I d Network M 11

1. Krishnan & W. Zimmer (Editors)

Elscvier Science Publishers B.V. (North-Holland) 259
® IFIP, 1991

Experience of Implementing OSI Management Facilities
Graham Knight , George Pavlou and Simon Walton

Department of Computer Science, University College London, Gower Street London,
WCIE 6BT, United Kingdom

ABSTRACT

The Computer Science department at UCL has experimented with OSI management sys-
tems for several years and has impl 1a pilot g system on a Unix worksta-
tion. A second version of this system is now being implemented. This paper briefly reviews
our experience with the pilot system and outlines the capabilities that were felt desirable in
its successor. The architecture of the successor system is then described.

L. INTRODUCTION

The Computer Science department at UCL has experi d with OSImar 1t systems
for several years and has built a pilot system. We have been interested in investigating how prac-
tical is the OSI approach when compared with that of (say) SNMP[1]. In particular, we have
wanted fo experiment with the complex filtering and event control facilities that OS5I manage-
ment provides,

Section 2 describes the key features of the pilot system and Section 3 outlines the areas in
which development was felt to be necessary. Section 4 gives an overview of the architecture of
the updated system whilst Sections 5-7 provide a detailed description of its internal operation. It
is assurned that the reader is familiar with the basic concepts of OS] management. A good wtorial
introduction to these may be found in [2].

2. THE PILOT SYSTEM

Our first implementation "Osimis" [3] was developed under the ESPRIT INCA project[4]
and was designed to provide OSI Management facilities for a Unix workstation. It included a
CMIP implementation to the DP of 1988 built upon ISODE(S5]. This system is illustrated in
Figure 1; it provided communication between a Unix "Systems Management Agent” (SMA) and
three clients; an event logger ("Osilog”), a status monitor ("Osimon”) and an MIB browser
("Osimic"). The MIB was restricted solely to the ISODE Transport Layer.

Some of the key features of this system are described below.

2.1. Managed System Internal Communication

The ISODE Transport protocol code that was used ran in user space. At any given moment,
there could be several instances of the protocol active within several Unix processes. In order to
de-couple management protocol operation from communications protocol operation and to col-

260

lect management services in one place, it
was decided to impl the 2
services in a single process - the "Systems
Management Agent” (SMA).

The problem then arose of how and
when management information should pass
between the communications protocol
processes and the SMA. In the event,a UDP
socket was chosen, with all communication
being initiated by the Transport protocol Disgnoes
processes. The Transpont protocol code =
was liberally seeded with entry points tothe
management code that would trigger the
dumping of management information to the
SMA at significant moments. Triggering
events included T-Connects, T-Discon-
nects, a fixed data quantity transferred etc.
This avoided the problem of having to in-
terrupt Transport protocol operation in
order to deal with asynchronous requests
from the SMA - a procedure that was held
likely to have unpredictable effects on
Transport (and other) protocol operation.
Unfortunately, this arrangement also made
it difficult to pass information from the
SMA to the protocol processes. Since our main interest at the time was in event-driven manage-
ment we decided that one-way communication was acceptable.

Figure 1. UCL "OSIMIS" version 1.

2.2. Event Report Control

At the time of the original impl wation, the manag of event reporting was not very
complete in the standards. There was a notion of a "Defined Event" - an attribute of a Managed
Object (MO) which corresponded to some event in the real world, a Transport Disconnect for
example or a management event such as a threshold being exceeded. There was also a "Report
Control” MO which was tied to a Defined Event and specified the information to go in the report
together with a list of recipients.

Having Report Control and Thresholds as MOs in their own right meant that, in principle,
these could be created and deleted dynamically and that many-to-many relationships could exist
berween Defined Events, and Threshold and Report Control MOs. This suited the way in which
we proposed to use event reports which were seen as a general purpose tool for driving loggers,
status displays and diagnostic tools.

Although the main purpose of the system was to support human "managers”, it also needed
1o cater for the requirements of our relatively sophisticated users who like to know what is hap-
pening on the department s systems. If performance seems poor, they like to be able to find out
why by getting an up-to-date picture of activity. The "netstat” program on Berkeley Unix sys-
tems is an example of one which addresses this need. We wished to satisfy a similar requirement
for ISODE. If facilities like these are to be event-driven, then it must be possible for several

261

remote systems [0 receive event reports from a target system simultaneously and for the event
reporting criteria (thresholds etc.) to be individually railored. This requirement is in contrast to
the more conventional one in which is only necessary to report events to a single remote sink.

2.3. The MIB Browser

The aim of the browser was to provide a rool that would be useful to system developers and
maintainers who needed to focus in on some aspect of the operation of an OSI component and
view its operation in detail. In OS] Management terms this means providing a detailed view of
a single MO. The problem we faced wus in the naming of transient MOs such as those repre-
senting Transport Connections. These are named by identifiers (usually integers) allocated by
the parent system at "create” time. Their scope is purely local and there is no way that an exter-
nal management process can know of these a priori. The browser provided a graphical interface
to the tree of MOs on a remote system. From any object, it was possible to list the MO classes
and Relative Distinguished Names of the subordinates. In the case of transient objects, the sub-
ordinates could be examined in turn until the required one was found,

3. REQUIREMENTS FOR THE SUCCESSOR SYSTEM

When the time came to update the pilot system we had several things in mind:

i) The standards had developed further, this was particularly noticeable in the area of event
control, "discriminators” having been introduced in order to enhance this. These had some
of the properties of our Report Control MOs but with much more sophisticated filtering.

ii) Our original CMIS/P implementation was not quite a full one. The M-CREATE, M-
DELETE and M-ACTION services were omitted as was filtering, scoping and wildcarding.
CMIS and CMIP had now stabilised at the final DIS stage and differed substantially from
the versions we had used. An update was essential.

ili) It was clear, even from our small-scale pilot scheme, that OS] management systems were
inclined to be large - too large for many small but high-performance network components.
We were keen to investigate the use of proxy systems in these circumstances.

iv) Though it was clear that the MIB we managed would need to be expanded to include addi-
tional components, we could not say in advance precisely what these should be.
Our own MO definitions were “interim" at best, skeletal at worst! We needed to be able 1o
adapt our MO definitions as the standards process proceeded, with a minimal disruption to
existing code.
The proprietary management facilities inherent in network components are rarely designed
with OS] management in mind - nevertheless we wanted to incorporate these. Quite com-
plex data mappings are sometimes needed in order to native £ informa-
tion into an OSI-like form. Further, proprietary management protocels vary in the message
set they offer and in fundamentals such as which party initiates communication. We needed
to construct systems which were flexible enough to allow new components to be incorporated
no matter what proprietary facilities were on offer.

vii) Notwithstanding the variety of components alluded to above, many features of OSI manage-
ment are common to all components. We wished to extract the common facilities into a few
tightly-defined modules that could be used as a basis for building a variety of systems by a
variety of people.

v

vi

262

4. GENERIC MANAGED SYSTEM OVERVIEW

To date, in our design of a successor system, we have concentrated on the Managed System
and how this can be structured with extensibility in mind. We have attempted to provide the
generic features of an OSI Managed System together with a support framework which may be
used by the implementors of MOs. The target environment is a Unix workstation requiring OSI
management facilities and which may also act as a proxy for another machine. The result we call
the “Generic Managed System” (GMS),

The intemnal structure of GMS is shown in Figure 2. To a large extent, the structure reflects
the OSI model of a Managed System so that the major software interfaces correspond to those
of the OS5I model. For example, the extemal CMIS interface specified in [6] and the intemal "ob-
Ject boundary” interface outlined in [7] are both represented by software interfaces. However,

\Coordinator “Refresh”
CMIS Requests (6) | |
|t Data
: i (3)
(7)
'0§| | Agent
CMIS Resfionses ;
| Polls
ana Event [pports i _: ‘
2
(9)
CMIS
Interface a
"Gels” and
"Sats”
(8) .
L N
"Real Resource”
i Interface
MCMO
| i
[“oms" pants | & | i
i SR - il
i.i TResource Specific” parls i—_

Figure 2. The UCL Generic Managed System

263

the OSI model was never intended to be an implementation model and significant divergencies
have been made in order to arrive at a practical design.

The GMS is implemented as a single Unix process; the implementation language being C++
There are five major software components, each realised as a C++ object or set of objects:

i) Real Resource Managed Objects
i) M Control Managed Objects
iii) Internal Communication Control Objects
iv) The Coordinator.
v) The OSI Management Agent

These are described in the sections below,

5. INTERNAL STRUCTURE AND FUNCTIONALITY
5.1. Managed Objects

From the implementation point of view, two sorts of MO classes may be itlentified. The first
are abstractions of "real resources” (Transport connections for example) which need to be
managed; these we call Real Resource MOs (RRMO). The second relate to features of the
management system itself and exist so as to allow the operation of the management system to
be controlled via standard management operations; we call these Management Control MOs
(MCMO). One example of a MCMO is an Event Report Forwarding Discriminator (ERFD). This
contains information specifying which events should be reported and to where. Event reporting
behaviour can be modified by changing this information through the use of CMIS M-SET opera-
tions.

5.1.1. Real Resource MQs
Implementations of "Real Resource” MO classes (RRMO) may be considered to have two
parts (see Figure 2):

i) A part common to all RRMO classes. This is provided by the GMS and includes:

« A C++ object class for a generic MO. This has methods corresponding to the MO bound-
ary interface plus some additional ones to assist with maintenance. Specialised subclas-
ses of this may be derived as required.

+ C++object classes forcommonly occurring attributes such as counters, gauges, thresholds
and tidemarks. In fact, all the anribute types in [8] are supported in this way.

+ A supportenvironment to assist with and coordinate communication with the real resource.
This environment is described more fully in Section 5.2

i) A part specific to a particular RRMO. This must be tailored not only to the real resource type
but also to the means the real resource uses to present management information. These
"resource specific” parts are not provided by the GMS and must be supplied by the individual
implementors of RRMO classes.

264

5.1.2. Management Control M(s

MOCMO classes are common to all management systems no matter what real resources are
being managed. Hence, GMS provides implementations of MCMO classes in their entirety.

At present, the only MCMO class provided is the ERFD one. ERFD objects may be created,
destroyed and updated as a result of CMIS from a ;

& 5

5.2. Communication with Real Resources
We now consider the ways in which management information may be obtained from real
resources. Real resources may reside in the operating system’s kemel, on communications
boards, in user-space processes or even at remote systeras which are managed via proxy manage-
ment. The information they contain may be accessed by reading the kemel's virtual memory,
talking to a device driver, communicating with another user-space process using an IPC
mechanism or - in the case of proxy manag it - with a system using a communica-
tions protocol. In general, communication needs to be two-way as it should be possible to per-
form “intrusive” management by setting management information values in the real resources,
From the point of view of the GMS, information flow may be triggered:
i) asynchronously as a result of some activity on the real resource.
if) by atimeout indicating that a real resource should be polled.
iii) as a result of a CMIS request from a remote manager process.
Each of these embodies a trade-off between the timeli of the 1t information

that the GMS can make available and its responsiveness, Used exclusi\rery. iii) makes event
reporting infeasible and implies the operation of a pure polling regime by the manager such as
is favoured for SNMP.

5.2.1. Internal Communications Control

If generality isto be achieved, the GMS must support all the communications methods above,
maintaining at the same time well-defined and uniform interfaces between the RRMOs and the
rest of the system. It must be remembered that several RRMOs may be associated with a single
real resource; ideally such a "family” of RRMOs should share a single communications path to
the real resource. In order to achieve this, the notion of an Intemal Communications Control
(ICC) object is introduced. An ICC object coordinates the updates of a family of RRMOs that
are realised in a similar fashion. 1CC objects are repositories for information about the mode of
communication to be employed, they initialise this communication and und d conventions
such as the nature and structure of the messages exchanged, ie. the protocol used. 1CCs are
created at system start-up time for each RRMO family that is to be managed.

As there are no real resources associated with MCMOs these do not have corresponding ICC
objects.

5.2.2. The Coordinator

Given that several real resources are being 1 ged and that o ges are also being sent
and received across the CMIS interface, it can be seen that some organisation is necessary to en-
sure that incoming messages are delivered to the correct objects and that no object cando ablock-
ing read thus disabling the whole system. This is achieved by ensuring that all incoming mes-
sages are delivered first to a "Coordinator” object which then distributes them.

When the first RRMO in a family is created (either as a result of a CMIS M-CREATE re-
quest or of some activity on the real resource), its [CC interacts with the Coordinator in order to

265

register an endpoint of communication (typically a Berkeley socket) to the real resource through
which asynchronous messages may be expected.

An ICC may ask the Coordinator to call one of its methods at regular intervals so that it may
poll the real resource. Altematively, it may ask that whenever data becomnes available at the com-
munication endpoint a method should be called. Typically, this method will read the incoming
data and pass this to the correct RRMO. The only case when RRMOs interact directly with the
real resources is when they set management information.

5.3. The OSI Agent

The other major component of the OSI managed system model is the "OSI Agent”. This too
is represented by a C++ object and handles wild-card naming, scoping, filtering and (eventual-
ly}) access control.

The OS5I Agent services the messages it is handed by the Coordinator. These may be either
association establishment/release requests or CMIS operation requests. In the latter case it first
performs access control functions and then synchronises the potentially multiple replies accord-
ing to the scoping and filtering parameters. In order to perform CMIS requests, it interacts with
the selected MOs to get, set, etc. management information, '

The OSI Agent may also receive event "notifications” from the RRMOs. According to the
OSI management model, MOs issue notifications to the agent which then checks with the event
filtering information in the ERFDs to determine whether the notification should result in a CMIS
M-EVENT-REPORT. Unfortunately, if an implementation follows this model it results in a
great deal of wasted processing in the case that no remote manager is interested in the event in
question. There are also some logical problems; for example, the filtering expression may
reference the MO that issued the notification but this may, by now, have been destroyed. Within
the GMS, ERFD filtering information is applied in advance and notifications are only issued by
RRMOs if it is known that M-EVENT-REPORTS will result. Although we have implemented
the full generality of the filtering mechanism specified in the draft standards[9], we can see that
certain filters will be extremely expensive to process. We expect that, in practice, only quite
simple filtering expressions will be used.

6. METHODS

As an aid to understanding the information flow within the GMS we now summarise the
methods applicable to the objects above. The C++ obj.mathod notation is used (somewhat
loosely) to indicate a method mathod being applied to an object with id eb3

6.1. The OST Agent _
Three methods are used by the Coordinator to report incoming messages from the CMIS in-
terface:

i
T

assoc_id = agent.cmis_ P
agent.cmis work (assoc id)

agent.cmis lose (assoc_id)

266

The first is used to notity a request for the establishment of a CMIS association, the second
to indicate that a message has ammived on an existing association, (including a disconnect request),
and the third to indicate that an existing association has been abnormally released.

A further method is used by the RRMOs to notify events:

agent.notify (my class, my name, event typa, event report info,

destination_ addre s..__].j.a t)

6.2, Managed Objects
The OSI agent interacts with the RRMOs and MCMOs to perform requested CMIS opera-
tions. The procedures and methods used are:

rasult = Create (parent MO, rdn, init info)

rasult = mo.Get (attribute_ids)

result = mo.Set (attribute_id/value pairs)

rasult = mo.Action (action_type, action information)
rasult = mo Dalate ()

Creata is a static method which checks whether a create request is valid and, if it is, calls
the constructor for the appropriate C++ class. The identity of the parent MO in the containment
hierarchy and the Relative Distinguished Name (RDN) of the new MO are supplied as
parameters. The four methods shown then embody the interface defined in [7]. The

Four other methods are provided to assist the OSI agent in locating the required MO:

target mo = mo.find (nama)
mo_list = mo.scope (scopae_info)
answar = mo.filter (filter)

answar = mo.check_class(my_class)

The first searches the subtree below mo for a MO called nama, the second retums a list of
MOs which are "in scope” according to scope_info, the third applies a filter to a MO and
returns a boolean value, the fourth checks that the class my_claas is appropriate for the MO
in question.

An ICC may need to create or delete transient RRMOs and to refresh the RRMOs it controls
with new management information according to activity in the real resources. RRMOs are created
by the ICC calling the constructor directly. The methods used by ICCs are:

mo.do update (management information)

mo . dastructor ()

267

6.3. The Coordinator

The ICCs tell the coordinator to register or de-register endpoints of communication to the
real resource and are subsequently informed of activity on these. They also tell the coordinator
to schedule and cancel periodic polling signals. The methods used are:

coord.ragister cep (icc, cep_id)

coord.deragister_ cep (icc, cep_id)

coord. schedule poll (ice, intarval, MOclass)
coord.cancel poll (ice, MOclass)

6.4. ICCs
RRMOs in a family register and de-register themselves with their ICC as they are created
and deleted: A

icc.register_object (mo, mo_class, rdn)

icc.deragister_object (mo)

Note that the first RRMO to register triggers the establishment of communication to the real
resource.

RRMOs may optionally request a special polling regime for a particular MO class and these
requests are passed to the Coordinator via the ICC:

icec.schedule poll (interval, MOclass)
icc.cancel_poll (MOclass)

A RRMO may need to talk directly to the relevant real resource - for example when the set-
ting of some attribute value should rapidly be reflected in system operation. In this case, the
RRMO must ask for its communication end-point from the ICC:

cep_id = icc.get_cep ()

The Coordinator needs to inform [CCs of the arrival of a message from a real resource or of
the necessity to issue a poll. These two methods are used:

icc.do_cepread (cep_id)
ice.do_poll (MOclass)

The ohject class parameter in the poll method is only used when the polling takes place for
a single MO class within a family rather than for the family as a whole.

268

7. THE GMS IN USE - AN EXAMPLE

The first RRMO to be implemented was a port of the ISODE TP0 management functions
from the old OSTMIS system. An important test of the GMS structure was the ease with which
this could be done.

In the case of ISO TPO, we identified two MO classes: the T-Entity class and the T-Connec-
tion class. There may be one and only one (static) instance of the T-Entity class. This summarises
activity for all incamations of the protocol and contains information such as the number of cur-
rent and previous connections, the amount of data transferred, and error counters. Instances of
the T-Connection class are transient - existing only during the lifetime of a connection. They
contain information such as creation time, source and destination TSAP add and traffic
counters. These are subordinate to the T-Entity instance in the MIB containment hierarchy.

[SODE TPO0 is implemented as a set of library routines that are linked with the applications,
this means that it runs in user space - the “real resource” in this case is effectively a Unix process.
The IPC method used to communicate management information is a UDP socket - communica-
tion is only possible from the real resource to the GMS at present.

Implementation was straightforward. C++ object classes for the T-Entity and T-Connection
RRMO classes were derived from the generic C++ MO class. Many of the additional attribute
types required were instances of C++ classes already available within the GMS. An ICC object
class was written (again, derived from the generic C++ one). This registers a socket bound 1o a
well-known port with the Coordinator. An ICC method (ice.do_cepread()) is then called
by the Coordinator each time a message arrives at the socket. Detailed operation is as follows
(the numbers in the text are references to Figure 2).

When the T-Entity RRMO is created, (which happens either at initialisation time or through
a CMIS M-CREATE request), it registers itself (icc.register_object ()) with the
"ISODE" ICC object (1). If it is the first ISODE-related RRMO to register, the ISODE ICC ob-
ject initialises the UDP socket, so that it may be contacted by active ISODE processes. It also

gisters this ication endpoint” with the Coordinator (coord.registex_cep ())so
that it will be notified in case of activity (2). After this, T-Connection RRMOs may be created
and these too will be registered with the [ISODE ICC.

When amessage arrives at the UDP socket from an ISODE process (3), this is fielded by the
Coordi which ises the socket as being managed by the ISODE ICC which it then in-
forms (icc.do_cepread (}) (4). The ISODE ICC then passes the incoming information to
the relevant RRMOs (5) (mo.do_updata ()).

A CMIS M-GET request will also be fielded by the Coordinator (6) and, in this case, will
be passed to the OSI Agent (7) (agent .cmis_wozk ()) which will perform the scoping and
filtering tasks in order 10 select the relevant MOs. It then performs the requested operation (8)
(mo . 2oex ()) on these.

As aresult of processing information received from an ISODE process, an RRMO may deter-
mine that a threshold has been exceeded and that a notification may be required. If the RRMO
determines that an ERFD filter is set to forward such a notification, it informs the OSI Agent (9)
{agant .notify ()).

Finally, when an ISODE RRMO is deleted, (which happens, for example, when a T-Con-
nection closes or as a result of a CMIS M-DELETE request, it deregisters itself with the ISODE

269

ICC object. If it was the last RRMO, the UDP socket is closed and the Coordinator is notified
accordingly, so that future protocol instances will not talk to the agent

8. CURRENT STATUS AND FUTURE PLANS

We have, at present, an impl ation of the GMS as described. The only RRMOSs sup-
ported so far are those related to the [SODE implementation of ISO TPO described above.

The next step will be to add RRMOs related to further classes of real resource. One of the
first of these will be the Berkeley Unix TCP/IP implementation. Although it might seem odd 10
manage a non-OSI protocol suite in this way, its extensive use in our environment means that it
will exercise the GMS in a realistic way

The OS] management work is being undertaken as part of the ESPRIT project “PROOF"
This project is building a connection oriented Ethemet ISDN gateway, UCL 1s also building a
connectionless version. Both of these gateways will be managed by using the GMS as a proxy:
ISDN, X.25 and Ethernet RRMOs will be needed.

Another possibility we will look at is the implementation of RRMOs with SNMP back-ends.
These would enable the GMS to operate as a proxy system for SNMP agents, enabling these to
be ged by OSInm ger p

The standards continue to develop, one [8] has been superceded [10] and no doubt others
will suffer the same fate. We intend to modify the GMS as soon as these changes seem to be fair-
ly stable.

Finally, we will investigate the use of a managed system specification language with a com-
piler to generate code for the generic parts of RRMOs, to define a MO schema and to provide
initialisation data for static MOs. In this way, only the "back-end” code for interacting with the
real resources will need to be hand written.

We do not claim that this system provides all the answers for OSI management. The GMS
was built as an experimental tool with flexibility rather than performance and compactness in
mind. However, we do hope that it will give us some practical insights into the problems of OSI
management which will be valuable in the future, and that our experience will be useful to others
facing similar problems.

| The PROOF panners are: 3Net (UK - Prime Contractor), SNI (Germany), System Wizards (ltaly).
University College London (UK).

270

e,

REFERENCES

(=)

Case.].D., Fedor, M., Schoffstall, M.L., Davin, C. "Simple Network Management
Protocol (SNMP)", (DARPA RFC 1098), April 1989

Sluman C., "A rtonal on OSI Management”, "Computer Networks and ISDN Systems”
vol 17 pp 270-278, 1989

L]
Knight G. I., "The INCA Nerwork Management System”, Connexions - The Inter-
operability Report, Vol. 3, no. 3, pp. 27-32, March 1989

Knight G.J., Kirstein P.T., "Project INCA - An OSI Approach to Office Communica-
tions”, Proceedings of the OSI87 Conference. pp 245-254, Online, London 1987.

Marshall T. Rose, "The ISO Development Environment User's Manual”, U. Delaware,
1990

ISO/DIS 9595 (Final Text N3874), "Information Technology - Open Systems Intercon-
nection - Common Management Information Service Definition”, 2nd DP N 3070,
January 1990

ISO/DP 10165-1 {Proposed DP Text), “Information Processing Systems - Open Systems
Interconnection - Management Information Services - Structure of Management Informa-
tion - Part 1: Management Information Model", June 1990

ISO/DP 10165-3 (Proposed DP Text N 3302), Information Processing Systems - Open
Systems Interconnection - Management Information Services - Structure of Management
Information - Part 3: Definitions of Management Attributes, January 1989

ISO/DP 10164-5 (N3845), Information Processing Systems - Open Systems Interconnec-
tion - Systems Management - Part 5: Event Management Function, September 1989

ISO/DIS 10165-2, Information Processing Systems - Open Systems Interconnection -
Management Information Services - Structure of Management Information - Part 2:
Definition of Management Information, June 1990

