capable ATM elements in the market place. In transmission technologies such as SDH, the situation
has been the reverse with early Q-compliant available elements. In general though, it is expected that in the
short to medium term i.e. for the next few years, it will be necessary to manage SNMP-capable elements from a
TMN environment.

Interworking between CMIS/P and SNMP has been a subject that led to a lot of research trying to bridge the
two worlds. Various solutions have been proposed, all of which can be classified into two broad categories:

i. integration in the manager end; and
ii. integration in the agent end of the manager-agent model.

The integration in the manager end means that one accepts the diversity in the supported technology by
managed elements and tries to provide element management applications that understand the different
underlying information models and access mechanisms. This approach is often referred to as dual stack



Chapter 2

27

manager, since these applications will need to understand both the OSI and Internet management models.
Such an approach has been envisaged by the X/Open Consortium in providing the XOM/XMP [XMP]
Application Programming Interface (API), which provides uniform access to both CMIS and SNMP services.

Such an approach is suspect, however, because it is difficult to conceal which model the managing application
deals with since both the underlying information models and access mechanisms have important differences.
For example, the nature of objects and the naming schemes are different in the two models. This is also the
case with respect to the supported communication and access paradigms. Of course, this does not mean that
such an approach is not feasible but simply that integration cannot be seamless, increasing significantly the
development effort and investment for dual manager applications. The dual stack manager approach is
depicted in the left part of Figure 2.13.

A1 A2 A1 A2

M

stack1 stack2

API M1 M2

element1 element2 element

Manager to Agent relationship

Figure 2.13  The Dual-stack Manager and Dual-stack Agent Approaches

Integration by agents can again be classified into two broad categories:

i. the dual agent approach; and
ii. the application gateway approach.

By dual agent we mean that two agents should exist for every managed element, both an SNMP and an OSI
one. The information models will be semantically similar, which implies that the associated “real resource”
aspects could be the same. As such, investment in providing such agents could be reduced if a modular
approach were followed. In the latter, managed objects are realized in a “model/protocol independent” fashion
and are associated with both SNMP and CMIS/P access methods. This approach is depicted in the right part of
Figure 2.13, in which the objects in the dual agent are model independent, with different views presented
through the two agents. Despite the fact that this approach is technically feasible, it requires heavy investment
and additional resources in managed elements. As such, no products support this type of functionality to date.

The application gateway approach provides the most promising and powerful solution for integrating the two
frameworks. In this, an application acts as a gateway (proxy or adapter are two other terms often used ) for one
or more agents of the other framework, exporting “converted” information models and providing service
conversion from one access method to the other. The conversion between the information models can be
performed either manually or automatically. Manual conversion means that human heuristics may be applied
to result in an "elegant" model. In many cases, the target model for that technology may already exist, in which
case a gateway should simply map one to the other. Automatic conversion means that a well-defined set of
rules exists and can be used to automate translation of any MIB specification from one model to the other. As a
result of automatic conversion rules, the dynamic interaction translation and subsequently application gateways
may be automated.



Chapter 2

28

Automatic conversion is usually unidirectional: it can only be bi-directional if the two information frameworks
are equally powerful and expressive. This is not the case with OSI management and SNMP, GDMO being
much more powerful than the SNMPv1/v2 SMI. As such, there may be automatic conversion of an SNMP
information model to the equivalent GDMO one but not vice versa. Human intervention is required for
mappings in the opposite direction. For example, there is no deterministic method for emulating a CMIS/P
Action through an SNMP Set.

Research effort led by the Network Management Forum (NMF), known as the ISO/ITU-T and Internet
Management Co-existence (IIMC) work, resulted in a set of NMF documents that provide rules for automating
the SNMP to GDMO information model conversion and for building generic application gateways between
CMIS/P and SNMP [IIMC]. The automatic conversion between the two frameworks relies on the simple
observation that the SNMP structure of management information is a pure subset of the OSI one. SNMP
objects are equivalent to OSI attributes, groups are mapped to classes and table entries become separate classes.
Traps are mapped to notifications associated with a cmipSnmpProxyAgent class that represents the proxied
SNMP element. Based on those rules, one can fully automate the CMIS/P to SNMP service conversion.
Commercial products providing this functionality already exist. Typically, every time a new element with an
“unknown” MIB needs to be adapted for, an off-line procedure is involved to let the gateway “know” of this
MIB through suitable translators/compilers. The latter generate run-time support in a data-driven fashion so
that the gateway logic does not need to be altered. The generic gateway is a Q-Adapter in TMN terms. The
application gateway approach is shown in Figure 2.14.

A2

ICF: Information Conversion Function
Manager to Agent relationship

element

A1 ICF
M

application-gateway

info model 2info model 1     static
translation

 dynamic
adaptation

Figure 2.14  The Application-gateway approach

The important aspect of the generic gateway approach is that investment is rather small compared to the end
result, which is OSI manageability of any SNMPv1/v2 capable element. The key benefit OSI management
brings to the SNMP world is event-driven management through the Systems Management Functions. For
example, metric  and summarization functions together with event reporting and logging may be used to
provide sophisticated management capabilities, eliminating polling in the local environment between the
gateway and the proxied SNMP agent. The benefits of the generic gateway approach are described in [Pav95b].
The key drawback on the other hand is that the resulting information model does not exploit the object-
oriented aspects of GDMO: inheritance is only two-level (every class inherits only from top)while containment
is also fairly “flat”. Furthermore, the resulting information model needs to be standardized in order to be
considered a standard Q interface in TMN terms.

2.5.2 ODP/OMG CORBA and Internet Management
Interworking between OMG CORBA and SNMP is necessary in order to manage SNMP-capable network
elements in a TINA environment. Early TINA prototypes have been using non-generic adapters supporting
only the necessary functionality, e.g. for Connection Management. As other parts of the TINA management



Chapter 2

29

architecture, such as Resource Configuration Management, are further specified and expanded, the need to
access SNMP-capable elements will be much greater. If in the long term TINA plans to provide full scale
TMN-like functionality, SNMP or Q-capable network elements will need to be accessed by CORBA managing
objects. A generic approach to information model translation and dynamic adaptation will pay dividends as it
will minimize the necessary investment and will allow the reuse of the relevant adapters. The need to
interwork between OMG CORBA and both Internet and OSI management led to the joint effort between
X/Open and the NMF, known as the X/Open Joint Inter-Domain Management (XoJIDM) task force [JIDM]. In
this section, we concentrate on the issues behind OMG CORBA and SNMP interworking.

CORBA IDL is a more powerful object-oriented interface specification language than the SNMPv1/v2 SMI
templates. In addition, the NMF IIMC work for mapping a SNMP SMI model to the equivalent GDMO one is
of direct relevance and the same modeling principles apply for translation to CORBA IDL. SNMP objects can
be mapped onto IDL interface attributes, groups can be mapped onto IDL interfaces and table entries can be
mapped onto separate IDL interfaces. Finally, traps become notifications modeled by two IDL interfaces: a
Notification interface that should be inherited by any managing object wishing to receive notifications
according to the push event model; and a NotificationPull interface that should be inherited by notification
server objects supporting the pull event model.

CORBA::Object

SmiEntry

 < SNMP SMI object
   “Proxy” Interface >

CORBA::Object

ManagedObject

Top

 <  GDMO class
  “Proxy” Interface >

Inherits from

Figure 2.15  Inheritance Hierarchy from SNMP SMI and GDMO to IDL Translation

Every translated IDL interface inherits from a SmiEntry base interface, which in turn inherits from CORBA’s
Object, as do all IDL interfaces (see Figure 2.15). SmiEntry provides generic SNMP-related functionality in the
form of a “naming” attribute and other generic aspects. While SNMP is not particularly powerful as an access
method when compared to CMIS/P, it still offers some access facilities that cannot be easily provided by
CORBA. For example, one SNMP request may retrieve or change the value of attributes across different table
entry instances, for example the status of interfaces at a particular node and the next hop address of routes. In
CORBA, objects are seen as different entities through IDL interfaces and, as such, a separate method
invocation is needed for each interface.

2.5.3 ODP/OMG CORBA and OSI Management
Interworking and co-existence between OSI management and OMG CORBA is needed in both TMN and
TINA environments: it should be possible to manage CORBA-based distributed applications from a TMN
environment, e.g. in the context of service management; and it should be possible to access TMN-compliant
elements from a TINA environment or to re-use existing TMN-based management services. Some observers
see this latter case as a possibility for a TMN to TINA coexistence strategy: the TMN network layer
management services could be re-used, with the TMN service layer being replaced by equivalent TINA
functionality.



Chapter 2

30

In order to manage CORBA server objects through OSI management we need to first translate IDL to
GDMO/ASN.1 and then to provide mappings between the CMIS/P and the CORBA access mechanisms.
Mapping CORBA IDL interface definitions to GDMO classes is fairly straightforward since IDL is simpler
than GDMO. IDL attributes are mapped onto GDMO attributes, IDL methods are mapped to GDMO actions
and IDL interfaces to GDMO classes. CORBA object references and names will be mapped onto OSI
distinguished names. The generic application gateway needs to interact with standard OMG services in the
CORBA domain, for example the OMG Name Service to resolve distinguished names to object references, the
OMG Lifecycle Service to create new object instances and the OMG Event Service in order to receive events
and forward them to interested OSI managing applications. Scoping and filtering can be resolved within the
gateway, with one CMIS request mapped onto one or more requests on IDL interfaces. This type of gateway
can also be conceived as an OSI agent for which the real resources associated with the managed objects it
administers happen to be CORBA objects.

Mapping in the opposite direction is a more difficult proposition. GDMO/ASN.1 as an information
specification language and CMIS/P as the access method have a number of aspects for which there exist no
IDL and CORBA equivalents. These include the late binding of functionality to managed object instances
through the use of conditional packages; the existence of notifications as part of managed object specifications;
the fine grain support for event discrimination; and the use of scoping and filtering as “query language”
facilities that may result in multiple replies. In addition, a GDMO action on a single managed object instance
may also result in multiple replies, e.g. a testing action taking a long time to execute with periodic results. It
should also be noted that GDMO attributes cannot be mapped directly onto IDL attributes since user exceptions
with specific error information may be raised as a result of access to them. In IDL it is not possible to associate
user exceptions with attribute access.

Despite these differences, it is still possible to use workarounds in order to achieve a generic mapping. GDMO
attributes may be mapped onto access methods specific to the attribute in hand, according to its property
information (e.g. administrativeState_get, administrativeState_set). GDMO actions resulting in single replies
may be naturally mapped onto IDL methods. Actions resulting in multiple replies may generate exceptions to
draw the attention of the calling object, with the replies modeled as methods in the opposite direction.
Notifications may be mapped onto interfaces in the opposite direction, corresponding to the push and pull
models. Finally, conditional packages can be made “mandatory” by being added to the resulting IDL interface.
Their presence, however, becomes an implementation issue: the standard CORBA not_implemented exception
should be raised whenever a method of a non-implemented package is invoked. Translated IDL interfaces
follow exactly the same inheritance lattice as the original GDMO classes, while the Top class inherits from a
ManagedObject base interface which in turn inherits from CORBA’s Object, as do all IDL interfaces (see
Figure 2.15).

The suggested mapping goes a long way towards reconciling the differences of the two object models but some
semantics are inevitably lost in the translation. Most notably, in GDMO conditional packages may or may not
be included in an object instance at creation time. This facility allows for the late binding of functionality to
that instance and it may also be used to configure its “mode” of operation. This cannot be achieved through the
suggested translation. Furthermore, some conditional packages for the same class may be mutually exclusive;
this again cannot be modeled in IDL. If ISO and ITU-T are to adopt the proposed translation guidelines by
XoJIDM, they should also instruct GDMO information modeling working groups to avoid the use of
conditional packages in a non IDL-compatible fashion.

A more important difference concerning the translation has to do with the access methods. The operational
model of CORBA is that of a single distributed object, accessed in a location transparent fashion. In OSI
management, managed objects can be accessed collectively through the CMIS/P scoping and filtering facilities.
These may be used for discovery services, for example “which calls are currently established through that
element”, and they minimize the management traffic incurred on the managed network. In addition, the same
operation may be performed on many managed objects. This not only is an engineering-level optimization but
also allows a higher level of abstraction to be provided to managing functions. Discovery facilities may be



Chapter 2

31

provided through traders in CORBA as discussed in section 2.3.3 but the efficiency of such mechanisms, with
potentially thousands of transient managed objects in network elements, needs to be evaluated. In addition, the
CMIS/P operational paradigm with potentially multiple operations expressed through a single request is lost,
unless similar facilities are provided through special CORBA servers, as discussed in section 2.6.

2.6. Summary and The Future
Here we summarize the key aspects of the three frameworks, make final comments on their suitability for
telecommunications network / service management and look at possible future directions.

The Internet management framework was conceived mainly for LAN/MAN management. It is a
communication framework based on the manager-agent model whose design decisions opted for agent
simplicity, shifting sophistication and complexity to manager applications. It has adopted a connectionless
unreliable transport mechanism, a rudimentary object-based information model and a polling-based model for
element management. It follows a “lowest common denominator” approach to management standardization,
addressing only the absolutely necessary aspects. Version 1 offers little security while managed object
creation/deletion is problematic. Its simplicity for managed devices has made it successful in the Internet
network element market. Version 2 has only recently been completed. It fixes some of the problems of version
1 (e.g. object creation/deletion), but its adoption is questioned given the overall cost of the transition compared
to the new features. In addition, the security framework has not yet been fully agreed and it is optional, which
implies that the overall framework will continue to be used for mostly monitoring rather than intrusive
management.

Telecommunications environments guarantee quality of service. They need to support a very high degree of
availability and fault-free operation and are inherently connection-oriented. Internet management does not well
match requirements such as timely reaction to network events, minimization of management traffic,
geographic dispersion of control through distribution and strong security guarantees. In addition, the simplicity
of agents is not a big issue for telecommunications network elements which are typically complex and
sophisticated (e.g. exchanges, ATM switches, SDH Add-Drop Multiplexors). In fact, recent advances in
inexpensive memory and processing capabilities suggest that the argument of simplicity is no longer valid. In
summary, the Internet management framework is not well suited for telecommunications network
management. Network elements with Internet management interfaces can be adapted to OSI/TMN by using the
IIMC and to CORBA/TINA by using the JIDM solutions.

The OSI management framework was conceived mainly for WAN management and telecommunications
environments. It is a communication framework based on the manager-agent model but has opted for
sophisticated facilities in agents, as necessitated by the needs of such environments. It has adopted connection-
oriented reliable transport and a fully object-oriented information model. OSI agents offer optimized multiple
object access and sophisticated event management facilities that provide expressive power and minimize
management traffic. The whole framework follows a “large common denominator” approach to management
standardization, promoting a common style for management tasks through the system management functions
which address reusability and genericity. Its object-oriented nature has led to object-oriented development
environments that provide platform facilities similar to those of OMG CORBA. The key difference, however,
is that the relevant APIs are not “standard” and this means that there is no application portability across
different software platforms. The sophistication and complexity of the overall framework has delayed its
adoption but early research efforts [Pav95a] and recent platform products have accelerated the development
process and there are now a number of elements with OSI/TMN compliant interfaces in the market place. In
summary, OSI management is ideally suited for telecommunication network management and it has been
adopted as the base technology for the TMN.

OMG CORBA has evolved from the distributed system world and can be seen as a pragmatic solution that
conforms to the spirit of the ISO/ITU-T ODP standards. It projects a single distributed object paradigm,
accessed transparently through the ORB, as opposed to the object cluster approach of the manager-agent



Chapter 2

32

model. In addition, it is mostly an object-oriented distributed programmatic framework that standardizes APIs
to the underlying ubiquitous software infrastructure, the “distributed processing environment”. Its object-model
is fully object-oriented and largely compatible with that of OSI management. Underlying communications are
reliable connection-oriented approaches, with connection management taken care of by the DPE. The event
management model is simpler and less powerful than that of OSI management. Multiple object selection and
discovery facilities may be supported through name servers and traders, albeit with increased traffic and
reduced timeliness compared to OSI management. The use of CORBA for telecommunications network
management is theoretically possible but has not yet been attempted in practice. Federation issues, e.g. for
trading, have not yet fully worked out while the feasibility and cost of an ORB, name server and trader for
every network element with potentially thousands of managed CORBA objects needs to be assessed. The real
strength of CORBA is distributed system building and, as such, it makes it an ideal candidate for distributed
service operation and management in the context of new advanced services. In summary, OMG CORBA is best
suited for telecommunication distributed service operation and management and this is why it has been
adopted by TINA as the basis of the TINA DPE.

OSI management and CORBA will have to coexist in the context of telecommunications network and service
management in the years to come. We will finalize this chapter with two scenarios for their coexistence and
integration: a pragmatic approach, which takes into account the past and present investment in this area, and a
“blank paper” approach, potentially suitable for the long term.

   Element
Management

   Network
Management

    Service
Management

TMN

         TINA Service
Operation  / Management

   Element
Management

   Network
Management

TMN

TMN

CORBA  to  OSI/TMN adaptation

Figure 2.16  CORBA to OSI/TMN Adaptation Scenarii

TMN addresses mostly network operation and management while service management has not been addressed
yet by the relevant standards groups. TMN service management addresses mostly “traditional”
telecommunications services, not supported by distributed applications, for example leased line on demand
with guaranteed quality characteristics. While TMN mechanisms cn be used to manage advanced services
supported by distributed applications (e.g. video-conferencing, joint document editing), this will result in
different mechanisms for service operation and service management, as already explained. The TINA
framework tries to unify service operation and management mechanisms through a CORBA-based DPE and it
is likely this will be the way advanced telecommunication services will be offered in the future. Despite the fact
that the TINA framework intends to replace completely the TMN in the long term, the most likely scenario is
that TMN will be used for network management and traditional service management while TINA will be used
for advanced service operation and management.

The reusability of TMN management services is shown in Figure 2.16. The TMN in the left part of the figure
supports both network and traditional service management. Its management services are accessible through
OSI management-based X interfaces. These services could be accessed from CORBA-based environments, e.g.
in customer premises networks, through suitable adapters according to the JIDM specifications. Note that
adapters for other technologies, such as the World Wide Web (WWW), may be necessary. The TMN in the
right part of the picture supports only network management functionality. TINA advanced services operate on
top of it and reuse the supported network management services (e.g. fault/configuration management, network



Chapter 2

33

quality of service management). Again, TMN services are accessed through JIDM-compliant CORBA to OSI
management adapters.

The second scenario for their integration examines the possibility of combining the relative strengths of both
technologies by providing OSI management facilities in a CORBA environment. An ISO/ITU-T initiative that
studies the impact of ODP on OSI management is known as the Open Distributed Management Architecture
(ODMA) [ODMA]. This is a theoretical high-level study. In addition, research work by the author, described
in [Pav97], and by others has specified OSI-SM facilities over CORBA. The approach is depicted in Figure
2.17.

ORB

M”O  MB  MO

Object “Cluster”

M”O: Managing Object
MO:  Managed Object
MB:   Management Broker

Figure 2.17  The OSI/TMN Operational Model Over CORBA

In this approach, the operational framework of OSI management is retained over CORBA through
Management Brokers (MBs). Existing GDMO information viewpoint specifications are translated to IDL
computational ones on a one-to-one basis, using the XoJIDM [JIDM] approach. Managed objects are
implemented as equivalent CORBA interfaces with a logically bound cluster of managed objects, similar to an
OSI/TMN agent, administered by a Management Broker (MB). The MB provides multiple object access
facilities through scoping and filtering. In addition, it acts as an object factory, naming and notification server.
Event management is provided by event forwarding discriminators and logs, with relevant filter attributes
supporting the fine-grain control of notifications. The rest of the OSI SMFs are maintained as generic CORBA
objects that may be instantiated within a cluster. In summary, the only necessary CORBA service is naming in
order to address the MBs in a location transparent fashion.

This approach essentially maintains the OSI/TMN operational model over CORBA, but replaces the access
mechanism (i.e. CMIS/P) through CORBA interactions and the distribution mechanism (i.e. OSI directory)
through the CORBA naming service. Of course, interoperability protocols other than IIOP will be necessary to
support interoperability in telecommunications environments; relevant mappings are expected to be produced
by OMG in the future. The proposed approach retains the OSI management expressive power, event model and
generic management facilities while it benefits from the distribution, portability and easy programmability of
CORBA. Such an approach will make possible the eventual migration towards a single integrated “service
engineering” framework that will encompass both service and network management aspects.

Acknowledgments

Sections 2.2.1 and 2.4.3 are based on earlier versions by Graham Knight of UCL, from a joint unpublished
document on the comparison of the Internet and OSI System Management frameworks.

The research work for this chapter was undertaken in the context of the ACTS VITAL and REFORM projects
and the RACE ICM project. The ACTS and RACE programmes are partially funded by the Commission of the
European Union.



Chapter 2

34

References

 [X701] ITU-T Rec. X.701, Information Technology - Open Systems Interconnection - Systems
Management Overview, 1992.

[RFC1157] J.Case, M.Fedor, M.Schoffstall, J.Davin, A Simple Network Management Protocol (SNMP), RFC
1157, 1990.

[RFC1905/6] J.Case, K.McCloghrie, M.Rose, S.Waldbusser, Protocol Operations and Transport Mappings for
Version 2 of the Simple Network Management Protocol (SNMPv2), RFCs 1905 / 1906, 1996.

[X901] ITU-T Rec. X.901, Information Technology - Open Distributed Processing - Basic Reference
Model of Open Distributed Processing - Part 1: Overview, 1993.

[CORBA] OMG, The Common Object Request Broker Architecture and Specification (CORBA), Version
2.0, 1995.

[M3010] ITU-T Rec. M.3010, Principles for a Telecommunications Management Network (TMN), Study
Group IV,1996.

[TINA] An Overview of the Telecommunications Information Networking Architecture (TINA), TINA’95
Conference, Melbourne, Australia, 1995.

[X208] ITU-T Rec. X.208, Specification of Abstract Syntax Notation One (ASN.1), 1988.

[RFC1155] K.McCloghrie, M.Rose, Structure and Identification of Management Information for TCP/IP-
based Internets, RFC1155, 1990.

[RFC1902] J.Case, K.McCloghrie, M.Rose, S.Waldbusser, Structure of Management Information for Version
2 of the Simple Network Management Protocol (SNMPv2), RFC1902, 1996.

[RFC1271] S.Waldbusser, Remote Network Monitoring MIB (RMON), RFC1271, 1991.

[X720] ITU-T Rec. X.701, Information Technology - Open Systems Interconnection - Structure of
Management Information -Management Information Model (MIM), 1991.

[X721] ITU-T Rec. X.701, Information Technology - Open Systems Interconnection - Structure of
Management Information: Definition of Management Information (DMI), 1992.

[X722] ITU-T Rec. X.701, Information Technology - Open Systems Interconnection - Structure of
Management Information: Guidelines for the Definition of Managed Objects (GDMO), 1992.

[IDL] OMG, Specification of the Interface Definition Language (IDL), CORBA Version 2.0, 1995.

[COSS] OMG, Common Object Services Specification (COSS) - Event, Life-Cycle, Name, etc., 1994.

 [X500] ITU-T Rec. X.500, Information Technology - Open Systems Interconnection - The Directory:
Overview of Concepts, Models and Service, 1988.

[X750] ITU-T Rec. X.750, Information Technology - Open Systems Interconnection - Systems
Management - Management Knowledge Management Function, 1995.

[X710/11] ITU-T Rec. X.710/711, Information Technology - Open Systems Interconnection - Common
Management Information Service Definition and Protocol Specification (CMIS/P) Version 2,
1991.

[Q811/12] ITU-T Rec. Q.811/812, Specifications of Signaling System No. 7 - Q3 Interface - Lower and
Upper Layer Protocol Profiles for the Q3 Interface, 1993.

 [X734/5] ITU-T Rec. X.734/735, Information Technology - Open Systems Interconnection - Systems
Management - Event Management and Log Control Functions, 1992.

[GIOP] OMG, General Inter-Operability Protocol, CORBA Version 2.0, 1995.



Chapter 2

35

[IIOP] OMG, Internet Inter-Operability Protocol, CORBA Version 2.0, 1995.

[X9tr] ITU-T Draft Rec. X.9tr, Information Technology - Open Distributed Processing - ODP Trading
Function,, 1994.

[SMF] ITU-T Rec. X.730-750, Information Technology - Open Systems Interconnection - Systems
Management Functions.

[RFC1909/10] K.McCloghrie, G.Waters, Administrative Infrastructure and User-based Security Model for
Version 2 of the Simple Network Management Protocol (SNMPv2), RFCs 1909 / 1910, 1996.

[GULS] ITU-T Rec. X.830-833, Information Technology - Open Systems Interconnection - Security,
Generic Upper Layer Security (GULS), 1996.

[OMGSEC] OMG, Security Specification and Common Secure Interoperability - Version 1.0, 1996.

[Bha96] S.Bhatti, K.McCarthy, G.Knight, G.Pavlou, Secure Management Information Exchange, Journal
of Network and System Management, vol. 4, no. 3, pp. 251-257, Plenum Publishing, 1996.

[XOM/XMP] X/Open, OSI-Abstract-Data Manipulation (XOM) and Management Protocols (XMP)
Specification, 1992.

[IIMC] NMF, ISO/ITU-T Internet Management Coexistence (IIMC) - Translation of Internet MIBs to
ISO/ITU-T GDMO MIBs and ISO/ITU-T to Internet Management Proxy, Forum 026 and 028,
1993.

[Pav95a] G.Pavlou, G.Knight, K.McCarthy, S.Bhatti, The OSIMIS Platform: Making OSI Management
Simple, in Integrated Network Management IV, ed. A.S.Sethi, Y.Raynaud, F.Faure-Vincent, pp.
480-493, Chapman & Hall, London, 1995.

[Pav95b] G.Pavlou, K.McCarthy, S.Bhatti, N.DeSouza, Exploiting the Power of OSI Management in the
Control of SNMP-capable Resources Using Application-level Gateways, in Integrated Network
Management IV, ed. A.S.Sethi, Y.Raynaud, F.Faure-Vincent, pp. 440-453, Chapman & Hall,
London, 1995.

[JIDM] X/Open / NMF, Joint Inter-Domain Management (JIDM) Specifications - SNMP SMI to CORBA
IDL, ASN.1/GDMO to CORBA IDL and IDL to GDMO/ASN.1 translations, 1994.

[ODMA] ITU-T Draft Rec. X.703, Open Distributed Management Architecture, 1995.

[Pav97] G.Pavlou, From Protocol-based to Distributed Object-based Management Architectures,
Proceedings of the IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management, Sydney, Australia, 1997.


